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Abstract: In the first part we will outline that in history of mathematics eight activities proved to be fundamental for 
generating new mathematical knowledge. They can be taken as a framework for scaffolding mathematical learning 
environments in classrooms of today. By this, modern learning theories about constructivism as well as procedural and 
conceptual learning could be augmented and enriched. 
In the second part we will demonstrate by some mathematical examples for the middle and upper grades of high school 
the use of technology which might help to foster productive problem solving and thought processes. Furthermore ideas 
for a new computer based tool for measuring mathematical problem solving abilities in a PISA-like test are described 
which simulates some aspects of oral examinations. Finally we try to highlight in which way a computer-simulation of 
a mathematical lesson might help pre-service teachers to improve their abilities to teach mathematical problem solving. 
 
 
1.  Introduction 
 

In this paper we want to highlight the utility of IT for the teaching and learning of mathe-
matics in the middle grades with referring to some aspects which seem to be neglected until now. 
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First some elements of a theoretical framework are presented, which we draw from history of ma-
thematics [37] and modern learning theories [10]. A framework should help to clarify educational 
goals and criteria for possible outcomes of learning-activities in mathematics.  

In the following section we present a geometric problem-field which has its origin in the history 
of mathematics, too. A generalization of the Pythagorean theorem has been developed by al Sijzi 
(11th century), which can be tackled already by 8th graders and can lead up to elliptic curves, sup-
port by DGS and/or CAS (cf. [2][1]). 
 
2.  Elements of a theoretical framework 
 
2.1 History of mathematics 
A long-term study of the history of mathematics revealed eight main motives and activities, which 
proved to lead very often to new mathematical results at different times and in different cultures for 
more than 5000 years (cf. [37]). We took this network of activities illustrated in Figure 2.1 as an 
element in our theoretical framework for the structuring of learning environments and for analyzing 
students’ cognitive and affective variables. 
 

 
 

Figure 2.1 Network of activities which generated mathematical results along its history 
 
Some explanation is given to Figure 2.1. There are three major groups of activities. 
Calculating is at the beginning of nearly all mathematical actions. Problems, e. g., from astronomy 
and agriculture are until our days (cf. space industry and ecology) very important domains to apply 
mathematics or to develop new mathematical models, respectively. Constructing is the most im-
portant activity, not only in geometry but also in architecture – the latter has been taken as a part of 
mathematics for a long time. These three activities are at the beginning of nearly all mathematical 
creations. We come now to a group of more sophisticated and challenging activities. 
Arguing, esp. proving is at the core of modern mathematics and belongs to the more challenging 
mathematical actions. Of course, this activity is also related to finding methods (heuristics in the 
sense of Pólya), which lead to conjectures first. Without inventions there are no proofs! The tension 
to bring new knowledge, a set of new theorems or clusters of solved problems in a systematic or-
der, might lead in the upper grades to first approaches to axiomatization. This might help older and 
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more mature students – practiced in appropriate situations and at appropriate time – to get a deeper 
understanding and more insight into theoretical connections. 
The following two activities seem to be neglected rather often until now but proved to be of major 
importance for mathematical inventions, too. The striving for religious cognition and related sys-
tems of values generated frequently new problems and their solutions and produced in this way also 
new mathematical knowledge during history of mathematics. Systems of values are also frequently 
related to aesthetics, which may be sometimes still driving forces for mathematical inventions. 
The same holds for an approach to mathematics by playing and the development of recreational 
mathematics. New branches of mathematics were very often created in this way like stochastic and 
game-theory. 
These different activities - which are important, not only in mathematics - are connected and inter-
related in many ways, which are represented in Figure 2.1 by “diagonals”. 
 
2.2 Modern learning theories 
We want to highlight the importance of appropriate (modern) learning theories starting with two 
examples from the teaching-experience of the first author: 
During his time as a high-school-teacher at a German Gymnasium he once taught the classical 
theme of solving systems of linear equations with two variables to his ninth graders. After coping 
with several concrete examples he wanted the students now to tackle and understand the general 
case of solving the system ax+by =c; dx+ey=f, considering the different possible conditions for 
solutions. One part of this enterprise was the development of an appropriate computer programme 
in the good old “BASIC”-language, to get a better feeling about the meaning and use of variables. 
At the end of a longer process of struggling with difficulties a pupil remarked: “Why all this ab-
stract fuss? I only want to understand it, i. e., I want to have a simple method to get the right an-
swer!” 
Now a brand-new example: At the beginning of his last university-course “Introduction into 
Mathematics Education” the first author asked his student-teachers: Who could make already some 
experience with CAS during his or her school-time? Three students (out of 20, all female) said that 
they used CAS, more or less systematically, during their last three years in the upper grades of 
Gymnasium as well as in their final high-school-examination (Abitur). 
The students were asked to report their experience with this specific knowledge in the background 
during their beginning mathematics courses at university (analysis and linear algebra). All three 
students said that they learned a lot about “pressing buttons” on their programmable calculators, but 
at the beginning of the courses at university they had – in relation to the other students without 
CAS-experience at school – a lack of theoretical understanding of the underlying concepts and rela-
tions of the prerequisite knowledge. Furthermore, it took them more time to adjust to a more appro-
priate learning attitude with focus on understanding. 
The example from school can demonstrate that there are different ways to understand “understand-
ing”: instrumental (the expectation of the pupil) and relational (the expectation of the teacher). 
These terms were introduced by Mellin-Olsen and Skemp [31] and [34][34], respectively. 
The example from the university-class can help to clarify, that there is not only this kind of polarity 
in learning but also in teaching of mathematics. In the same article Skemp additionally refers to 
“instrumental” and “relational” mathematics. Davis speaks in a similar context about “rote mathe-
matics versus meaningful mathematics” ([3], p. 8) or routine vs. creative mathematics ([3], p. 14). 
But – and therefore the teacher was quite satisfied with the analysis of his students of their experi-
ence as pupils - they were now quite aware of the corresponding deficits which makes a good start-
ing point to restructure their “instrumental bound” learning-schema. According to Skemp – but also 



to many other researchers – it is very difficult to re-arrange learning or teaching schema, which had 
been build up over a long period of time (cf. [32], p. 42, [34], p. 5, [35]). 
A further possible consequence of the university-example is that it is not enough to have access and 
to use IT in the classroom. It should be done in a very reasonable and sensitive way. On this back-
ground some disappointing experience with using modern IT might be explained (cf. [26]). 
Analogous polarities as between instrumental and relational learning can be found also in the terms 
procedural (cf. instrumental) and conceptual (cf. relational) knowledge, which according to Hiebert 
and Carpenter had been discussed already for many years ([15]). 
These authors claim, that the most important question for future research is, not to precisely define 
these terms, but to ask for the relation between these two domains. 
Especially this question had been recently analyzed very carefully by Haapasalo and Kadijevich 
[11]. 
We refer here especially to the work of Haapasalo in [13]. 
In authentic actions performed by a person, procedural and conceptual knowledge can often be dis-
tinguished only by considering at which level of consciousness the person acts. Procedural know-
ledge usually involves automatic and unconscious steps, whereas conceptual typically requires con-
scious thinking. However, procedural knowledge may also be demonstrated in a reflective mode of 
thinking when, for example, the student skillfully combines two rules without knowing why they 
work. In order to be able to consider learning from a dynamic point of view, we adopted the know-
ledge type characterization of Haapasalo and Kadijevich [11]: 
• Procedural knowledge denotes dynamic and successful use of specific rules, algorithms or proce-
dures within relevant representational forms. This usually requires not only knowledge of the ob-
jects being used, but also knowledge of the format and syntax required for the representational sys-
tem(s) expressing them. 
• Conceptual knowledge denotes knowledge of particular networks and a skilful “drive” along 
them. The elements of these networks can be concepts, rules (algorithms, procedures, etc.), and 
even problems (a solved problem may introduce a new concept or rule) given in various representa-
tional forms. Because the dominance of procedural over conceptual knowledge seems quite natural 
both in the development of scientific and of individual knowledge, it might also be pedagogically 
appropriate in mathematics to promote spontaneous procedural knowledge. 
There are different possibilities to state logical relations between the two knowledge types. When 
we assume, that procedural knowledge is necessary for the conceptual, we are talking about the 
developmental approach or a genetic view. If it is assumed that procedural knowledge is necessary 
and sufficient for conceptual knowledge we speak about a simultaneous activation view1. Neverthe-
less, it seems appropriate to claim that the goal of any education should be to invest in conceptual 
knowledge from the very beginning. If so, the logical basis of this educational approach is the dy-
namic interaction view (i.e. conceptual knowledge is necessary for the procedural), or again the 
simultaneous activation view. This simultaneous activation view means that the learner has oppor-
tunities to activate simultaneously conceptual and procedural features of the current topic. By “ac-
tivating” we mean certain mental or concrete manipulations of the representations of each know-
ledge type. Being at the intersection of two complementary approaches, the simultaneous activation 
view is loaded with challenges concerning the planning of learning environments especially in the 
use of modern technology.  
We refer to this framework at the respective end of the following three sections. 

                                                
1 Four views can be found in the literature on the logical relationship between conceptual and procedural knowledge, 
(cf. Haapasalo and Kadijevich [11]). The two approaches here are based on these views. 



3. Solving problems from history of mathematics and support of IT 
The following example was taken from a collection of problems from al-Sijzī [29]. Abū Sa’īd Ah•
mad ibn Muh•ammad ibn ’Abd al-Jalīl al-Sijzī was a mathematician, who lived some 1000 years 
ago in Sijistan, which belongs today to Iran. It was presented several times to different 9th-graders 
at a German Gymnasium by the first author and he reports his teaching experience. The task-
formulation has been adjusted by him to modern times and to educational needs. The classes had 
some experience with similar triangles and the Pythagorean and related theorems. 
Problem 1: 
Given a rectangular triangle with its Thales-circle. “Move” A and B in such a way out of the 
Thales-circle, that the new points A’ and B’ are located symmetrical to the center M of this circle, 
too. Now, “move” C on the old Thales-circle. 
What can you figure out about the sum of the squares a’²+b’²? Compare with c’²! 

 
Figure 3.12 

 
Solutions: 
Pupils come rather often to the conjecture a’²+b’² = const spontaneously. In case of no ideas again 
DGS can help. 
A proof can be carried out in several ways (and so has been done by al-Sijzī [29]). One possibility 
is given here. By examine the special degenerated case in Figure 3.4 by dragging the point C to the 
point C, the conjecture can be posed more precisely in the following way: 
 
Theorem 3.1:   a'² + b'² = (c+d)² + d² = const.          (3.1) 
 
This statement can be represented by the following figure ((c+d)² + d² = c² +2cd + 2d²): 
 

                                                
2 The Figure 3.1 – 3.4 were made with GEOGEBRA 



 
 

Figure 3.2 
 

Proof: Applying two times the Pythagorean theorem, we get the following equations: 
 

a’² =  h² + (p + d)²  =  h² + p² + 2pd + d² 
  (3.2) 

b’² =  h² + (q + d)²  =  h² + q² + 2qd + d² 
 
we add these two equations and receive 
 
 a’² + b’² = 2h² + p² + q² + 2dc + 2d² (3.3) 
 
we substitute h² by p ⋅ q, using a well-known theorem and the fact c = p + q: 
 
 a’² + b’² = 2(p ⋅ q) + p² + q² + 2dc + 2d² (3.4) 

 
 
so we get  
 
 a’² + b’² =  (p + q)² + 2dc + 2d² (3.5) 

 
and finally 

 
 a’² + b’² = c² + 2dc + 2d² = const. ■ 
 
Problem 2: Generalization of Problem 1 
Al-Sijzī presents a first simple generalization: He “moves” the points A, B into the inner of the 
Thales-circle. He proofs, that a’² + b’² =const. holds also in this case. We get 
 
 a’² + b’² = (c - d)² + d² = const. (3.6) 

q p 



 
 

Figure 3.3 
 
As (3.6) can be written also in the form  
 
 a’² + b’² = c(c - 2d) + 2d² = c ⋅ c’ + 2d² (3.7) 
 
the terms in (3.7) can be interpreted as areas of corresponding polygons in Figure 3.3. 
 
Problem 3: Converting the problem 
Now we consider the conversion of problem 2:  
Given two fixed points A and B in the plane. What is the locus of all points C in the plane with the 
property AC²+BC²=const.? 
 
Solution: 
It is quite clear to assume that this locus has to be a circle. We refer to Figure 3.3 and redefine 
A=A1, B=B1, AB=c, AC=b and BC=a. Choosing A as the origin of a coordinate-system, the start-
ing situation is represented in Figure 3.4: 
 

 
 

Figure 3.4 
 
By using the Pythagorean theorem we get the two equations 



 a² = y² + (c – x)²  
  (3.8) 
 b² = y² + x² 
 
By addition and some simple transformations – using (3.7) - we get 
 

 �𝑥 − �
�
�
�

+ 𝑦² = ��
�

+ 𝑑�
�
 (3.9) 

 
which is the equation of a circle. 
 
Problem 4: Generalization of problem 3 
Given two fixed points A and B in the plane. What is the locus of all points C in the plane with the 
property  
 ACn+BCn=const. ⇔ an + bn = (c + d)n + dn), n∈? (3.10)) 
Solutions: 
It is clear, that in case n=1 we get an ellipse. In case n > 2 using the notation in Figure 3.4 and eq-
uation (3.8) we get 
 
 𝑎 = �𝑦� + (𝑐 − 𝑥)��  
  (3.11) 
 𝑏 = �𝑦� + 𝑥��  
so we have to solve the equation(s) 
 

�𝑦� + (𝑐 − 𝑥)�� �
+ �𝑦� + 𝑥�� �

= (𝑐 + 𝑑)� + 𝑑� (3.12) 
 
For c=5, d=1 and n=4 resp. n=8 MathCad suggests solutions, which can be represented as follows: 
 

 
Figure 3.5 

 
Here we have two examples for Fermat-curves (cf. e.g. Schmidt [30]). Further exploration can be 
carried out in the upper grades (exploring relations to the famous Fermat-theorem!). 



Reference to our theoretical framework: 
- A lot of activities are supported by these examples which proved to be important in history of 

mathematics: find, order and prove seem to be quite necessary when pondering in this problem 
field. Of course some simple calculations are necessary as well, but might be delegated manly to 
computer-software. 

- Simultaneous activation of procedural and conceptual knowledge is strongly involved to cope 
with the presented problem field. As already mentioned simple calculation is necessary but it 
should be strongly interwoven with conceptual (relational) methods, especially when and when 
not to apply a computer (depending, of course, very strongly on prerequisite knowledge). 

 
 
4. IT as an aid to better assess mathematical thinking- and understanding 
processes in PISA-like tests 
 
During the last 15 years (as a consequence of TIMSS and PISA) a strong shift happened from input 
to output-orientation in mathematics education. There had been a long discussion about the effec-
tiveness of assessment-instruments as standardized tests (cf. Zimmermann [36], esp. Hilton resp. 
Lax & Groat in Steen [33], p. 79, resp. 85). 
In spite of the fact that there are, meanwhile, quite useful standards for assessment (cf., e. g., [24]) 
and developers of tests like PISA don’t use the multiple-choice format only, there is still a lot of 
criticism (cf. e.g. Jahnke & Meyerhöfer [19]). 
One type of criticism refers to the content-validity of the problems (cf. Kießwetter [20]), another 
one to the test-format (cf. [19]). Even in case that there is the possibility for a “free” response to an 
item, a false response does not mean, that the subject is not able to do mathematics. Often one can-
not exclude that the subject did not understand the intention of the test-developer (cf. e.g. Wuttke in 
[19]. p. 144). Furthermore, it is often rather difficult to make a correct interpretation from the solu-
tion- remarks of a pupil. Additionally, the qualification of the test-evaluators is not always very 
high – as rather often in a large test-enterprise as PISA. 
In oral examinations it is much easier for a competent examiner than in conventional tests to get a 
better understanding of the mathematical understanding of a candidate. E. g., after the pupil has 
given a wrong answer, the interrogator can pose a simpler question (referring to a special case). In 
case of a right answer, the examiner can check the understanding (thus excluding random-effects) 
by posing similar or more general questions. 
On this background there was born the idea to develop a computer-aided test-design, which should 
simulate some aspects of an oral examination (cf. Rehlich [27]). 
Besides the goal of getting a deeper understanding of the mathematical competences of a pupil 
there might be the advantage, that a computer-program is more reliable than normal (different 
or/and not very well educated!) evaluators and could help - by tracing the results of the inputs – to 
be less subjective (and save a lot of man-power!). 
Our starting point was the following well-known PISA-problem: 

A pizzeria serves two round pizzas of the same thickness in different sizes. The smaller 
one has a diameter of 30 cm and costs 30 zeds. The larger one has a diameter of 40 cm 
and costs 40 zeds. Which pizza is better value for money? Show your reasoning. 

It is obvious that one can get a more sound estimation of the potential of achievement of the tested 
subjects, if one tries to take into account parts of their different networks of knowledge and their 
different habits of communication. How might this be realized? In an ideal situation one should 
have the possibility to learn much about the subject over a long range of time, e.g., by observations 



or/and by long interviews about specific contents. But, of course, because of economical and orga-
nizational reasons already the latter procedure cannot be carried out especially in case of a large 
group of subjects to be tested. Furthermore, if different interviewers would be necessary, their pro-
cedure – especially their reactions - cannot be standardized. 
But by a branching computer program one might try to reconstruct this type of methodological in-
terventions, which are possible in an interview and which make this more informative than a nor-
mal written examination: You can reformulate questions, you can present hints with a different 
range of influence, you can ask, what kind of solution method is preferred by the subject, you can 
present analogous situations to be analyzed by the subject, you can test the subjects’ ability to gene-
ralize with respect to a specific insight. You can program the computer in a way, so that the work-
ing process of the subject can be traced in the computer. 
In this way there might be possible a more precise reconstruction of the „hidden“ thought-processes 
than by a mere comprehensive paper-and-pencil test with many items, which allows very often only 
the judgment of right or wrong. Even in case of more comprehensive written solutions there is very 
often a severe problem of interpretation.  
We try to make this clear by a possible modification of the foregoing pizza-example: 
 

The Miller family bakes some cookies for a Christmas-fair. To cut out the cookies they use 
two circular forms with a diameter of 4 cm respectively 6 cm. They want to produce small 
packed portions including four large cookies or a corresponding amount of small cookies. 
How many small cookies should be taken to get a bag of the same weight as a bag with four 
large cookies? 

The subject works on this entrance-task and can choose one of several possible answers. The reac-
tion of the computer depends on this answer. In case of a correct answer the program presents to the 
subject a follow-up question: 
 

A follow up question: How many cookies you should take,  
if they have only a diameter of 2 cm? 

 
 
 
 
 
 
 

 
Figure 4.1 

 
During the ongoing process – as far as the subject makes the right input – it is checked by an ap-
propriate sequence of problems, to what extent the subject is able to use generalized concepts or – 
at least – is able to develop them quickly. In case of a wrong answer there are different reactions, 
corresponding to the specific type of mistake. E. g., if the subject responds “6 small cookies”, this 
might be interpreted as a strong hint that we have a wrong use of the concept of proportionality 
(between diameter and area) which might have proved to be very successful to the subject in many 
other cases. Therefore we have a reaction of the computer by presenting an analogous problem with 
quadratic cookies: 
 



Now we have a look on quadratic cookies: 

 
How many small cookies have the same weight as four large cookies? 

 
Figure 4.2 

 
This variation might give to the subject some reduction of the complexity of the initial problem. 
The information, how the subject tackles this problem, might be very useful to esteem his achieve-
ment potential. After successful working on this problem the following question is given: 
 

Now we would like to know which of the following solutions, presented here, is most similar 
to your own way of solving the problem. 
Method 1:  calculation: 

   4 quadratic cookies with the side-length of 6 cm each and an 
   area of   A = 4·62  cm²= 144 cm2. 

   1 cookie with side-length 4 cm has an area of A = 16 cm2. 
   Therefore 144:16 = 9 small cookies are necessary. 

Method 2:  geometrical considerations: 
 

                                
9 small squares cover as much area as 4 large squares. 

 
Figure 4.3 

 
To get information about the subject’s procedure is very useful to esteem which type of follow-up 
question might fit to the thinking-tools used by the subject. 
In the further course of the program the subject – who failed until now - is led back to circular coo-
kies. Dealing with the simpler problem might help the subject to unlock a state of blockade or 
might help to make him conscious that his first reaction to the starting problem was not appropriate. 
These few examples should make clear that the structure of this computer-guided test is established 
by a network of different possible sequences of actions of the subject. 
It is obvious, that it makes a major difference whether the pupil knows already a solution method 
for this type of task/problem or whether the given problem is completely new to him. In the first 
case he has only to solve a task by activating “knowledge and skills”, in the second case he has to 



solve a real problem. So heuristics are in demand. In case of such creative activity pressure of time 
of a testing situation has much more influence than in case of solving a routine task. In this case 
very often quite different strategies of exploration are used by different pupils. Before constructing 
such test one might get some overview what type of activities might be expected generally by goal-
oriented observation of pupils. The following picture represents some possible paths in the comput-
er program which might be followed by a pupil. 

 
 

Figure 4.4 
 
In case of activation of “knowledge and skill”, it might happen, e. g., that the pupil calculates areas 
by using the rule of three. This can be carried out more or less clever. But perhaps the subject 
knows also some abstract concepts of growth (area is growing by the second power …). Another 
point of difficulty may be established by the fact that the ratios of the diameters of the cookies are 
no integer numbers. As to my experience the transition from integer ratios to ratios which are frac-
tions is a great intellectual jump in quality which asks for more potential of abstraction. 
Both routine paths sketched above might lead to success, but they can lead also to a dead end – in 
case of mistakes in calculations or flaws in thinking. Depending on the individual way to success 
the computer can present different follow-up problems. When the pupil applied the formula for a 
circle it can be checked, in which way he might react when shapes are presented to him for which 
he does not know any formula or ready-made strategy: 
Now we take cookies which look like (“perfect, mathematical”) stars. The cookies of the larger 
type are in true scale to the smaller ones. 
The length of the drawn “diagonals” are 8 respectively 5cm. 

 
What is the weight of 100 large cookies, if 100 small cookies have a weight of 2000 g? 

Figure 4.5 
Concluding remarks 
It takes a lot of energy and time to produce a test like we have described. A major part of this ex-
pense is to be given to a detailed analysis of the appropriateness of the problems and tasks to be 
used. Only after sound and intensive experience with pupils, thinking and reacting in different 
ways, one can get a feeling for the complex interaction and interrelation between presentation of 
the problem and pupils’ approaches to the problem. 
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On the other side, the high expense corresponds to a high effect. The testing tool reacts less sensi-
tive to the impact of habits of talking and expectation with respect to the outcomes of the tests, than 
a written examination, which might be misunderstood by the pupil. This is due to the implemented 
possibility to press the pupil on the initial question. 
Furthermore one can get information about possible reasons for good or bad success. In this way 
one can get a more comprehensive and expressive picture about strong and weak points of pupils or 
groups of pupils. Such information can also be useful for the evaluation of forgoing or for the plan-
ning of future instruction. 
 
Reference to our theoretical framework: 
- At least abilities to find, argue, order and calculate can obviously be tested by this program. 
- It seems to be clear that it should be possible to come to a more comprehensive survey of pupils’ 

conceptual understanding and its relations to his procedural knowledge. 
 
 
5. How to teach problem solving – some help by computer-simulation 
 
Motivation and goal of the study 
Problem solving had been on focus in mathematics education already for decades – not only since 
the NCTM published its “Agenda for Action” in 1980. Nevertheless, all over the world the imple-
mentation of effective teaching of problem solving into the classroom is still on a broad range a 
major difficulty (cf. e.g. Thompson [35]). One reason is the fact that teaching mathematical prob-
lem solving is a very difficult and itself a very complex problem. 
Solving complex problems has been a domain of cognitive psychology for more than three decades 
(cf. e.g. [4], [5]). In this context programs, “simulating” e.g. developing countries and little cities, 
had been developed and problem solving behavior of subjects “governing” these institutions (by 
using these programs) had been analyzed ([4]). 
It had been the idea of Kießwetter, to transfer this approach to mathematics instruction (cf. [20]). 
This idea had been realized by Fritzlar [6]. We present now a short overview about this work. 
We skip here the theoretical background (which is carried out comprehensively in [6]). 
A computer-program was developed, which simulates several important aspects of the instruction 
of mathematical problem solving. This was given to student teachers and their behavior was docu-
mented when coping with this program. 
The main goal was to determine to what extent these students were already sensitive for the com-
plexity of problem oriented mathematics instruction (“POMI”).  
Therefore a more detailed operationalization for “sensitivity for complexity” had to be carried out 
and to be tested. Later on, the program might be used as an additional tool to improve teacher stu-
dents’ sensitivity for such complexity. 
 
Procedure 
A main element of the reported study is the following problem:3 

The “paper-folding-problem” (Faltproblem): A sheet of usual rectangular typing paper is 
halved by folding it parallel to the shorter edge. The resulting double sheet can be halved 
again by folding parallel to the shorter edge and so on. 

                                                
3 This problem was developed by Kießwetter to be used in an entrance examination of the University of Hamburg. 



After n foldings the corners of the resulting stack of paper sheets are cut off. By unfolding 
the paper, it will be detectable that (for n > 1) a mat with holes has resulted. 
Find out and explain a connection between the number n of foldings and the number A(n) 
of holes in the paper.4 

Within the study teachers, students and the author of this study ([6]) tried out this problem in about 
50 lessons mainly in fourth and fifth grades (age 10 to 11) of different school types. These expe-
riences showed special potentials of the Faltproblem for POMI. Some examples:5 
- The problem can be understood very easily (also by young pupils), nevertheless it is not at all 

mathematical simple. 
- Many possibilities to attempt to come to terms allow a differentiated work on the problem. 
- Very often pupils can make conjectures, search for explanations and, more generally, work 

heuristically. 
- The problem is a motivating challenge for pupils. Generally they enjoy working on it. 
- The problem is open with respect to different ways and also to different goals of working on it. 
- There are many relations to several mathematical subject areas and other mathematical prob-

lems (e.g. “Tower of Hanoi”). 
Pupils’ independent work on the Faltproblem brings additional demands on the teacher with regard 
to mathematics, but also (not independent from these) to realization of the lesson. Relating to the 
second area, we see special demands concerning 
a) planning suitable lesson scenarios and corresponding teacher actions to initiate and maintain 

productive activities of pupils, and 
b) analyzing of present lesson situations appropriately with attention to relevant aspects and with 

a suitable extent to go into detail. 
One genuine situation must do to intimate these demands on the teacher. 
Situation from a fourth grade of primary school: First, teacher and pupils had folded and cut the paper sheet several 
times. Then the pupils had been instructed to sketch, how the paper sheet will look after the fifth folding-cutting opera-
tion (before unfolding it). They were also supposed to distinguish between “old” and “new” holes. After all, some pu-
pils presented their results: 
 
 
 
 
 
 
 
 
 
 
 
How are these results to be interpreted? At a first look, only Johannes fulfilled the job correctly, but Claudia 
achieved an important partial result too - she constructed a connection between holes and folding lines. 
Dagmar apparently ignored geometrical aspects of the paper sheet. This might imply an arithmetic viewpoint 
which also explains her result: The number of holes triples every folding. Sibylle presumes 21 holes too, but 
she comes to another arrangement of holes. Can it be justified? 

                                                
4 Used formulation and goal of examination are intended for the teacher. There are many possibilities to communicate 
this problem to pupils. Different ways of posing the problem were incorporated into the program. 
5 For more details see Fritzlar [7]. 

Dagmar: *I think there are simp-
ly 27 holes.* Sibylle: *It has doubled.* 

Claudia: *I think holes result 
from folding lines.* 

Johannes: *Between old holes are new 
ones. So there are 21 holes.* 



Fritzlar designated (in the sense of a provisional working definition) a person as sensitive for the 
complexity of math-cognitive aspects of POMI, if she or he is aware of the complexity of POMI, of 
special demands arising from it and of limits of his possibilities to decide and to act in an appropri-
ate way in mathematics instruction. It seems to be clear that sensitivity appears above all in investi-
gation and evaluation of decision-situations connected to POMI (as the both described above). 
That’s why Fritzlar developed a realistic and interactive computer scenario – based on interviews of 
students, teachers and teacher educators and on almost 50 lessons with the Faltproblem –, which 
confronts the user with such decision-situations. 
In this scenario the user can “virtually teach” the Faltproblem. Figure 5.1 presents an overview 
about the main structure of the computerprogram and possibilities of interaction. 
 
Results 
Result 1: The program6 

choice of a class (out of three) 
statistical data, pupils’ abilities, experiences concerning 

working on problems, collaborative working, ... 
 

choice of goals of the lesson / ranking of the goals 
short-term goals (regarding the problem working on), 

long-term goals (regarding heuristic competences, attitudes, ...) 
 

decisions during the lesson 
way of presenting the problem, questions and instructions to the pupils, 

selecting material and media, ... 
Given alternatives can be chosen or completed. 

 
 

reactions regarding lesson situations7, pupils’ 
problem solving processes and results 

pupils’ activities, conjectures, argumentations, (approximate) assessment 
concerning pupils’ motivation, involvement, … 

 
assessment of the lesson 

comparison of achieved and planned goals, assessments concerning 
consistency of decisions, extent of control by the teacher, 

comprehensiveness of mathematical activities, ... 
 

Figure 5.1 
Result 2: Operationalization of “sensitivity for complexity” (SFC) 
The following “SFC-vector” with 4 components was created on the basis of preliminary theoretical 
considerations as well as on the basis of experience with the use of the computer scenario. It should 
help to represent more precisely the degree of SFC of teacher students, indicated by several data 
when using the simulation-program: 

                                                
6 In DELPHI 
7 The scenario cannot react on alternatives given by users. But the user could write them down and they were automati-
cally collected and can be used for further development of the scenario. 



1. exploratory behavior (# loops/jumps: “Umfang”; # different modes of representation: “Breite”) 
2. context sensitivity (for problem solving processes; mathematical content; social aspects) 
3. inconsistence (with respect to own educational goals) 
4. awareness, reflectivity (estimated in relation to the average of the sample 
Because of space-limitation we cannot present here more details. They can be found in [7]. 
 
Result 3: Students’ SFC-profiles 
We selected two student-teachers, which represent two extreme cases: one with the highest scores 
concerning the SFC-vector and one with the lowest scores: 
 

  
 

Figure 4.12 High SFC   resp.   low SFC on nearly all components 
 

Additional remarks to the results of the empirical study: 
- We got differentiated information by these different components. 
- The components seem to be more or less independent. 
- Generally there seems to be a low degree of SFC of nearly all subjects of this study. 
- In the experimental group we could not find specific sensitivity types. 
- The degree of sensitivity on all components seems to be related to the amount of “content-

sensitivity”. 
 
Discussion and further studies 
 A broader range of empirical data with the folding problem as well as more and more different 

subjects would be useful. 
 The validity of the instrument should be studied in more detail. 
 There should be used a broader range of research methods. 
 It should be analyzed to what extent the behavior of the subjects and the SFC is related to spe-

cific pictures of mathematics and mathematics instruction. 
 It should be explored to what extend experience with the computer scenario might contribute to 

rise the SFC of POMI, so to what extent it might help to improve the ability of student teachers 
to teach mathematical problem-solving. 

 
Reference to our theoretical framework: 
This framework has relations to the learning level of the pupils and the (beginning) teachers. 

- Abilities to find, argue, order, calculate and construct are to be fostered in the pupils by the 
folding problem. Elements of evaluating and playing are involved too. Of course, all these 
activities the teacher students should have experienced themselves, too, in order to under-
stand better the statements of the pupils and to react adequately. 

- By walking for several times through the network of possible states of the program (“proce-
dures”) the student teacher might come to a better understanding of the problem-solving 
processes of pupils and its variety. 

 



6. Concluding remarks 
We presented three studies on mathematical problem solving, which should demonstrate to what 
considerable extent modern technology might help to improve mathematics education and instruc-
tion. In any case the use of technology especially in mathematics instruction cannot be better than 
the quality of teachers, who have to fulfill a high standard of competence in education, mathematics 
and the use of IT. We have to reinforce our efforts in this direction. But on this difficult way IT 
might help in detecting quality of problem solving (cf. section 4.) and quality of teaching problem 
solving (section 5.). Both programs might also be used as an additional (!) mean for improving the 
respective competencies. 
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