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Abstract

One of the “Recommendations (by Klaus Peters) on Jon Borwein’s LinkedIn page
starts with: “Jonathan Borwein is a world-renowned research mathematician and one
of the leaders in the emerging field of experimental mathematics to which he has made
many original contributions. He has written several books that have helped to define the
field. Examples include finding closed forms of integrals by numerically computing high
precision approximations (accurate to hundreds of decimal digits) which is used to identify
the answer. Knowing the correct answer facilitates the proof of its correctness.

Here this experimental mathematics approach is taken with a couple of traditional
“find the maximum . . . ” problems suitable for senior school or first year undergraduate
students (who could even be pre-calculus students). We use the Computer Algebra Sys-
tem, Maple, for experimentation (and visualization) to compute high accuracy numerical
approximations to the answer. Maples identify( ) command is used to identify the exact
answer. Knowing the answer, we prove that it is correct - without using calculus. We
use small group collaborative learning in the computer laboratory, so we parameterize the
problem and recommend the use of Computer Aided Assessment (such as provided by the
package MapleTA).

Students engage with the visualization, are active learners with deep learning of the
concept of maximum and gain a gentle introduction to the important new field of exper-
imental mathematics.

1 Introduction

Since the mid 1990s, we have often stated our view that all mathematics graduates from uni-
versities should be expert users of one of the two professional level Computer Algebra Systems,
CAS: Maple being one of these. A recent study [9] of UK university students reported “that
59% of students find their lectures boring half the time and 30% find most or all of their lec-
tures boring.” A range of different teaching methods were investigated: the most boring were
lab sessions; computer sessions ranked as the second most boring. “Computer sessions too have



the potential to be stimulating or tedious; the findings of this study suggest that too many fall
into the later category. This could be due to the manner in which sessions are conducted (e.g.
are the computer tasks relevant and interesting?), . . . etc.”

These findings are not surprising given that most courses are teacher centric and use a tra-
ditional teaching approach (lectures) with “tutorials” and assignments which are mostly done
without use of technology. When technology such as CAS is used (at both school and under-
graduate levels), it is often a minor supplement where the usual “by hand” exercises completed
by using CAS following the “by hand” approach. We suggest that innovative teaching materi-
als which exploit the strengths of the CAS for tightly integrated e-Learning and e-Assessment,
such in the Maple component of our first year course (and in higher year courses taught entirely
using Maple), and a pedagogy of collaborative learning in small groups as active learners in a
computer lab need to replace (at least in part) boring lectures and boring computer lab sessions.

In this paper we consider a standard calculus problem: find which cylinder inscribed in
a unit sphere has the maximum volume. We provide visualization and show how to obtain
an accurate decimal approximation to the radius that gives the maximum. This leads to an
identification of the possible exact answer. By foregoing calculus, we give a gentle introduction
to experimental mathematics: we provide several algebraic proofs that introduce important
ideas in mathematics, such as approximation in the small. We also support our intuitive notion
that the maximum of a graph of a function “looks like a parabola” near the maximum by
algebraically calculating the quadratic approximation of the function near its maximum.

This paper is organized as follows. Section 2 introduces experimental mathematics. Sec-
tion 3 has a brief overview of first semester, first year Maple sessions which provide a suitable
preparation to undertake the Cylinder in a Sphere problem described here. Section 4 pro-
vides a description of the Cylinder in a Sphere problem and visualization (including multiple
representation and animations). Section 5 zooms in on the plot of volume versus radius of
the cylinder to approximate the r that maximizes the volume; and a possible exact answer is
identified. Several proofs without using calculus are discussed: in Section 6, volume squared is
maximized; in Section 7, volume is maximized. Several more proofs are indicated in Section 8.

Section 9 introduces a parameterized problem (of a Cylinder in a Spheroid) and discusses
e-Marking and Computer Aided Assessment. This is followed by a brief Conclusion.

2 Experimental Mathematics

Jon Borwein is a pre-eminent research mathematican who is one of the leaders in developing
and popularizing experimental mathematics. We suggest that every aspiring or practising
mathematician should read some of his work: we particularly recommend the book [6] and the
short article [7]. In the later, Borwein shares Polya’s view on intuition:

Intuition comes to us much earlier and with much less outside influence than formal
arguments . . . Therefore, I think that in teaching high school age youngsters we
should emphasize intuitive insight more than, and long before, deductive reasoning.
George Polya (1887–1985) [10], p.128

Borwein continued with

[Polya did go] on to reaffirm, nonetheless, that proof should certainly be taught in
school. [ . . . ] My musings focus on the changing nature of mathematical knowledge



and in consequence ask questions such as How do we come to believe and trust
pieces of mathematics?, Why do we wish to prove things? and How do we teach
what and why to students?. [7]

In our experience with our own mathematics undergraduate and PhD students is that they
have little appreciation of intuition in mathematics: my discussions about the importance of
intuition (and the development of it) come as a surprise to them.

Borwein [7] gives an informal summary of what is meant by experimental mathematics:

• Gaining insight and intuition;

• Discovering new relationships;

• Visualising math principles;

• Testing and especially falsifying conjectures;

• Exploring a possible result to see if it merits formal proof;

• Suggesting approaches for formal proof;

• Computing replacing lengthy hand derivations;

• Confirming analytically derived results.

Another eminent mathematician, Doran Zeilberger [11] states that

The purpose of mathematical research should be the increase of mathematical
knowledge, broadly defined. We should not be tied up with the antiquated notions
of alleged “rigor”. A new philosophy of and attitude toward mathematics is devel-
oping, called “experimental math” (though it is derided by most of my colleagues;
I often hear the phrase, “Its only experimental math”). Experimental math should
trickle down to all levels of education, from professional math meetings, via grad
school, all the way to kindergarten. Should that happen, Wigners “unreasonable
effectiveness of math in science” would be all the more effective!

Lets start right now! A modest beginning would be to have every math major
undergrad take a course in experimental mathematics.

We agree, but note that many senior school mathematics courses use CAS so we suggest
“the beginning” should sensibly occur in the secondary school.

3 Preliminaries

For about a decade, we designed and ran Maple topics for our first year university “Calculus”
course comprised of four traditional lectures and one Maple lab session each week. The weekly
lab sessions had no lectures: students work collaboratively in small groups. For the first
semester, the topics were secondary school level mathematics. Students start by taking two
sessions to work through an Introduction to Maple which includes a simple assignment that is
printed and submitted as a hardcopy, but all other work is completely electronic. An Animation



worksheet is followed by a major Animation Assignment: students pick a project (from a list)
that is on a school level topic, see [1].

After these activities, students are expert at preparing plots and animations, so these are
recurring themes. The next activity is Spot the Curve. The Maple file Spot the Curve is
accompanied by another Maple binary file which contains all the procedures for randomly
generating the curves, their translated curves and automatic marking procedures: this binary
file is read into the student Spot the Curve file so that all of the required procedures are invisible
but active in the student file. Each student group is presented with several plots of a curve
and a translated copy of that curve: the task is to identify what the translation is (by using
plots and animations). Students use the provided automatic marking procedure to immediately
mark their result. Feedback shows that students really enjoy this activity: for details, see [2].

Another style of auto marked problem is the FishPond problem, a straightforward applica-
tion of using the trapezoidal rule to approximate area. It has multiple steps with numerical
answers: the marking procedure is used by students to immediately mark their work: for de-
tails, see [2]. The FishPond problem is followed by working through a Maple file of a structured
Polya approach to “finding the maximum area”, followed by an assignment on finding the max-
imum area of the Norman Window problem. For a discussion of the Norman Window problem,
multiple representations, e-Marking and Computer Assisted Assessment, see [3]. With this (or
similar) background, students are prepared to investigate various solution methods (proofs) of
a particular related problem, see [5].

These activities provide students with an appropriate background to undertake the maxi-
mum problem(s) described next.

4 The Cylinder of Maximum Volume inscribed in a unit

Sphere

This problem is a classic one that appears in many textbooks. We introduce the experimental
mathematics methodology by providing a Maple worksheet for student groups to work through.
[After completing this, they are presented with a parameterized version as an assignment.]
The Problem: For a cylinder inscribed in a sphere of radius 1, find the exact radius of the
cylinder which has the maximum possible volume.

For this problem, visualization of the unit sphere with an inscribed cylinder is wanted, but
students start with plots in two dimensions and should do a lot of work with 2D plots before
using plots in three dimensions (other than simplistic plots such as straightforward plots of
z = f(x, y)). Since the details on how to produce the 3D plot are not relevant to the problem
being addressed here, we recommend that the 3D plot is provided in the worksheet. It is even
better to provide an animation as the radius of the cylinder, r, varies from 0 to 1: see Fig. 1
for one frame of such an animation.

Note that a cut-out of the sphere is used so that the inscribed cylinder is easily visualized.
Some understanding of spherical polar coordinates is needed for this: we introduce parameti-
zation of surfaces properly in a university third year course on Geometry of Surfaces (taught
entirely in the computer lab using Maple). Students work through a worksheet on Quadric
Surfaces. We introduce cut-outs of 3D objects in our course on Vector Calculus (in second or
third year, also entirely in the computer lab using Maple). The use of a cut-out is very useful



Figure 1: A cylinder inscribed in the unit sphere (with cut-out).

for visualization of “slicing” the 3D object so that triple integrals can be correctly set up. We
do not advocate that students at high school or first year university be required to do this.
However we always provide the Maple code since some students do want to experiment with
the code. This is easy in Maple: the plot or animation should be done in a Table in which the
code is hidden. Students who are interested can un-hide the code. Since graphics and anima-
tions use a lot of memory, all of the output should be removed for storage and transmission
of the Maple file (greatly reducing the file size). The user can then execute the whole file or
sections when working on the file.

Another “common” way of visualizing the cylinder inscribed in the sphere is to use trans-
parency (for the sphere). This is easier than using a cut-out and so this is recommended for less
experienced students. We have not included a plot in this paper since it does not transfer well
to paper, but it is adequate on a computer monitor. It is relatively easy since Maple provides
a package called plottools which plots objects such as spheres and cylinders (without the user
needing to know about parameterizations of these surfaces). Using provided Maple commands,
the sphere can be obtained (using the default with centre at the origin and unit radius)
[> with(plottools): with(plots):
[> sph := sphere( style=patchnogrid, transparency=0.8):
This specifies the options that the grid lines are removed and a (high) transparency is used.

To define an inscribed cylinder, we need to calculate the height of the cylinder that has a
given radius. It is easy to use right angle triangles to show (see below) that for r = 11/16
the half height is hh = 3

√
15/16. The coordinates of the centre of the base of the cylinder is

[0, 0,−hh], the radius is 11/16 and the height is 2hh, so the cylinder is defined by
[> cyl:=cylinder([0, 0,−hh], 11/16, 2*hh, strips=100, style=patchnogrid):
To make the cylinder’s curved surface looks smooth, the number of vertical strips has been in-
creased from the default of 24 to 100 by using the option strips=100. The plot seems to be more
attractive if the gridlines are also removed from the cylinder, so the option style=patchnogrid
have also be used for the cylinder. The partially transparent sphere and the cylinder are dis-
played together by



Figure 2: One frame of the animation of the multiple representation of the 3D plot of the sphere
and the cylinder and the plot of the volume of the cylinder. The radius of the cylinder is the
animation parameter.

[> display(sph, cyl, scaling=constrained, axes=none, orientation=[50,75]);
To give a slightly better view, the orientation of the displayed plot has been changed from
the default. Note that the orientation can be changed interactively by using the mouse on
the displayed plot. Students do not need much encouragement to do this and so engage as
active learners which is much to be preferred to the lecturer just showing the visualization as
a demonstration in a lecture.

Once students have experimented with the animation of the 3D plot, they have established
their visualization of the problem. We want to help them to further develop some intuition
about the problem so we provide a multiple representation where the 3D plot has placed
alongside the plot of the corresponding Volume (of the inscribed cylinder) for the given radius
- as an animation where the cylinder’s radius is the animation parameter. See Fig. 2 for one
frame of such an animation.

First year students who have followed the type of sequence of Maple lab sessions on anima-
tion; the Polya approach to problems of finding maximum area; an “Advanced” Polya approach
to finding maximium area (including multiple representations), see [3], could produce multiple
representation animation (using transparency for the 3D plots). However for less experienced
Maple users, we recommend providing this animation.

Of course, the formula for the volume of the inscribed cylinder as a function of its radius
has not yet been derived: this is done in the next section.

5 Volume of the Inscribed Cylinder and Zooming In

A cylinder of radius r is inscribed inside a sphere of radius R=1. To derive a formula for the
volume of the cylinder, we plot a cross section obtained by cutting the sphere and the inscribed
(vertical) cylinder by a plane which includes the z axis, see Fig. 3. This plot is straightforward.
An even easier alternative is to use Maple’s Drawing tools: insert a Canvas and use the tools



Figure 3: A cross section obtained by cutting the sphere and the inscribed (vertical) cylinder
by a plane which includes the z axis.

for lines and curves. Use freehand drawing to put in arrows and variables - this is particularly
easy using a stylus (or pen) on a touch screen (but harder just using a mouse!).

From the plot it is easy to see that r and the half height h of the cylinder form sides of a
right angle triangle with hypotenuse 1 (for a unit sphere). Thus Volume of the cylinder is area
of the circular base times the height, so

V = πr2 × 2h2 = 2π r2
√

1− r2 .
This is the volume as a function of r which was used to generate the plot in the right hand

side of Fig. 2. The curve is skewed to the right, clearly the maximum is for r somewhere
between 0.7 and 0.9 so we can obtain a better approximation by zooming in, see the plot on
the left in Fig. 4.

Students at secondary schools in the State of Victoria in Australia have been using graphics
calculators (and then CAS calculators) for about two decades, so students are very familiar with
the idea of zooming in. This is a very useful skill, but is hardly ever used at university level
(except for education studies) since calculators are hardly ever used in science and engineering
courses.

From (the plot on the left in) Fig. 4, near the maximum, the curve “looks like a parabola”
with a maximum (read off the graph - place cursor on plot and right click - choose Probe Info,
Nearest point on line - position the cross hairs and read off the point’s coordinates) of about
0.816 or 0.817, say?

With three more zoom ins, we estimate that r is about 0.8164967. This is probably accurate
enough, but (if needed) we could get higher acuracy by reading the graph better to see where
the maximum is. Thus we zoom in again as well as choose a view window with restricted “y”
values (we experiment with the y values to use):
[> rL, rR:=0.8164965, 0.8164968:
[> plot(V, r=rL .. rR, view=[rL .. rR, 2.4183991523122 .. 2.4183991523123] );

The plot is displayed on the right in Fig. 4. Hence the approximate answer is r = 0.81649658
accurate to about the last digit!

To try to identify the (possible) exact answer from the numeric answer by estimation from
the graph:



Figure 4: A zoomed in plot of the volume of the cylinder on the left; and a four times zoomed
in plot on the right.

[> identify(0.8165);

This gives the result 1
3

√
6. Since the exact ans is

√
2
3
, this has given the correct identification

of the exact answer. (We prove that this is the correct result below.)

5.1 Comparison of Maple and Mathematica

Maple and Mathematica are the only professional level CAS. For identification of numbers from
floating form numbers (possibly of very high precision), the identify( ) command in Maple is
very superior to the limited functionality provided in Mathematica. The Mathematica (version
8) commands are Rationalize[ ] and RootApproximate[ ] with option RootApproximant[x,n]
which “finds an algebraic number of degree at most n that approximates x.” Note that “For
degrees above 2, RootApproximant generates Root objects.”

Using Mathematica 8,
[> RootApproximate[0.8165] gives 1633/2000,
[> RootApproximate[0.816496] gives 51031/62500 and
[> RootApproximate[0.816497] gives the correct root.

Using Maple 16,
[> identify(0.8165); gives the correct result (see above).
Also, Maple correctly identifies nearby approximations: 0.81649, 0.81651 and 0.816496 are all
correctly identified.

For this simple problem, Mathematica could be used, but we note that higher precision
is required for the approximation. Since the approximation is obtained by graphical means,
this is a disadvantage. However Mathematica is not capable of identification of transcendental
numbers. For example, 1 + e ≈ 3.718281828.
In Maple: [> identify(3.718); gives the correct result of 1 + e.
With Mathematica,
[> RootApproximate[3.718] gives 1859/500 and



[> RootApproximate[3.718282] returns its answer as the third root of a degree 9 polynomial!
Mathematica cannot identify non algebraic numbers.

Research using an experimental mathematics methodology may need to compute an ap-
proximation accurate to many hundreds of decimal digits to identify a possible exact answer
(which might be transcendental), which we then seek to prove is correct, see [6, 7].

6 Proof without Calculus: maximize Volume Squared

Now that we have the (possible) exact answer, we prove that it is the correct answer. By not
using calculus, we engage with the experimental mathematics methodology and connect several
topics in mathematics as well as enhance our understanding and visualization of how functions
behave and are approximated. The objective function is Volume, V , as a function of the radius,
r, where V = 2πr

√
(1−r2). The presence of the square root complicates the mathematics, but

we notice that when V is a maximum, then V 2 is also a maximum. Thus we work with V 2:
[> V Sq:= 4π2r2(1− r2);

Now let r =
√

2/3 + δ and we postulate that δ = 0 gives the maximum V 2. Note that the
graph of V 2(δ) corresponds to a horizontal translation of the graph of V 2(r). We have V 2(δ):
[> V Sq delta:=subs(r=sqrt(2/3)+delta, V Sq); which expands to

V Sq delta = 4π2
(

4/27− (8/3)δ2 − (28/9)
√

(6)δ3 − 9δ4 − 2
√

(6)δ5 − δ6
)
.

This is a sixth degree polynomial. How does it behave near the origin (that is, for δ small)?
Algebraically we know that if δ is small (in magnitude) then δ2 is smaller (than |δ|). Similarly

|δ3| is even smaller. Thus, for δ small, then δ2 is small (compared to δ, and δ3 is small (compared
to δ2), etc. Thus we know that, for δ small, V 2 can be approximated by neglecting all terms
with powers of δ higher than δ2: we call this approximation V Sq delta 2.

Maple has a command, coeff( ), to give the coefficients of a polynomial, so it is easy to
obtain V Sq delta 2:

V Sq delta 2 =
16

27
π2 − 32

3
π2δ2.

This is a quadratic polynomial with a maximum at δ = 0 which proves our result. The maximum
volume is also easy to obtain: take the square root of the constant term in V Sq delta 2 to
give 4/9

√
3π.

Note that we can rewrite the quadratic approximation to V 2 in terms of r by translating with
the substitution of δ = r −

√
2/3. The plot of the sixth degree polynomial V 2(r) is displayed

with the quadratic approximation (as derived above) on the left of Fig. 5. This visualization
reinforces our intuition that the graph of a function “looks like a parabola” near the function’s
maximum.

7 Proof without Calculus: maximize Volume

We now directly show that our value for r does give the maximum of the function V =
2πr
√

(1 − r2). As mentioned in the previous section, the presence of the square root com-
plicates the mathematics, but we indicate how this can be done. Again, we postulate that



Figure 5: On the left, a plot of volume squared of the cylinder and its quadratic approximation
(about the maximum) and, on the right, a plot of volume and its quadratic approximation.

rMax =
√

2/3 maximizes the volume. We let r = rMax+ δ (initially leaving rMax as unde-
fined to avoid the algebra looking too messy) and we postulate that δ = 0 gives the maximum
V . Note that the graph of V (δ) corresponds to a horizontal translation of the graph of V (r).
We have:

V (δ) = 2π(rMax+ δ)2
√

1− (rMax+ δ)2

For a maximum, the curve is approximately a parabola for δ small. So we need to approximate
the square root for δ small (up to powers of 2). Now the generalized Binomial Theorem for a
power of 1/2 where |x/a| < 1 is√

1− x/a = 1− 1

2a
x− 1

8a2
x2 +O(x3)

where O(x3) means terms with x3 and higher powers. This is easily proven by algebra: let√
1− x = a + bx + cx2 + · · · , square, and hence result (by equating coefficients of each power

of x).
Exercise: Prove this result.

Now, rewrite: using the Binomial Theorem above and assuming δ is small (but only keeping
terms up to δ2 since higher powers of δ are negligible), it requires a little algebra to obtain the
approximation as a quadratic in δ. The next step is to multiply the two quadratic expres-
sions in the formula for V (δ), discarding all higher powers (than δ2) to obtain the quadratic
approximation. This algebra is straightforward, but a little messy, giving the approximation

2π rMax2
√

1− rMax2 − 2π rMax(3 rMax2 − 2)√
(1− rMax2)

δ +
(6 rMax4 − 9 rMax2 + 2)π

(1− rMax2)3/2
δ2 .

This could be obtained by using the high level command series( ), then convert the result to a
polynomial, followed by using the simplify( ) command:



[> series(V delta, delta, 3); (where V delta is the V (δ) above)
[> convert( %, polynom); (where % is the previously calculated result)
[> simplify( % )

Teaching Note. We support the White-Box/Black-Box Principle first articulated by Bruno
Buchberger in 1989 [8]. Students using CAS should initially include every step of their working
until they are secure in their understanding (the White Box), after which they should use the
higher level commands provided by the CAS (the Black Box). Maple provides a command that
computes the series. Students should initially master the notion and the skills to calculate the
series “by hand” (either by pen on paper or step by step calculation using the CAS) before
using the high level commands such as series( ).

Now substitute our postulated value
√

2/3 for rMax to obtain:

V delta 2 =
4
√

3

9
π − 4

√
3π δ2 .

This quadratic polynomial clearly has a maximum at δ = 0 as postulated and hence our result
that the volume has a maximum when the radius is

√
2/3.

The plot of V (r) is displayed with the quadratic approximation (as derived above) on the
right of Fig. 5. This visualization reinforces our intuition that the graph of a function “looks
like a parabola” near the function’s maximum.

7.1 The quadratic approximation for V implies that for V 2 and vice
versa

Knowing the quadratic approximation for V , it is simple to derive the quadratic approximation
for V 2.
Exercise. Do it.
It is also possible to derive the quadratic approximation for V from knowing the quadratic
approximation for V 2.
Exercise. Do it.
(Hint: Let the quadratic approximation for V be c+dδ+eδ2; square this, neglecting all powers
of δ greater than 2; equate to the known result and equate coefficients of powers of δ.)

8 Further Solution Methods (Proofs)

It is common for there to be several methods of solving a mathematical problem. For the “find
the maximum . . . ” problems common in secondary school and first year mathematics, calculus
is invariably used. However it is good for students to develop their mathematical maturity
by following several methods, and this is the focus in [5]. Calculus provides the most efficient
method here, but does not provide the connection to (and development of) other important
topics and methods. The problem here can be solved by many different methods. We indicate
another two objective functions that can be obtained: they both result in cubic polynomials.
First. In Sec. 6, V 2 = V Sq, we notice that only powers of r2 appear. Thus if we consider
V 2(r2), the objective function is a cubic polynomial in r2. It is easy to identify that the
maximum is given by r2 = 2/3. This is also easy to find directly since it is almost as easy to



find where the maximum (or minimum) lies for cubic polynomials as for quadratics: see Section
4 of [4].
Second. In Sec. 5, the initial volume function depends on both r and h. We choose to
eliminate the h variable, but if r is eliminated instead, the volume function becomes a cubic
polynomial in h, giving a problem which is much easier to solve than using V (r).

We also indicate a further variation on the solution using V (r), by using the approach
introduced in [4]. In Sec. 7, the quadratic approximation for V (δ) was obtained with rMax
unspecified. We derive the value for rMax by noticing that the maximum for the quadratic
approximation for V (δ) must occur when the coefficient of δ is zero. Thus, we must have

−2π rMax(3 rMax2 − 2)√
(1− rMax2)

= 0 ⇒ 3 rMax2 − 2 = 0

and hence the result.

9 A Parameterized Problem and Automatic Marking:

Computer Aided Assessment, CAA

After students groups have worked through the Cylinder in Sphere problem (in one or two
sessions), they are asked to complete an assignment (for assessment), where students could
be asked to follow the method above to maximize the volume or the volume squared. We
parameterize the assignment problem since presenting the same problem to the whole class
invites copying. Our experience over many years with a variety of courses and year levels is
that students consider parameterized problems to be different problems. We always try to
include a lot of visualization: this requires plots and animations for which parameters cannot
be arbitrary: they must have assigned values. Thus, there is not a problem with copying (even
with high level courses where the assignments contribute up to 80% of the assessment).

For the Cylinder in Sphere problem, an obvious parameterization is to use the radius of the
sphere R. A less obvious (but closely related) problem is to inscribe a (vertical) cylinder in a
Spheroid (a special case of an ellipsoid usually used to model the Earth’s surface):

x2

a2
+
y2

a2
+
z2

c2
= 1 .

The r to maximize the volume of the inscribed cylinder is
√

2/3 a. Choosing the values of the
parameter(s) to use is always important to ensure that some students do not encounter some
unintended difficulty. It is difficult to predict what precision (that is, number of correct decimal
digits) will be required to identify a given number. By experiment, we have established that
higher precision is required in order to identify a rational multiple of

√
2/3 than a multiple of√

2 or
√

3 (or their reciprocals). For example, if a = 37/10, then 23 decimal place accuracy
is required to identify r that gives the maximum. Thus we recommend setting a as a rational
multiple of

√
2 or

√
3. We have checked several values, including

for a = 11
√

(2), 7 digits are required to identify r that gives the maximum,

for a = 13/2
√

(2), 6 digits are required to identify r that gives the maximum,

for a = 23
√

(2), 6 digits are required to identify r that gives the maximum,



for a = 11
√

(3), 7 digits are required to identify r that gives the maximum,

for a = 16/3
√

(3), 5 digits are required to identify r that gives the maximum.

So we recommend setting a to be multiple (integer, half integer, or third integer) times
√

2
or
√

3. The other parameter c only appears as a multiple in the formula for volume, so we
recommend choosing c as a convenient rational which is not very different in value to a so that
the spheroid looks like a sphere that is not deformed very much from the sphere.

With parameterized assignments, the marking load increases. Initially we used e-Marking,
see [3] for a discussion and references. The basic idea is to have a Maple solution/marking file
in which the student group’s parameter value is entered and the Maple worksheet is executed.
In this file, a Marking Section is progressively developed so that the Marking Report and the
feedback comments (that are saved in the student’s file that is returned to them) are saved
for later use. With significant content being visualization with animations, using e-Marking
(without CAA) is an attractive option, particularly for small classes.

By CAA we mean CAS-enabled CAA in which some CAS is used by the CAA system for
marking: thus answers that are symbolic (as well as numeric and many other types, including
multiple choice) can be marked. The only commercial CAS-enabled CAA using a professional
level CAS is MapleTA which uses Maple. We could mark the Cylinder in Spheroid assign-
ment final answer and intermediate steps (such as the quadratic approximation for volume)
symbolically (writing a provided procedure within Maple, or by using MapleTA). The number
of decimal places needed to correctly identify the answer could also be asked for. Using CAA
would reduce the marking load of staff, which becomes a major problem for large classes. Many
universities have between 1000 to 2000 students in the normal first year calculus class and are
faced with having to choose between assessing less student work, or implement CAA. Similar
issues arise in schools which can have large enrolments in the senior school. However many
teachers might be concerned that key parts of the assignment are not marked (and so ignored
by students): for example, here, a zoomed in plot is neither seen nor marked!

We emphasize visualization and believe that visualization needs some assessment: otherwise
the message for students is that visualization is not important. We have recently designed a
CAS-immersed CAA in which plots can be marked efficiently within an automatic marking
context: this is implemented for the Norman window problem, see Section 6 of [3] and references
therein.

The recent development of MapleTA’s “Question Designer” has made it much easier to
author questions (as we have demonstrated for the Norman Window problem in several unpub-
lished presentations). An advantage with using MapleTA is that all of the student adminis-
tration of results is dealt with automatically. Although plots are not marked, using MapleTA
requires less Maple expertise than writing CAS-immersed CAA. Most academics would prefer
to mark more than the final answer and provide more feedback than the answer is right or
wrong. For e-Marking and CAS-immersed CAA, the extra feedback is desirable (and reason-
ably straightforward to achieve). However in both cases students understand that they have to
use the required method (since their Maple file has to be submitted). For CAS-enabled CAA,
the issue is more complicated because the student work is not available. This issue can be ad-
dressed by careful design of multiple part (or Multiple Response) questions: the new Question
Designer in MapleTA (from version 8) has made the authoring of Multiple Response questions
easy.
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A CAS such as Maple provides a rich environment for e-Teaching and e-Marking or CAA of
mathematics: innovative approaches to curriculum, pedagogy and assessment at school and
university are supported. Standard problems solved in the standard way using CAS risk being
another activity (such as lectures and computer sessions) that students find boring. Well de-
signed teaching and assessment is effective, efficient and even fun. The development of these
CAS based materials requires a lot of staff time, but they give high returns with staff satis-
faction, student performance and attitude. With large classes, the reduced marking load using
automatic marking more than repays the development cost. We recommend more collaborative
learning by students and more collaborative development of CAS materials by academics.

Experimental mathematics is now an established area of mathematics: it has had its own
research journal for over 20 years, and there have been some graduate level courses. Although
the use of CAS is relatively common, not all use of CAS constitutes experimantal mathematics:
for example, routine use of CAS to execute simple evaluations (such as evaluating integrals
that are typically asked for in secondary or first year undergraduate courses) are no more
experimental mathematics than the evaluation of

√
(2) with a calculator. In this paper we

show that elementary optimization problems (such as “find the maximum volume of a cylinder
inscribed in a sphere”) can introduce the experimental mathematics methodology and be a
rich source of mathematics if the usual (and efficient) method of calculus is not used. We
show advanced visualization to build intuition; a graphical method (zooming in) of obtaining a
good numerical answer; the use of the Maple command identify( ) to identify a possible exact
solution; and several different methods using algebra to obtain the quadratic approximation of
the objective function about its maximum: hence proving the postulated maximum is correct.
This approach introduces an important topic in mathematics: approximation in the small. It
also provides strong support for (and visualization of) the intuitive notion that the function
“looks like a parabola” near its maximum.

The Maple activities described here are all web mediated, so they could be part of an online
course or a blended learning course: students have different learning styles and some do take
advantage of the flexible learning that the approach here supports (since attendance in the
computer lab is recommended but not required). Students enjoy the collaborative learning
using Maple and learn (surprisingly quickly) to do the calculations; use and adapt advanced
animations; and use automatic marking. Students are engaged, active and collaborative learners
with these Maple sessions.
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