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Abstract: The paper draws on an experiment conducted in a secondary school mathematics classroom in Greece which 

aimed to explore ways in which students develop their intuition, their meanings construction and the proving process in 

the Geometer’s Sketchpad v4 DGS environment, using a custom tool which combines the beautiful drawing and the 

figure with geometric properties. Custom tools and the iteration process can be shown to be a suitable and valuable 

way of enhancing the construction of mathematical meanings. By this way, the DGS environment offers openable 

windows which guide students in their study of infinite structures and convergent, divergent sequences in both numeric 

and graphic notations. Both the bridging of empirical and traditional methods by presenting the proofs using dynamic 

means and aesthetic development through the computer software enhance the user’s interaction,  instilling a ‘digital 

proof’ impulse. 

 

1.  Introduction 

 
The paper focuses on a very interesting study area in terms of dynamic geometry: the use of 

custom tools and their cognitive effect on students’ mathematical learning. The paper draws on a 

number of ideas including cognitive chunking, instrumental genesis, reification and aesthetics and 

seeks to connect them. The researcher describes a study conducted in a dynamic geometry 

environment, with a focus on the construction and use of a custom tool, trying to show that the 

custom tool supports students' building of meanings of mathematical concepts. The paper describes 

how students use and perceive custom tools. Some questions the researcher had in mind when 

designing the problems in the DGS environment and when conducting research were the following:  

• Are custom tools forms of chunking, or just a new set of tools that act more like black 

boxes?  

• Do the students actually use custom tools and iteration process as objects, or continue to 

use them as procedures? Or, what would be evidence of the student treating something as 

an object and a procedure?   

 In other words, there are many open questions about the use of custom tools that deserve closer 

study, and that can be addressed using the research described in this paper.   

This paper also investigates the development of proof of formulae in the dynamic geometry 

environment of Geometer’s Sketchpad v4 (see [12]) using a custom tool which combines 

technology and aesthetics. The custom tool is a digital technology in the case of Sketchpad, but 

what does it mean that it is in combination with aesthetics? Is it that the tool itself is ‘beautiful’, or 

that it produces beautiful images? The Ancient Greeks, particularly the Pythagoreans, believed in an 

affinity between mathematics and beauty, as described by Aristotle “the mathematical sciences 

particularly exhibit order, symmetry, and limitation; and these are the greatest forms of the 

beautiful” (XIII, 3.107b quoted in [30]). According to Sinclair (see [30, p.262]) many 

“mathematicians (see [9],[24] and [25] quoted in [30]), as well as mathematics educators ( see [2], 



 

[11], [21] and [29] quoted in [30]) have drawn attention to some more process-oriented, personal, 

psychological, cognitive and even sociocultural roles that the aesthetic plays in the development of 

mathematical knowledge”. Sinclair (ibid.) declares that “they associate the aesthetic with 

mathematical interest, pleasure, and insight, and thus with important affective structures…”.  

In the paper the role of aesthetics is also important. Perhaps is developed an expectation that the 

results of the study will demonstrate how the work with DGE and its aesthetics will motivate 

students to build meanings of mathematical concepts. This study does not focus on motivation 

stemming from the improved aesthetics obtained through dynamic geometry constructions. In this 

study is demonstrated how the images that are produced in the DGE environment are not simply 

beautiful but they have other aesthetic qualities. In other words they can, as digital material entities, 

be more than beautiful “drawings’; they can be ‘figures’ with geometric properties referring to the 

theoretical object (see [18]).  And these properties are perceived by the students as they interplay 

with it. This seems pertinent in terms of the theory of instrumental genesis reported in the section on 

theoretical underpinning below, and is used in the study.  

Firstly it is important to draw out the connections between "chunking" and custom tools. The 

resemblance is evident, but the process of using a custom tool seems to be different from the act of 

creating one, which may or may not have chunking as its goal. It does not mean that any act of 

creating a custom tool coincides with the act of chunking, but it cannot just be a faster way of doing 

or repeating things, helping our memory with a difficult construction. 

 

2. Cognitive chunking and custom tools   
Research in cognitive psychology asserts that chunking is an essential mechanism supporting 

learning of mathematics and thus reducing the complexity of a problem solving process. Chunking 

“supports and facilitates cognitive processes involved in encoding, extracting, remembering, and 

understanding information” (see [41] and [8] quoted in [28]).  

Dynamic geometry environments such as Geometer’s Sketchpad (see [12]) and Cabri Geometry II 

(see [17]) share three main features, drag mode, locus of points, and the ability to define and use 

macros/scripts-custom tools, a kind of ‘technical chunking’. Macros/scripts can help students 

effectively to structure a geometrical construction by condensing a complicated sequence of 

construction steps into one single command (see [14],[15] and [33]). Dealing with scripts/custom 

tools rather than simple sketches can alleviate the complexity of the construction by reducing the 

steps of construction, reducing in that way the amount of information “that must be stored since 

chunks (in our case custom tools) are conceptually treated as single elements” (see [28]). Custom 

tools allow one “to encapsulate constructions into new commands, -constructing figures of arbitrary 

complexity- as well as to create entire microworlds with yours own tools using them an unlimited 

number of times in an unlimited number of sketches” (see [13]).  

To create a new tool, we begin by building the general construction we want to define as a tool. 

This construction will also serve as the ‘definition’ during the tool creation process. For instance, 

thanks to the manner in which it is constructed and saved as a custom tool, an equilateral triangle 

can be defined, and thus categorized, as a geometric object with given properties. If, for example, 

the shape is constructed using the rotation command, then every side is the product of the adjacent 

side rotated by 60 degrees about the vertex–center common to the two sides. The student can thus 

categorize the equilateral triangle in his mind with the following properties: “a triangle with sides of 

equal length and angles equal to 60 degrees”.  

In this sense, through the custom tool, the equilateral triangle --object-- acquires a conceptual 

categorization as well as the meaning of the archetypal / primitive object. Davis & Tall (see [3] 

p.151) declare that “The fact that we can talk about chairs, or a chair, without referring to or 



 

pointing at a particular world-thing is a result of a process of perceptual categorization. The concept  

‘chair’ is a mental concept, and not a corporeal world-thing.” Paraphrazing last expression “the 

concept ‘custom tool-equilateral’ becomes a mental concept and not a corporeal artefact” in the 

screen.  
The building of the custom tool mentioned in the paper, takes into account the theories referred to 

in the next section relating to knowledge, learning and teaching during its design/construction and 

implementation of the activities. 

 

3. Theoretical underpinning   
A learning environment is something which is co-built in the teaching and learning activity by 

participants of the activity, and it evolves during the development of the activity. The design of 

activities in the learning environment (the software) as a part of the instruction thus has a crucial 

role to play in the comprehension of mathematical meanings. The ongoing study is underpinned by 
the theory of instrumental genesis (see [38]).  From Trouche’s point of view, “instrumental geneses 
are individual processes, developing inside and outside classrooms, but including of course social 

aspects” (see Figure 3) (personal e-mail correspondence with Luc Trouche on April 4, 2008 quoted 

in[23]). An artefact, with which the interaction takes place during the mathematical activity, is 

transformated in an instrument. The use of the tool is directly linked to the use of the artefact (see 

for example [7], [27], [36] and [37]). The students accomodate the tool to their needs, it can 

therefore execute a particular operation and it can potentially be functionally extended. This means 

that a student can use the custom tool to discover the properties of the more complex shape (which 

is an extension of the structure) which therefore requires the student to act on the tool (external use 

of the construction) thus “the tool is shaped by the user during the instrumentalization process” 

while the artefact simultaneously acts upon the subject (internal use of the structure) and “the tool 

affects and shapes the users’ thought during the instrumentation process” (see for example [1] , [7] 

,[27],[36] and [37] ).  

Consequently, in the first case, we have the accommodation of the user to the tool/ object, and in 

the second we have the assimilation of the tool acting upon the subject. During the instrumental 

genesis both the phases (instrumentation and instrumentalization) coexist and interact. Then the 

user structures that Rabardel (see [27]) calls utilization schemes of the tool/artefact. This process 

leads to the development or appropriation of usage schemes and schemes of instrumented action. As 

the discussion session of the Mind and Machine group coordinated by Drijvers (see [5]) makes 

clear: usage schemes are oriented to handle/manipulate tools, containing gestures (activity in the 

technological environment) and knowledge. Schemes of instrumented action are comprehensive 

chains of usage schemes anticipating a specific goal.  

In the present case, the user shapes schemes of instrumented action, which can be defined as 

coherent and meaningful mental schemes for using the technological tool to solve a specific type of 

problem. Consequently, the ‘instrumented action’ scheme, which is based on the construction and 

use of the custom tool, leads us to construct the mental object which is based on our mode of 

construction in the software, and consequently on our actions. In the sequence of mental activities a 

student follows through the instrumented action schemes, mathematical knowledge and knowledge 

of the tool are combined. The shaping of the custom tools /scripts can help students mentally 

categorize a construction, initially in terms of their perceptions as a schematic entity, and then lead 

them through various stages to more abstract levels of cognitive perception. This also agrees with 

Edelman’s viewpoint (see [6] quoted in [3]): “in forming concepts,...the brain areas responsible for 

concept formation contain structures that categorize, discriminate, and recombine the various brain 

activities occurring in different kinds of global mappings”. This means that custom tools can serve 



 

as structural units of knowledge, and hence as schemes, too, including the structure and function of 

the collection. 

 Consequently, custom tools operate as a referent point for organizing, pursuing, and retrieving 

information, and thus facilitating the reusing and handling of the schemes in a wide range of 

situations. According to Trouche (see [36]) a scheme of instrumented action includes theorems-in-

action (“propositions believed to be true” see [39]) and concepts-in-action (‘concepts implicitly 

believed to be relevant’ see [39]). It may help to analyze the students’ work and to decompose the 

problem solving strategy. But we will begin in the next paragraph by examining the construction of 

the activity and how it is possible to construct supplementary concepts using the two different 

modes of constructing the tool.  

 

4.  The construction and operation of the custom tool 

The current paper is concerned with a detailed description of the design process of the custom 

tools used for the construction of activities in the linked multiple pages facilitated by Geometer’s 

Sketchpad v4 software. The resulting interlinked successive pages could be compared with a vivid, 

living section of a textbook. The researcher took into account the theories referred to in the previous 

section relating to knowledge, teaching and learning during the design /construction and 

implementation of the activity.  

 

 
 

Figure 4.1 Figure 4.2 

 

 

Figure 4.3 Figure 4.4 Figure 4.5 

For example: Figures 4.1, 4.3 illustrate two different methods of constructing the original /initial 

right triangles, and include transformations which will subsequently be used to construct the custom 

tools. In Fig. 4.1, the right triangle with vertical sides in a ratio of 2:1, has resulted from joining the 

vertices with the middle points of the opposite sides of the square. In Fig. 4.3, a triangle with 

vertical sides in a ratio of 2:1 has been constructed directly. In both constructions all the lines that 

are not essential have been hidden to the operation of the custom tool and subsequently applied the 

transformation in the manner illustrated. The rearrangement demonstration occurs on the right 

triangle whose vertical sides are proportional to the original right triangles’ sides in a ratio of 2:1. 

The application of the transformation to the vertex “acts as a hinge allowing the learner to rotate 



 

one of the connected triangles by direct manipulation. This process can be repeated resulting in the 

formation of a combination of shapes, while the area of all these shapes remains the same” (see 

[28]). Rearranging the construction, students could be helped as new information are highlighted 

otherwise difficult to understand (see [32] quoted in [28]). Prior to constructing the tool, the 

researcher also measured the areas and lengths of the sides of the initial construction. Although the 

final result of the two methods for constructing the initial right triangle including the rearrangement 

appear identical, they lead to ways of constructing a custom tool whose application provides 

different results in both computational and constructional (scheme) terms.  

For example applying the tools three times in succession produces the results in figures 4.2, 4.4. 

This means that as we can see in the illustration, the areas of the shapes steadily decrease (figure 

4.2) or increase (figure 4.4). Concretely, applying the tool using the appropriate method for 

constructing it, we take different constructional, representational results:    

1. In method A, the longer vertical side of the initial triangle becomes the hypotenuse of the 

next right triangle in the sequence. Meaning the sequence of the measurements and 

calculations that emerges is descending.   

2. In method B, the hypotenuse of the initial triangle becomes the longer vertical side of the 

next right triangle in the sequence. Meaning the sequence of measurements and calculations 

that emerges is ascending. 

If we iterate the initial points of the construction of the tool we can take different results relating 

to the construction the measurements and the calculations. As it is well known for someone who 

uses the Sketchpad software the result of the process of iteration (see [34] and [13]) is the 

construction of the tables that repeat the process of initial measurements and calculations in 

dynamic connection with the shape, thus increasing (or decreasing) the level of the process of 

iteration while the software adds (or removes) the next level of measurements (or even 

calculations), whereas in the first column of the table, the sequence of the natural numbers is 

presented (see [22]).  

In that way through this operation, the environment of the software promotes the exploration of 

the sequences. The iteration process by functioning thus has integrated or embodied the meaning of 

sequence while there is a direct connection between the user’s perception and the abstract 

mathematical meaning. As a result of the construction and application of the custom tool as much as 

the process of iteration the direct perception of the user is attained in regard to the steps in the 

development of the construction pertaining to (see [22]):  

• the repetitions in the measurements or calculations of the areas of initial shapes  

• the developmental way of the construction of the shape and  

• its orientation towards the sequential steps of the construction  on the screen’s  diagram  

or in successive pages of the same file.  

The process of animation can produce the changes in the tabulated measurements (calculations) 

that allow the user to examine the dynamic process. Fig. 4.5 illustrates the construction of the tables 

that repeat the process of initial measurements and calculations of the ascending sequence in 

dynamic connection with the shape. In the software, via the process of iteration we have the 

potential of the constructions thus becoming more complex being in theory rendered inductively to 

infinity. This function of the software also constitutes a certain crucial and essential particularity, 

while the construction with a compass and a straightedge as static tools of geometry has a beginning 

and an end.   

The students in the experimental group came to understand this process, as discussed in the next 

section. 

 



 

5. Research methodology 

The qualitative study (see [23] ) was conducted in a class at a public high school in Athens, Greece 

and involved twenty eight volunteers, students aged 15-16, randomly divided between the 

‘experimental’ and the ‘control’ teams, with 14 students in each. The researcher ensured that both 

teams consisted of equal number of boys and girls, equal distributed to their achievement in 

mathematics. The students were friends, which fostered group discussion. The methodology of the 

class experiment discussed in this paper includes the exploration of the methods A, B as open 

problems. For example the first problem is the following: Construct sequential right triangles with 

vertical sides in a ratio of 2:1, so that the longest vertical side takes the place of the hypotenuse in 

every new repetition (figure 4.2). Calculate the hypotenuse in every new repetition.  

And the second problem is the following: Construct sequential right triangles with vertical sides in 

a ratio of 2:1, so that the hypotenuse takes the place of the longest vertical side in every new 

repetition (figure 4.4). Calculate the hypotenuse in every new repetition. 

Students of the experimental team had only worked on the Sketchpad v4 figures reported in the 

previous section using the pre-constructed custom tools, and later applying the iteration process. 

The researcher did not consider it necessary “to separate the ‘teaching of mathematics’ from the 

‘teaching of the tool’, preferring to integrate the appropriation of the functioning of a tool with the 

learning of the mathematics” (see [20]).  The experimental team discussion was designed to record 

how students would react while interacting with the tools. The researcher’s aim was in this way to 

adapt the experiment to real classroom conditions. It provides an example of the interplay between 

the students and the researcher and reflects Kaput’s (see [16]) writing on the importance of 

technology in mathematics education, concerning the feasibility of innovative practices emanating 

from technological advents, which were otherwise impracticable. The researcher had hooked a 

projector to her computer, and the pupils could participate individually or as a group during the 

session by interacting with the activity. This raised two research questions: 1) How do iteration 

process and custom tools affect on students development of meanings? 2) Do the students actually 

use iteration process and custom tools as objects, or continue to use them as procedures and what 

would be evidence of the student treating something as an object and a procedure?    

The experimental sessions were videotaped. The analysis of the results that follows is based on 

observations in class and of the video. Later sections present the sessions of the solution process the 

students undertook. 

 

5.1 The solution process with the students of the control team  

The group was initially tested to see whether they could produce a shape with the properties we 

want. Facing the problem 1 or 2 the students were unable to go on. The repetition of the procedure 

with the assistance of geometrical tools like compass and ruler (or straightedge) is difficult since 

students have to calculate a segment y with side 2a as its hypotenuse, and then a segment z with 

side 2y as its hypotenuse and so on.  Their difficulty was partly down to technical reasons, but also 

due to the students being unable to dynamically transform the shape in their minds. If nothing else, 

it is more time-consuming and impedes students from developing their imaginations. 

 

5.2 A discussion with the students of the experimental team  

The group was initially tested to produce a shape with the properties we want. For instance, in 

method A, the students processed problem 1. Constructing the tool using method A produces a 

descending sequence of measurements and calculations (relating to lengths of sides or to areas), 



 

while the use and application of method B results in an ascending sequence. In both cases, the ratio 

of the areas is stable and equal to 1.25 (figure 5.2.1). The students began by experimenting with the 

‘rearrange the figure’ action button. They realized, though did not see the hidden circle on which 

the point of triangle’s vertex is moved, that “there is a circle through which the vertex of the 

triangle moves while turning through 180 degrees”.  

The use of the custom tool aroused the students’ interest as they played with it. The students had 

not learned or even heard about the concept of the sequence or the limit. Initially, the students 

verified the relationships between the areas of the sequential triangles or trapeziums by applying the 

tool several times over. Then, knowing what would ensue, the researcher suggested applying the 

tool to the sequential vertical sides of the shape (figure 5.2.1).  

The application of method A, for instance, is dealt with below. Applying it to the long vertical 

sides resulted in figure 5.2.1. The students wanted to experiment with the custom tool because they 

didn’t believe it worked on a small shape. Student Μ2 points at a small, deeply-positioned triangle.  

 

   
Figure 5.2.1  Figure 5.2.2 Figure 5.2.3 

 

341. M2: here on the smaller triangle, can I apply it here?  And notes, surprised like the others, that 

the construction is repeated even if the triangle is very small. The students noted that the values of 

the areas of the emerging descending (or ascending) sequence depended on the construction of the 

initial custom tool. When they applied the iteration process, the results were stupendous (figure 

5.2.2, 5.2.3): the students could press the presentation buttons, rearranging the triangles and they 

stated:  

345. Students: the figure becomes a spiral. It resembles the nautilus scheme … anyone can believe 

that the shape does not finish. (Figure 5.2.2)  

The tables that resulted from the application of the iteration process led them to note that the 

ratios of the areas remained stable as the sides changed in line with a pattern.  

347. Students: all the numbers (in the same column in the table) are related in the same way, which 

is why they have the same proportions in the table.  

348. Μ2: But we cannot be sure what is happening in its depths and she pointed into the spiral that 

had formed. Student M2 speaks pointing to the spiral.  

349. Researcher: what do the areas do when the values of the sequence increase?  

350. Μ4: they get smaller… they go down to zero.  

351. Μ1: then we wouldn’t have any geometric shapes at all.  

352. Μ2: the values tend towards zero.  

The researcher asked them to use the dilate tool to increase the size of the shape.  

355. Students: Our initial triangle (be mentally) becomes as large as the room; it can become 

infinite. (Figure 5.2.3) 

356. Students: Once again, the ratio remains constant.  



 

The students experimented with the table of measurements, plotting the points in a graph. Fig. 5.2.2, 

and 5.2.3 illustrate the plotting points of the descending and the ascending sequence.  

382. Students: The areas become so small they tend to 0 (Figure 5.2.2).  

383. Researcher: what is the domain of the sequence?  

384. Μ2: isn’t Ν the Natural numbers? 

385. M1: as N (natural numbers) increases, E (the area) grows ever smaller (Figure 5.2.2) and as N 

increases, E grows ever larger (figure 5.2.3).  

386. Μ8: yes, but there might be a second domain (pointing to the values of Ν) from which point 

forward the sequence tends to zero.  

The students consequently had an environment of multiple representations in which the shape of the 

fractal had been linked with the table of the measurements via the functional process of iteration, 

which continuously could be linked with the graphic representation of the sequence.  

388. Researcher: What do you think will happen to the area if we increase the number of iterations? 

389. Μ6: because we are dealing with the area of triangles rather than the area of a point, it is 

impossible for the area to reach zero; we can’t depict something of zero value.  

 

  
Figure 5.1.4 Figure 5.1.5 

 The students see a point on the screen, but their intuition tells them the point is a triangle with an 

area other than zero. This means they have intuitively formed the concept of the infinitesimal 

quantity of the area of the triangle. This is another point at which we can discern the degree to 

which the student’s awareness has been heightened through their experimentation using the 

software. The connection of the concept image with the concept definition of the meaning (see [40]) 

was developed through the environment of the software. The custom tool process derived from 

method B helped the students understand that the values of the sequence increase steadily. The 

graphic representation of the sequence of areas displayed / showed the isolated points as they 

appear on screen (Figure 5.2.3). 

417. Researcher: How can we work out the length of this side? I pointed the hypotenuse out to them.  

418. M3:  If we assume that the vertical side one is a, then the next vertical side is 2a, since it is 

double its length. By applying Pythagoras’ theorem we can work out the length of the next side. 

Their initial observations were confirmed using the proofs of the formulae which could be 

hidden/shown in the software, which motivated the student to move on to the next step while 

gradually leading them empirically and by means of formalistic processes to the construction of the 

meaning of the sequence and of geometrical progress. They reached conclusions relating to the way 

in which the tool is used, and hence about meaning including limit, a sequence of values and 



 

geometric progression. Having worked out the formulae and hidden them using the hide/show 

buttons, I made sure the students clicked to reveal the proof that confirms their efforts. 

 When they had noted that the relationship between the sides and areas of the sequential shapes was 

constant, I asked them:  

426. Researcher: How did this result (1.25) come about? (Figure 5.1.4) 

427. Students: It is the same ratio we saw earlier in the tables. The calculations of the areas 

produce the same result. The results confirm the correctness of the tables.  

428. M8: Every number is the previous number multiplied by 1.25.  

429. Researcher: How does the number 1.25 result?  

430. M7:  It’s a constant value which results from every division of the two continuous areas of the 

triangles (or the trapeziums) …..each triangle area, results  from the previous area when divided 

by 1.25. 

Through an in-depth analysis of the students’ discussions, an explanatory framework identified 

the key elements in the development of their intuition, their meanings construction and the proving 

process. It is discussed in the next section.  

 

5.3 Discussion and analysis of the experimental team’s process  

To understand why a maths activity for students built with ICT is powerful needs from us an 

objective analysis. The analysis of student discussions includes the following objectives: the 

construction of meanings, recognition of instrumented action schemes through the emergence of 

theorems and concepts-in-action. We noted the following in student-student and student-researcher 

utterances that are marked in bold in the paper dialogues:  

[341-345]: use of tools (custom tool and iteration command) for the construction of a beautiful 

image.  

[347-383]: construction of the meanings of the sequence, of the geometric progression and the 

intuitive construction of the limit of the areas which tend to zero.  

[383-386]: students using multiple representations in order to bridge procedure and object  

[388-389]: intuiting the meaning of infinitesimal quantity.  

[417-418]: the emergence of a theorem-in-action  

[426-430]: the custom tool and the iteration process as forms of chunking and the emergence of a 

concept-in-action 

During the session, the students formed a usage scheme for using the custom tool and the iteration 

process. The custom tool led students using it to discover the properties of the more complex shape 

which therefore required the subject to act on the tool (instrumentation of the tool) while the artefact 

simultaneously interacted upon them (instrumentalization of the tool). Consequently, in the first 

case, we had the accommodation of the students to the tool, and in the second we had the 

assimilation of the tool and the construction of utilization schemes that resulted the construction of 

the meanings such as sequence and limit mentioned above. The different way in which the tool was 

constructed encouraged the students to build the meaning for the concept of the ascending and 

descending sequence. They correlated the construction of the nautilus spiral with the shape on the 

screen and they were led by the tables to construct the meanings of the limit and the infinitesimal. 

Students through the instrumental genesis are able to build up instrumentation schemes that 

combine technical and conceptual aspects. The mental activities render meaningful the enacting on 

the above technical actions. As Drijvers (see [4]) writes “The instrumentation schemes integrate 

technical skills and conceptual insights”. As we “cannot look inside the heads of the students to 

observe the mental schemes” Drijvers (ibid.), “we focused on the techniques, which can be 

considered as the observable parts of the instrumentation schemes”.  For example, the process of 



 

rotating a triangle  by specifying a mark angle of 180
o
 and marking point F as the centre results in a  

congruent triangle as the original triangle but rotated through 180
o
. Any effort to modify the lengths 

of the sides of the original triangle by dragging its vertex will result in an equivalent modification of 

the dependant rotated triangle due to transformation. The rotation of the triangle in the software 

shapes an instrumented action scheme which leads the students to conceptually grasp the meaning 

of congruent triangles, having a significant impact: the student structures a utilization scheme of the 

tool, and consequently a mental image of the functional/operational process of rotation, since any 

modification/ transformation of the initial triangle (input) results in the modification/transformation 

of the final triangle (output) (see [23]). In such mental schemes technical and conceptual aspects are 

interwoven (see [4]). The instrumentation process proceeding through the tools affects and shapes 

the way the user thinks, while the student also exerts an affect on the tools and acts by formulating 

his thoughts through the instrumentalization process. The student structures a usage schema in order 

to use the custom tool while simultaneously organizing his activity through the tool’s own 

utilization schema. On the other hand through the application of the custom tool the possibility is 

given to the user to acquire an inductive way of thinking for the finite steps of the construction but 

the generalisation with regard to the constructional result can be achieved from the process of 

iteration which inductively renders the construction theoretically to infinity (see [22]). For example 

students formulate the sentence “Every number is the previous number multiplied by 1.25”. This 

sentence includes a generalization.   

 Students' utterances that are marked in bold in the paper such as “all the numbers are related in 

the same way”, “the values tend towards zero”, “The areas become so small they tend to 0”, 

contain concepts-in-action and theorems-in-action. Vergnaud (see [39]) insists that “theorems-in-

action cannot exist without concepts-in-action, as theorems cannot exist without concepts-in-action, 

and vice-versa”. What is important to note is that the student M1 thus guided to formulate the 

theorem-in- action “as N (natural numbers) increases, E (the area) grows ever smaller...” was not 

generally successful at Maths. The formulation of the student’s thoughts includes a hidden/implicit 

“if... then” expression. M1 does not express his thoughts exactly; his phrase is incomplete, but he 

seems to understand the process. He means: “if N (natural numbers) increases, then E (the area) 

grows ever smaller...”. According to Vergnaud (see [39]) “when operational invariants are 

expressed and involved in systems of concepts and symbols, their cognitive status changes, up to 

the point that schemes can sometimes become algorithms. When the relevant properties of the 

mathematical objects and operations involved in action are made explicit, it becomes possible to 

analyse their connections, and eventually to demonstrate that a certain set of rules, for a certain 

class of situations, is effective”.  

The environment also helped them discover that “it is impossible for the area to reach zero” and 

“might be a second domain (pointing to the values of Ν) from which point forward the sequence 

tends to zero”. This marks the start of a transition to a level of rigour which emerged with the 

building of the concepts in the dynamic geometry environment.  

 

6. Conclusions  
“Advanced mathematical thinking today involves using cognitive structures produced by a wide 

range of mathematical activities to construct new ideas that build on and extend an ever-growing 

system of established theorems. The cognitive growth from elementary to advanced mathematical 

thinking in the individual may therefore be hypothesised to start from “perception of” and “action 

on” objects in the external world, building through two parallel developments—one visuospatial to 

verbal-deductive, the other successive process-to-concept encapsulations using manipulable 

symbols—leading to a use of all of this to inspire creative thinking based on formally defined 



 

objects and systematic proof” (see [35]). Sfard (see [31]) speaks of reification of process as object 

and claims that an interaction between a process and an object is indispensable for a deep 

understanding of mathematics whatever the definition of “understanding” may be. For this the 

understanding of mathematical meanings is connected with the potential to conceive them 

simultaneously as objects and as processes. In the present method through the complex construction 

of instrumental genesis (see [38]) students have been assisted intuitively develop their 

understanding of infinity and they are led to approximate the meaning of limit, but simultaneously 

as resulting from the function of the process of iteration and through the tables that contain vivid 

digital measurements and calculations, appreciate the numerical value of the limit as the result of an 

infinite approximating process. Consequently: The proposed approach leads the students to consider 

the limit as an object but they (do not) loose the sense of the process that lies beneath the object 

itself (see [19]). It appears that the custom tools and the software iteration process lead to the 

bridging of procedures and object during the construction of the meaning of the limit (see [22]). 

Descriptively  the students are urged  to  develop a theoretical way of thinking and despite the fact  

that the observations were limited to numerical relations the students answered to qualitative 

questions concerning the dynamic behaviours of mathematical  objects, since  the process as it is 

being  built progressively guides  them to examine more parameters. With respect to the affordances 

offered by the dynamic geometry environment, was developed the proving process. This uses the 

proof process to verify the on-screen ‘visual theorem’ which was argued visually. The students 

constructed their arguments by forming the visual representations as well as the symbolic 

representations derived from the formulae. They concluded the properties from the geometric shape 

and ended up with formulations of algebraic rules. In a DGS environment, the hide/show action 

buttons act as a tool which supports focusing on the proving process. In direct connection with the 

shape, hiding and showing the formulae for parts of the proof leads to a different form of proof: a 

combination of traditional and digital means which could be called a ‘digital proof’.  

The custom tool with which the interaction takes place during the mathematical activity is directly 

linked to the construction of the artefact-spiral. The students accommodate the tool to their needs. 

This means that a student organizes his/her actions by mental schemes and uses the custom tool to 

discover the properties of the more complex shape (which is an extension of the structure), as the 

tool acts on the student in order to extend his/her mental scheme. As a consequence, the use of the 

custom tool which includes the mental scheme of its use organizes the activity of the subject and 

leads to a more complex structure by creating a new mental scheme for the new object with its 

properties. In our case, a new mental scheme is for example the ascending/descending sequence or 

the meaning of limit for the triangles’ areas. Meaning that, apart from guiding the student to more 

complex constructs, the appropriately constructed custom tool also renders the mental and dialogic 

processes more fruitful, and thus leads to higher levels of abstraction. The constructed spiral allows 

the students to grasp the sense of infinity, and is imbued with numerous mathematical properties.  

Some maths can be beautiful for the designer and awful for the user and vice versa. Maths can be 

extremely ugly at crucial moments, but nevertheless we can say because of that, “beautiful” when 

the property has been discovered. The spiral combines beauty and maths but as Hardy (see [10] 

quoted in [30]) argues “Beauty is the first test: there is no permanent place in this world for ugly 

mathematics.” 
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