
A variant of GPBiCG AR method
with reduction of computational costs

Moe Thuthu and Seiji Fujino
moethu@zeal.cc.kyushu-u.ac.jp

Graduate School of Information Science and Electrical Engineering,
Kyushu University

812-8581
Japan

Abstract

In numerical linear algebra, we have a number of iterative methods based on
Krylov subspace method. GPBiCG AR method which we have proposed is an at-
tractive alternative for solving linear equations with nonsymmetric coefficient ma-
trix. In this paper, we consider a variant of GPBiCG AR method with reduction of
computational costs per single iteration. We refer to it as GPBiCGAR 2 method.
Through numerical experiments, we will verify improvement of convergence rate of
the variant with safety convergence.

1 Introduction

Many iterative methods based on Krylov subspace method have been proposed. Some of
these methods are Genaralized Product type Biconjugate Gradient (GPBiCG), Stabilizes
Biconjugate Gradient (BiCGStab), BiCGsafe methods. Form these methods, GPBiCG
(abbreviated as GP) method has inherently unstable convergence rate. Then we devised
stable variant of GP method. We referred to it as GPBiCG AR (abbreviated as AR)
method [3]. This AR method gain stability of convergence. On the other hand, its
convergence rate deteriotes slightly compared with the original GP. Therefore, we devised
improved variant of AR method in view of convergence rate by means of alternative
computation of parameter ζn and ηn. The improved variant of AR method is called as
GPBiCGAR 2 method (abbreviated as AR 2). As a result we could resolve two kinds of
issue of GP method, e.g. unstability and deterioration of convergence rate.

In this paper, we will discuss the AR 2 method. This method intends to reduce
computation times and computational costs of the original AR method. The algorithm
of original AR method is constructed based on minimization of the associate residual
2-norm for two acceleration parameters ζn, ηn. In the AR 2 method, we impose ηn is zero
and ζn only is computed when iteration step is even, and both ζn and ηn are computed
when iteration step is odd. As a result, we could reduce the computational cost per single
iteration.



The remainder of this paper is organized as follows: In section 2, GP 2 and AR 2
methods with reduction of computational cost will be introduced. In section 3, we will
discuss numerical results and present performance of AR and AR 2 methods. Finally, in
section 4, we draw conclusions and future work.

2 GP 2 and AR 2 methods with reduction of com-

putational cost

We consider iterative methods for solving a linear system of equations

Ax = b (2.1)

where A ∈ RN×N is a given nonsymmetric matrix, and x, b are a solution vector and
right-hand side vector, respectively. When A is a large, sparse matrix which arises from
realistic problems, the efficient solution of (2.1) is very difficult. This difficulty has led to
the development of a rich variety of generalized Conjugate Gradient (CG) type methods
having varying degrees of success (see, e.g., [5]).

The bi-conjugate gradient (BiCG) method based of the Lancoz algorithm is a crucial
example of a generalized CG method. In many cases, the Lanczos algorithm give some of
the fastest solution times and stability of convergence among all generalized CG methods.
The Lanczos algorithm, however, is known to break down in some cases. In practice,
the occurrence of breakdown can cause failure to irregularly converge to the solution of
(2.1). The fact that the Lanczos algorithm perform well in some cases but fail in others
heightens the need for further insight and development of the Lanczos type iterative
methods. As a result, Zhang [6] proposed GP method. In GP method, acceleration
parameters ζn and ηn are decided from the local minization of the residual vector of 2-norm
||rn+1||2 = ||Hn+1(λ)Rn+1(λ)||2, where where Rn+1(λ) denotes the residual polynomial of
Lanczos algorithm and Hn+1(λ) denotes the acceleration polynomial for convergence.

On the other hand, acceleration parameters ζn and ηn of original AR method are de-
cided from the local minization of the residual vector of 2-norm ||a rn||2 = ||Hn+1(λ)Rn(λ)||2.
The residual a rn is written as follows:

a rn = rn − ηnAzn−1 − ζnArn. (2.2)

Here rn is the residual vector and zn is auxiliary vector. The acceleration parameters ζn

and ηn of original AR method can be computed as follows:

ζ =
(bn, bn)(cn, an)− (bn,an)(cn, bn)

(cn, cn)(bn, bn)− (bn, cn)(cn, bn)
, (2.3)

ηn =
(cn, cn)(bn,an)− (bn, cn)(cn, an)

(cn, cn)(bn, bn)− (bn, cn)(cn, bn)
, (2.4)

where an = rn, bn = Azn−1, cn = Arn. Matrix-vector multiplication of Arn is computed
according to definition of matrix A and vector rn. On the other hand, Azn is computed
using its recurrence. This original AR method can get good convergence and show good
performances (see, [3]).



In this paper, GP 2 and AR 2 methods were devised by alternative computation of
parameters ζn and ηn of original GP and AR methods. In this approach, we set ηn to be
zero when the even iteration step. For that reason, the associate residual a rn of AR 2
method at even iteration step become as follows:

a rn = rn − ζnArn. (2.5)

As a result, we can reduce the amount of operations in one iteration. Similarly, algorithm
of GP 2 method can be computed as algorithm of AR 2 method. The algoritm of AR 2
methd is shown as follows:

Algorithm 1 AR 2 method

x0 is an initial guess, r0 = b− Ax0,

choose r∗0 such that (r∗0, r0) 6= 0,

set β−1 = 0, compute Ar0,

for n = 0, 1, · · · until ||rn+1|| ≤ ε ||r0|| do :

begin

pn = rn + βn−1(pn−1 − un−1),

Apn = Arn + βn−1(Apn−1 − Aun−1),

αn =
(r∗0, rn)

(r∗0, Apn)
,

an = rn, bn = Azn−1, cn = Arn,

if mod (n, 2) 6= 0, then

ζn =
(cn, an)

(cn, cn)
, ηn = 0,

un = ζnApn,

compute Aun,

tn = rn − αnApn,

zn = ζntn,

Azn = ζnArn − αnAun,

else

ζn =
(bn, bn)(cn,an)− (bn,an)(cn, bn)

(cn, cn)(bn, bn)− (bn, cn)(cn, bn)
,

ηn =
(cn, cn)(bn, an)− (bn, cn)(cn,an)

(cn, cn)(bn, bn)− (bn, cn)(cn, bn)
,

un = ζnApn + ηn(tn−1 − rn + βn−1un−1),

compute Aun,

tn = rn − αnApn,

zn = ζnrn + ηnzn−1 − αnun,

Azn = ζnArn + ηnAzn−1 − αnAun,

end if



xn+1 = xn + αnpn + zn,

rn+1 = tn − Azn,

compute Arn+1,

βn =
αn

ζn

· (r∗0, rn+1)

(r∗0, rn)
,

end

Table 1: Determination parameters ηn and ζn of GP, GP 2, AR and AR 2 methods.

Method Residuals Computation of
for minimization parameters ηn and ζn

GP ||rn+1||2 both ηn and ζn

at even iteration:
GP 2 ||rn+1||2 only ζn and ηn = 0

at odd iteration:
both ηn and ζn

AR ||a rn||2 both ηn and ζn

at even iteration:
AR 2 ||a rn||2 only ζn and ηn = 0

at odd iteration:
both ηn and ζn

In Table 1, we present how to determine the acceleration parameters ηn and ζn of GP,
GP 2, AR and AR 2 methods.

Table 2: Computational cost per single iteration of GP, GP 2, AR and AR 2 methods.

method recurrence inner ‖rn+1‖ total cost Av
product

GP 29 7 1 37 (1.03) 2
GP 2 23 4 1 28 (0.78) 2
AR 28 7 1 36 (1.00) 2
AR 2 22.5 4 1 27.5 (0.75) 2

In Table 2, computational costs per single iteration of CG,CG 2, AR and AR 2 meth-
ods were shown. “Av” meand multiplication matrix A and vector v. From this Table 2,
we can see clearly that computational cost can be reduced by reducing operations. In this
paper, GP, GP 2, AR and AR 2 methods were compared and discussed. In next section,
we will discuss convergence properties of GP, GP 2, AR and AR 2 methods through some
numerical experiments.



3 Numerical experiments

In this section numerical experiments will be discussed. All computations were done in
double precision floating point arithmetics, and performed on HP workstation xw4200
with CPU of Intel(R) Pentium (R) 4, clock of 3.9GHz, main memory of 3GB, OS of Suse
Linux version 9.2. Compile option with “-O0 ” is used. The right-hand side b was imposed
from the physical load conditions. The stopping criterion for successful convergence of
the iterative methods is less than 10−7 of the relative residual 2-norm ||rn+1||2/||r0||2.
The maximum number of iterations is fixed as 104. The initial shadow residual r∗0 is set
as the initial residual r0 or uniform random number in [0, 1]. We examine stability of
convergence of GP, GP 2, AR and AR 2 methods. Test matrices are taken from Florida
sparse matrix collection[1]. The characteristics of some test matrices are listed in Table
3. In Table 3, ”n” means number of dimensions, ”nnz” means number of nonzero entries
and ”ave.nnz” means average of nonzero entries per one row.

Table 3: Characteristics of test matrices.

Matrix n nnz ave. nnz
big 13,209 91,465 6.92
ns3Da 20,414 1,679,599 82.27
ck656 656 3,884 5.92
ex19 12,005 259,879 21.65
stomach 42,930 3,148,656 73.34
2D bjtcai 27,628 442,898 16.03
af23560 23,560 484,256 20.55
sme3Da 12,504 874,887 69.97
sme3Db 29,067 2,081,063 71.60
epb3 84,617 463,625 5.48
3D 3D 51,448 1,056,610 20.54
ibm 51,448 1,056,610 20.54

In Table 4-7, ”Itr.” means number of iterations, ”Time” means computational time
in seconds and ”Time ratio” means ratio of computational time to that of AR 2 method.
Table 4 shows convergence of AR 2 method is superior to that of the other methods with
the initial shadow residual r0

∗ = r0. Our reduction strategy of operations works very well.
From Table 4, the following observation can be made.

• Our reduction strategy of operations works very well. As a result, AR 2 method
can converge with the least iterations and computational time.

• For matrix sme3Da, GP 2 method cannot converge until it reaches at the max-
imum number of iterations. On the other hand, AR 2 method can get splendid
convergence.

After that, Table 5 shows convergence of AR method is superior to that of the other
methods with the initial shadow residual r0

∗ = r0. Then, we can see that AR 2 method
takes longer computational time than the original AR and GP methods. Moreover, GP 2



Table 4: Convergence of AR 2 method which is superior to that of the other methods
with initial shadow residual r0

∗ = r0.

Matrix Method Itr. Time Time
[ s ] Ratio

ex19 AR 2 2004 13.01 1.00
AR 2218 14.82 1.14
GP2 2639 17.43 1.34
GP 2237 15.20 1.17

ns3Da AR 2 675 23.05 1.00
AR 767 26.37 1.14
GP2 711 24.51 1.06
GP 739 25.61 1.11

sme3Da AR 2 3925 69.52 1.00
AR 4028 72.15 1.04
GP2 max
GP 5410 97.91 1.41

Table 5: Convergence of AR method which is superior to that of the other methods with
initial shadow residual r0

∗ = r0.

Matrix Method Itr. Time Time
[ s ] Ratio

big AR 2 3318 10.79 1.00
AR 2235 7.79 0.72
GP 2 4160 14.23 1.32
GP 2528 9.16 0.85

2D bjtcai AR 2 4411 50.21 1.00
AR 3818 45.14 0.90
GP 2 6080 71.85 1.43
GP 4058 49.84 0.99

epb3 AR 2 2937 55.17 1.00
AR 2647 53.33 0.97
GP 2 3048 61.29 1.11
GP 2866 61.52 1.12

also needs longer computational time than the original AR and GP methods. Because,
we impose ηn = 0 and ζn only is computed when iterations step is even in AR 2 and GP 2
methods. As a result, AR 2 and GP 2 methods needs many number of iterations numbers
and longer computational time. From Table 5, the following observation can be made.

• We can see the effects of reducing operations technique with the initial shadow
residual r0

∗ = random number. AR 2 method can converge well with the least
iterations and computational time.

• Although AR 2, AR and GP 2 methods can converge well, the original GP method



breaks down for matrix 3D 3D.

• For matrix ck656, AR, AR 2 and GP 2 methods converge very fast. However, GP 2
method cannot converge until it reaches at the maximum number of iterations. On
the other hand, AR 2 method can get nice convergence.

Table 6: Convergence of AR 2 method which is superior to that of the other methods
with initial shadow residual r0

∗ = random number.

Matrix Method Itr. Time Time
[ s ] Ratio

stomach AR 2 146 12.09 1.00
AR 175 15.11 1.25
GP 2 162 13.98 1.16
GP 152 13.69 1.13

af23560 AR 2 1798 21.45 1.00
AR 1828 22.52 1.05
GP 2 1923 23.55 1.10
GP 1809 22.92 1.07

3D 3D AR 2 6472 172.31 1.00
AR 6572 180.13 1.05
GP 2 6509 178.51 1.04
GP break

ck656 AR 2 287 0.04 1.00
AR 295 0.05 1.25
GP 2 289 0.04 1.00
GP max

Table 6 shows that convergence of AR 2 method is superior to that of the other
methods with the initial shadow residual r0

∗ = random number. Table 7 also presents that
convergence of AR method is superior to that of the other methods with the initial shadow
residual r0

∗ = random number. Even though AR 2 method needs longer computational
time than AR method, it can converge well. For matrix sme3Da, GP 2 method cannot
get convergence until it reaches at maximum number of iterations of 104.

In Fig.1 we demonstrate history of relative residual 2-norm of AR methods and GP
methods for two matrices (a)ex19 and (b)sme3Da when the initial shadow residual r∗0 = r0.
In Fig.1(a), all methods perform well. AR 2 method (red solid line) shows excellent
convergence. As a result, we can see clearly the effects of reducing operations. In Fig.1(b),
AR 2 method converges with less number of iterations than that of the original AR method
(green dotted line). On the other hand, GP 2 method (blue dotted line) stagnates at the
residual level of approximate 10−2.

Fig.2 exhibits history of relative residual of AR methods and GP methods for matrices
epb3 and big when the initial shadow residual r∗0 = r0. We can see that original AR
method superior to AR 2 method. Because, AR 2 and GP 2 methods need many number
of iterations in order to solve linear systems.



Table 7: Convergence of AR method which is superior to that of the other methods with
initial shadow residual r0

∗ = random number.

Matrix Method Itr. Time Time
[ s ] Ratio

2D bjtcai AR 2 3796 43.18 1.00
AR 3074 36.39 0.84
GP 2 3412 40.32 0.93
GP 3145 38.64 0.89

ibm AR 2 5892 156.65 1.00
AR 5144 141.23 0.90
GP 2 6271 172.00 1.10
GP 5103 144.40 0.92

sme3Da AR 2 6799 120.42 1.00
AR 3496 62.79 0.52
GP 2 max
GP 4621 83.57 0.69

big AR 2 2903 9.44 1.00
AR 1569 5.48 0.58
GP 2 2988 10.22 1.08
GP 1679 6.11 0.65
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(a) matrix: ex19 (b) matrix: sme3Da

Figure 1: History of relative residual of AR methods and GP methods for matrices ex19
and sme3Da when initial shadow residual r∗0 = r0.

Fig.3 presents history of relative residual of AR methods and GP methods for matrices
stomach and 2D bjtcai when initial shadow residual r∗0 is random number. In Fig.3(a)
all methods perform very well. Moreover, AR 2 method converge with the least number
of iterations. In Fig.3(b), we see that, though all methods oscillate violently, they can
converge. We also understand that the original AR method is superior to AR 2 method.
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Figure 2: History of relative residual of AR methods and GP methods for matrices epb3
and big when initial shadow residual r∗0 = r0.
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Figure 3: History of relative residual of AR methods and GP methods for matrices stom-
ach and 2D bjtcai when initial shadow residual r∗0 is random number.

4 Conclusions

In this paper, we proposed a variant of GPBiCG AR method with reduction of compu-
tational costs per single iteration. Through some numerical experiments, we examined
effectiveness of the variant of GPBiCG AR method. As a future work, we will study
robustness of the variant.
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