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Abstract: Students often have difficulty with understanding statistical inference.  In this paper we demonstrate how 
technology can be used to aid students in developing an understanding of some concepts in hypothesis testing. The 
graphics calculator provides an ideal tool for students to investigate how changes in sample values affect the 
significance of the outcomes. Two scenarios will be presented: the concept of the proportion for a single population, 
specifically addressing the idea of a majority and secondly the concept of the mean difference from two related 
populations, specifically addressing the idea of a significant difference. In these scenarios the effects of both changes in 
the sample values (i.e., sample proportion or sample mean difference) and the sample sizes will be explored. The 
changes that are readily observable through the use of the calculator will be related back to underlying concepts of 
variation in the standard errors (i.e., the standard deviations of the distribution of the sample values). Whilst the 
explorations could also be carried out using a spreadsheet such as Excel, graphics calculators offer more accessible 
learning experiences which involve students in active participation and critical thinking. These activities would be 
suitable at either upper secondary school or first year undergraduate level, whenever students are first introduced to 
inferential statistics. 

1. Introduction 

Chance and data courses at the secondary school level usually focus on descriptive statistics: 
calculating ranges, means, modes, medians and representing data in graphical form. In Western 
Australia at the first year undergraduate level, introductory statistics courses start with descriptive 
statistics and progress to inferential statistics.  Studies of probability distributions lead to 
calculations for confidence intervals and hypothesis tests for one and two samples, including z-tests 
for proportions and t-tests for means. Given that “many published research reports, as well as 
popular media accounts, utilize ideas of statistical confidence and significance” [1], it is important 
that students have a good understanding of what statistical significance means.  Indeed an 
understanding of “sampling and of making inferences about populations based on samples, are 
fundamental to prediction and decision making in many aspects of life” [2]. However, when 
students are introduced to inferential statistics their teachers often find that “although many 
students can complete calculations they are often unable to understand underlying processes or 
properly interpret the results of the calculations” [1]. The investigations detailed in this paper are 
designed to enable students to grasp those underlying processes so they can properly interpret the 
results of their calculations. 

2. Background 
The literature reveals a number of possible reasons why inferential statistics is commonly difficult 
for students to understand as well as some procedures that teachers have put in place to try to 
improve the students’ understanding of this branch of statistics. Many of these include the use of 
technology in a variety of ways. This paper highlights some of these issues and actions. The 



authors then offer ways of investigating and exploring hypothesis testing which students can 
undertake using a graphics calculator. 

It is important to bear in mind two important points when discussing the use of technology in 
developing understanding: technology is a tool for learning and must be used thoughtfully by 
teachers [3]; and students need to develop their own skills in using and choosing the technology 
that is most suitable for the purpose [4].  

2.1 Using technology in developing statistical understanding 

There has been widespread development of computer technology over the last 30 years. In 1990 
Moore [5] predicted that that the use of technology would greatly change the way that people teach 
statistics. Subsequently in 1997 he argues that “ technology strongly influences what we teach and 
how we teach. The case for substantial change in statistics instruction is built on strong synergies 
between content, pedagogy and technology” [6]. There are many computer programs, Java applets 
and sophisticated graphics calculators, all of which can be used to help develop students’ 
understanding of descriptive and inferential statistics [7]. Reports of educators’ use of technology, 
including computer software, graphics calculators and the Internet, show variation in effectiveness 
[8], including a report of research where there is no conclusive evidence of improvement [9]. 
Therefore, it is important to note the advantages and disadvantages of the various technological 
offerings and make careful decisions about when and where to use technology in the classroom 
[10].  

In 2007 Garfield and Ben-Zvi [11] produced a review of how students learn statistics and note that 
“even a well-designed simulation is unlikely to be an effective teaching tool unless students’ 
interaction with it is carefully structured”. They also point out that although teachers would like 
some information on how to select a particular tool, the research literature does not give specific 
evidence as such. However, they highlight the fact that some recent studies have determined that:  

developing a deep understanding of statistics concepts is quite challenging and should not be 
underestimated. Research suggests that it takes time, a well-thought out learning trajectory, activities and 
discussion questions to develop deep understanding. Good reasoning about important concepts can be 
developed very carefully using enough time and revisiting of these ideas [12].  

2.2 Understanding variation 
Watson [13] draws attention to some of the misconceptions that secondary students have when 
considering sample size, randomness and variation, which together hinder their understanding of 
inferential statistics. She suggests that informal work with samples and inference should start in the 
primary school and points out that “Developing reasoning related to sampling may be associated 
with developing literacy and social skills rather than developing numeracy skills”. This is endorsed 
by Ben-Zvi [7]. Watson and Kelly [14] indicate the need for students to not only consider averages, 
as is commonly done, but also “measures of spread and variation such as the standard deviation” at 
the school level in order to achieve the understanding of variation which is later needed for 
inferential statistics. This is in accord with the research reported by Shaughnessy [15] which 
highlights that “in the United States far more time is spent on notions of average, the ‘signal’ in 
data, than on the noise. The noise in data is variability, and often variability is just as important in 
data analysis as averages are, if not more so”.  

Unlike mathematics, statistics is contextually bound and requires data. Contexts relevant to the 
students are more likely to motivate and interest them. Students should have opportunities to 
choose their own samples and make comparisons [16].  However, they need to understand that if 
they are to make inferences then the samples must be representative of the whole population. The 



Internet provides access to many possible data sets (e.g., Australian Bureau of Statistics, 
www.abs.gov.au ) or students can collect data for a particular project. The second author regularly 
collects data from students in large first year undergraduate statistics units and uses this data 
throughout the unit (in lectures, in tutorials and in assessment tasks). Simple data displays very 
readily display the variation in the data, which can be further explored through analysis. 

2.3 Sampling distributions 
An understanding of statistical inference requires a real knowledge of the nature of sampling 
distributions because it involves “drawing conclusions about the characteristics of a population 
based on empirical observations of samples taken from the population” [17]. This involves an 
understanding of the idea of random sampling and how it is representative of the population, 
comprehending the difference between a sample statistic and a population parameter. It requires 
students to know how the size of the sample, and thus the characteristics of the sampling 
distribution, as well as the actual values of the data collected, determines the results and 
conclusions drawn from significance tests. 

Technology can be used to aid students’ learning about sampling distributions. Modern graphics 
calculators include a range of capabilities relevant to work in this area, including numerical and 
graphical data analysis, the construction of confidence intervals and a range of elementary 
hypothesis tests. In addition to these, programs have been written for graphics calculators [18] to 
allow students to take random samples and to explore the resulting sampling distributions. These 
can be used to develop an understanding of the Central Limit Theorem, if used appropriately. Java 
applets for computers and computer packages designed for teaching and learning statistics can be 
used for these sorts of purposes as well. 

Research into the use of simulations to help understand the characteristics of sampling distributions 
was undertaken by Chance, delMas and Garfield [19]. A Sampling Distribution program SIM was 
developed and an activity was designed to develop students’ understanding. Five research studies 
investigated how students could build up a sampling distribution of their own and were then given 
a set of questions designed to assess their understanding. The results suggested that there was some 
benefit. However, when the activities were redesigned to help students recognise their own 
misconceptions there was significant improvement. 

A combination of practical and technological activities has been used at Murdoch University by the 
second author for more than a decade to aid students’ understanding of the distribution of sample 
values and the Central Limit Theorem. During the first lecture of a large first year statistics unit, a 
questionnaire is completed by the students. This data set (each record having about 20 fields) is put 
into an Excel spread sheet and used as a data source in both tutorials and assessment tasks with 
students either working with the graphics calculator or SPSS or Excel. One of the questions asked 
of the students is their height. As there are generally more females than males, the students are 
given a “population” of female heights and asked to use random number tables to select two 
samples – one of size 9 and the other of size 25. They are then asked to calculate the mean and 
standard deviation for each of their samples using a calculator and to give the values to their tutor. 
These are then collated and a computer display created showing the three distributions (population 
heights, sample means for sample size 9 and sample means for sample size 25) one under the other 
on the same scale. During a lecture the displays and values (e.g. mean and standard deviation of all 
the sample means for each sample size) are discussed and related to the Central Limit Theorem. 
Whilst it is possible to simulate this activity on either a computer or a graphics calculator, the fact 



of the students owning the data, both original and sample values, has been demonstrated to aid the 
learning processes.  

2.4 Confidence intervals and hypothesis tests 

Frequently introduced before formal hypothesis testing, confidence intervals can form a link 
between “sampling variability and hypothesis testing” [20]. There are statistical software for 
computers, programs (many inbuilt) for graphics calculators and Java applets on the Web which 
can generate many confidence intervals, some graphically, so that students can evaluate the 
proportion of intervals that do not contain the population parameter. They then can see that “the 
probability connected to a confidence interval is not the probability of being correct; rather, it is the 
relative frequency of correct statements that will be made in the long run by using this method” 
[21]. The concept of values being inside or outside the interval, i.e., at the tail ends of the 
distributions, then naturally leads to the idea of usual or unusual values and concepts for hypothesis 
testing. There are then several forms of technology which will perform the underlying calculations 
for the various tests. The more complex the data and hypothesis tests required, the more specialised 
the form of the technology – an important concept for the students to understand. 

2.5 Graphics calculators: accessibility and suitability 
Increasingly sophisticated graphics calculators provide a large range of tools for developing 
statistical understanding [22]. Both computer packages and graphics calculators provide 
opportunities to enhance student learning. The authors would agree that, because of the size of 
computer screens and computing power, ideally students should have access to statistical packages 
such as they are likely to be required to use when in the workforce. An important task in teaching 
students to use technology is to make them understand the role of each kind of technology, from its 
use as part of the learning process to its use in industry or research. However, there are some 
immediate and some not so obvious advantages to using a graphics calculator. These hand-held 
computers are relatively cheap and accessible, especially where computer laboratories are not 
always available and software licences expensive [23]. Many models have suitable software built 
in. Less obviously these graphics calculators give very easy access to the exploration of the 
magnitude of changes in sample characteristics and values which lead to changes in statistical 
inferences are made from the data [24]. 
The large screen and variety of statistical displays makes the use of a statistical package on a 
computer the most desirable tool for some activities. The accessibility (cost, size, power source, 
24/7 availability) and certain other features make the graphics calculator the most desirable tool for 
other activities. The following investigations detailed in this paper cannot be carried out easily on 
a computer as, in general, hypothesis tests when only summary sample variables are known are not 
possible – raw data is required. They are designed to enable students to explore for themselves, in 
the context of hypothesis testing, what happens if certain values change. 

3 Investigations 
3.1 Investigation 1: Is 51% a majority? 
A common use of proportions is to show that a majority of individuals fall into a particular 
category – be it the proportion of cars that are red or the proportion of Australian adults in favour of 
the development of more nuclear power stations. Ask any member of the general public, “Is 51% a 
majority?” and they would probably answer, “Yes!”. Of course they would be quite correct if the 
51% was obtained using the entire target population. However, when we ask a class of students, “Is 



51% a majority?”, we are really asking if 51% is significantly larger than 50% given the size of the 
sample that gave us the 51%. The answer is often, “I am not convinced it is a majority.” 

Using a graphics calculator it is very quick and easy to work through several examples seeing what 
happens if this value changes. The screens below in Figure 1 are from a Casio fx-9860G using a 1-
sample z-test for proportions from the STAT – TEST menu using a sample proportion of 0.51 (51%) 
from a sample of size 100. 

  
Figure 1: Testing a proportion with a graphics calculator. 

Thus, for testing the null hypothesis that the population proportion is equal to 0.5 against the 
alternative hypothesis that the population proportion is greater than 0.5, using the P-value of 0.4207 
and a 5% level of significance we would not reject the null hypothesis and would conclude that 
there is really not sufficient evidence to claim a majority. The P-value in this case suggests that 
42.07% of the time when the population proportion is actually 0.5, a result of 0.51 or greater will 
occur; in other words, such a value is not at all unusual and a good deal more likely than the 5% 
figure chosen to define statistically significant. 

So what sample proportion is needed for this particular sample to convince us there is a majority? 
Very quickly, through repeated use of the 3 steps: EXIT – change 51 – EXE, students can explore 
for themselves and see that a sample proportion of 59% is required before we are convinced there is 
a majority, as represented by a P-value less than 5%. A useful exercise is to make a note of the 
values such as those shown in the following Table 1. 

Table 1: P-values associated with various sample proportions for sample size 100 
sample proportion 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 
P-value 0.4207 0.3446 0.2742 0.2118 0.1586 0.1151 0.0808 0.0548 0.0359 

Most students will find this 59% value a very surprising result and are likely to ask, “Why do we 
need such a large sample proportion to be convinced of a majority?”. The answer is because in this 
case the standard error for proportions (standard deviation for distribution of sample proportions) is 
a relatively large 0.05. Thus to be at least 1.645 standard errors above the hypothesised population 
value of 0.5, the sample proportion needs to be 1.645×0.05 = 0.08225 larger i.e. have a value of 
0.58225 or more.  

 “So when can we conclude that there is a majority with a sample proportion of 51%?” In the above 
exercise the sample proportion was changed. The following Table 2 gives the results of an exercise 
where the sample proportion is kept the same but the sample size is changed. Again it only takes a 
few seconds on the graphics calculator to make the changes and perform the tests. The most 
difficult part is working out the x value having chosen the sample size, n. However, this can be 
easily overcome by entering 0.51×n (e.g. 0.51×200) for x.  

Table 2: P-values associated with various sample sizes when sample proportion is 0.51 
sample size 100 200 500 1000 2000 5000 6000 7000 
P-value 0.4207 0.3886 0.3274 0.2635 0.1855 0.0786 0.0607 0.0471 



A little more trial and adjustment yields a P-value of 0.0495 for a sample size of 6800. Students 
find this another surprising result. “Why is such a large sample size required before a sample 
proportion of 51% leads to a conclusion of a majority using a 5% level of significance?”. The 
answer, again, is due to the size of the standard error. In this case 1.645 standard errors have to be 
less than 0.01 (i.e. 0.51 – 0.50). Thus the standard error has to be less than 0.006079. 

These exercises lead very easily into a discussion about the effect of the sample size on the 
standard error. Once more it is very quick and easy to generate a set of standard errors for different 
sample sizes – which could be added to the previous table as shown in Table 3 below. 

Table 3: Standard errors and P-values associated with various sample sizes when sample 
proportion is 0.51 

sample size 100 200 500 1000 2000 5000 6000 7000 
standard error 0.05000 0.03536 0.02236 0.01581 0.01118 0.00707 0.00645 0.00598 
P-value 0.4207 0.3886 0.3274 0.2635 0.1855 0.0786 0.0607 0.0471 

Use of the formula for the standard error gives n = 0.5×0.5÷0.0060792 = 6765.1 i.e., giving a 
minimum sample size of 6766. However, since x = 0.51n = 0.51×6766 = 3450.66 is not a whole 
number, this value of n will not work. Working on the calculator it is possible to quickly show that 
the smallest value greater than 6766 for which a sample proportion of 0.51 is possible is 6800. 

If time permits, a final exercise, which combines the first two exercises, can be used to construct a 
table such as that shown in Table 4 below. Here the P-values are displayed for different sample 
proportions, p̂ , and sample sizes, n, with standard errors, SE, also shown. 

Table 4: P-values for different sample proportions and sample sizes, with standard errors 

   n      SE          p̂  0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 

  100   0.05 0.4207 0.3446 0.2742 0.2118 0.1586 0.1151 0.0808 0.0548 0.0359 
  200   0.03536 0.3886 0.2858 0.1981 0.1289 0.0786 0.0448    
  500   0.02236 0.3274 0.1855 0.0899 0.0368      
1000   0.01581 0.2635 0.1029 0.0289       
2000   0.01118 0.1855 0.0368        
5000   0.00707 0.0786 0.0023        
6000   0.00645 0.0607 0.0010        
7000   0.00598 0.0471         

 
3.2 Investigation 2: Is there a difference in means? 

Consider data from two dependent samples. These can come from an experimental design of either 
repeated measures (e.g. body temperatures of patients with a fever before and two hours after 
taking a certain medication) or paired samples (e.g. fever patients paired according to disease and 
initial body temperature, given either a placebo or the medication and two hours later having their 
temperatures recorded).  The question being asked is, “Does the medication reduce the patient’s 
temperature?” (repeated measure) or, “Does the medication work better than the placebo in 
reducing the patient’s temperature?”, (paired samples). More explicitly: is there a significant 
difference (specifically reduction) in temperatures, on average, or is the average temperature after 



taking the medication significantly different from (specifically less than) the average temperature 
after taking the placebo?    

Again, using a graphics calculator it is very quick and easy to work through several examples 
seeing what happens if this value changes. The screens in Figure 2 below are from a Casio fx-
9860G using a 1-sample t-test for means from the STAT – TEST menu with a sample mean 
difference of 1 and a sample standard deviation of 1 for a sample of size 5. (For the temperature 
scenarios assume the repeated measures design is temperature difference before minus after and the 
paired design is temperature difference placebo minus medication.) 

  
Figure 2:  Dependent samples t-test via a graphics calculator 

Thus, for testing the null hypothesis that the population mean difference is equal to 0 against the 
alternative hypothesis that the population mean difference is greater than 0, we note that the P-
value of 0.0445 suggests that a temperature reduction this large or larger is expected only 4.45% of 
the time if the null hypothesis were true. This is an unusually small probability, so we would reject 
the null hypothesis at a 5% level of significance and would conclude that there is some support for 
a reduction in temperature after medication. 

The exercises for proportions essentially had two variables: the sample proportion and the sample 
size. Equivalent exercises for means need to consider three variables: the sample mean, x , the 
sample standard deviation, s, and the sample size, n.  

An initial exploration for the students is to hold both the sample size and sample standard deviation 
constant and look at the effect of varying the sample mean. As with tests for proportions, it literally 
takes only a couple of seconds to make changes on the calculator to the initially performed test and 
a couple more to note the result in a table such as that shown in Table 5 below for n = 10 and s = 3. 

Table 5: P-values associated with various sample mean differences when n = 10 and s = 3 
sample mean  1 1.2 1.4 1.6 1.7 1.75 1.8 
P-value 0.1596 0.1188 0.0871 0.0630 0.0534 0.0491 0.0451 

 

A parallel exercise repeats the one above but using a different sample standard deviation. This 
could lead to constructing a two way table such as that shown in Table 6 below giving the P-values 
for the indicated sample mean and standard deviation values but keeping the sample size as 10. 

Table 6: P-values for different sample mean differences and standard deviations when n = 10 
     s             x  1 1.2 1.4 1.6 1.7 1.75 1.8 
    3.0 0.1596 0.1188 0.0871 0.0630 0.0534 0.0490 0.0451 

    2.5 0.1188 0.0817 0.0551 0.0368    

    2.0 0.0742 0.0451      

    1.5 0.0321       



In this scenario the sample mean needs to be at least 1.8332 (t-distribution with 9 degrees of 
freedom) standard errors above the hypothesised population mean of zero. Therefore, the sample 
mean needs to be at least 1.8332 standard errors. Thus sxsx 5797.0108332.1 >∴÷×> . 

One of the key discussion points with students when performing the proportions exercises should 
be how the sample size affects the standard error (proportions). A similar discussion for means 
needs to consider how both the sample size and the sample standard deviation affect the standard 
error (means). 

Table 7 (below), displays the results of an exercise designed to look at the effect of change in 
sample size while holding the sample mean difference at 1 and the sample standard deviation at 2. 

Table 7: P-values associated with various sample sizes when x = 1 and s = 2  
sample size 5 6 7 9 11 12 13 14 

P-value 0.1631 0.1376 0.1170 0.0860 0.0641 0.0556 0.0483 0.0420 

The next exercise looks at the effect of changing the sample standard deviation, holding the sample 
mean difference at 1 and the sample size at 10. Results are shown below in Table 8. 

Table 8: P-values associated with various sample standard deviations when x = 1 and n = 10 
sample standard deviation 5 4 3 2 1.8 1.7 1.6 
P-value 0.2714 0.2248 0.1596 0.0741 0.0564 0.0479 0.0398 

A suitable follow-up explores the size of the standard error as both the sample size and the sample 
standard deviation change. Some examples are given in the partially completed Table 9 below.  

Table 9: Standard errors for various sample sizes, n, and standard deviations, s. 

        n       s 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
5 0.4472 0.6708 0.8944 1.1180 1.3416 1.5652 1.7889 

8 0.3536 0.5303     1.4142 

10 0.3162 0.4743     1.2649 

15 0.2582 0.3873     1.0328 

20 0.2236 0.3354     0.8944 

25 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 

Suitable discussions with students might relate to the direct effect of the sample standard deviation 
(i.e. a doubling of s produces a doubling of the standard error) versus the inverse square root effect 
of the sample size (i.e. a quadrupling of n produces a halving of the standard error).  

Unlike the investigation for proportions, the choice of starting values for the sample mean 
difference, sample standard deviation and sample size displayed in the above tables are somewhat 
arbitrary. It would be much better to use a specific example, arising as an example in a lecture or in 
a tutorial exercise, as the starting point for this investigation for means. 

4.  Conclusion 
Over the last 30 plus years, more and more statistical computer packages have been developed. 
Some have been designed to aid students develop an understanding of probability and statistics, 
while others have been designed for professional statisticians. Sophisticated graphics calculators 



increasingly provide a large range of tools for enhancing student learning and developing statistical 
understanding. The authors agree that students should ideally have access to statistical packages, 
particularly to prepare them for the workforce, but the statistical facilities on many models of 
graphics calculators provide excellent, attractive learning tools for students. The second author 
hires out graphics calculators to those students who have no prior experience of using one in the 
school system. Just over half way through every semester there are requests from many students 
who had previously decided to make do with their own calculator, to hire a graphics calculator, as 
they have been impressed by how the learning of their peers has been enhanced. These graphics 
calculators give very easy access to the exploration of the magnitude of changes in sample 
characteristics and values which lead to changes in the statistical inferences that are being made 
from the data. Much of this exploration is not possible using a computer package. The 
investigations detailed in this paper allow students to better understand the mechanisms involved in 
statistical inference rather than just use (any) technology as a black box means to an end. 
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