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Abstract:The present study presents the different modes of LVAR which can be constructed in Geometer’s Sketchpad 
v4 dynamic geometry software. The paper posits an explanation of the correlation between the five phases in the 
apprenticeship/learning process proposed by van Hiele and the developing theory on LVAR. A few examples of the 
different modes of LVAR are presented, including the answers of the pupils participants in the didactic experiment 
conducted. We can thus conclude that transformations through LVAR lead students to structure mental transformations 
relative to the development of their van Hiele level.  
 

1.  Introduction 

 
The paper is about secondary school students development of geometrical reasoning in an 

environment based on the interaction between the students and the different modes of linking 

representations, facilitated by Geometer’s Sketchpad v4 (see [16]) dynamic geometry software. The 

paper touches on a research area which is still debatable in the mathematics education community: 

the effect that external representations (for example software tools) and human interaction (for 

example teacher guidance or classroom discourse) can have on student’s cognitive development, 

considering both social and cognitive dimensions in the study of the problem solving process in the 

dynamic geometry context. Some questions the researcher had in mind when conducting research 

and when designing the problems in the DGS environment were the following: How is the idea of 

Euclidean proof correlated with the van Hiele model of geometrical thinking? How can we transfer 

this idea to the dynamic geometry environment, exploiting the role that dynamic representations 

play in the development of students’ geometrical reasoning? 

Concretely: During a didactic experiment conducted in Greece supported by the Geometer’s 

Sketchpad v4 dynamic geometry software, student participants followed a 4-phase research-based 

curriculum proposed by the researcher. The researcher during the last phase of her qualitative study 

(see [29]), conducted a didactic experiment with (semi) pre-designed multiple-page sketches 

detailing the sequential phases of the solution to the problem using rigorous proof, and in so doing 

transferring her classroom teaching style into the software problem-design, drawing on the chain 

questioning method of Socrates, which aim to stimulate interaction. For this reason, she linked all 

the software functions/actions using the interaction techniques supported /facilitated by the 

Geometer’s Sketchpad v4 (DGS) environment to better allow students to discover solution paths 

and to reason by rigorous proof. This mode of design and the results of the experimental use of the 

software with students led to the need to define two new concepts: the meanings of Linking Visual 

Active Representations (LVAR) and Reflective Visual Reaction (RVR). Linking Visual Active 

Representations, and Reflective Visual Reaction during a dynamic geometry problem solving 

session, are defined as follows (see [29] and [30]): 



Linking Visual Active Representations are the successive phases of the dynamic representations 

of the problem which link together the problem’s constructional, transformated representational 

steps in order to reveal an ever increasing constructive complexity; since the representations build 

on what has come before, each one is more complex, and more integrated than in previous stages, 

due to the student’s (or teacher’s, in a semi-preconstructed activity) choice of interaction techniques 

during the problem-solving process, aiming to externalize the transformational steps they have 

visualized mentally (or exist in their mind). 

Reflective Visual Reaction is that reaction which is based on a reflective mode of thought, 

derived from interaction with LVAR in the software, thus complementing and adding to the 

student’s pre-exesting knowledge or facilitating comprehension and integration of new 

mathematical meanings.  

The results of the research can be illustrated as follows (see [29]): LVAR motivated the students 

to answer rapidly and spontaneously; the researcher kept her questions coming fast, which meant 

students did not have time to use paper and pencil. The researcher’s classroom observations reveal 

that the same pupils did not always display the same spontaneous reflex reactions. The LVAR 

spread over multiple pages helped the students to react instantaneously and to articulate their 

thoughts; The LVAR helped the students to operate in a auxiliary/ complementary manner, 

assimilating /accommodating their prior knowledge, or as a confirmation of the pupil’s thought 

processes /mental approach; The students’ RVR occured at many points during the didactic 

experiment thanks to the use of interaction techniques. As a result the pupils constructed mental 

schemes for mathematical meanings and were “starting to develop longer sequences of statements 

and beginning to understand the significance of deduction” (see [8]). LVAR helped the students 

form rigorous Euclidean proofs and they reached conclusions on the problem by correlating the 

theorems they already know. This is to say that LVAR assisted students to develop their van Hiele 

level.  

  In the present study the different modes of LVAR are presented correlated with the phases 

developed by Dina van Hiele-Geldolf.  

 

2. The van Hiele model and the five phases of apprenticeship/learning process 
 

Pierre van Hiele and his wife Dina van Hiele–Geldof developed a theoretical model 

involving five discrete levels of thought development in geometry (see [10]). According to Dina 

van Hiele Hiele-Geldof (see [10]) the didactic experiments that she discussed had the objective “to 

investigate the improvement of learning performance by a change in the learning method”. She 

investigated in her study if “it was possible to use didactics as a way of presenting material, so that 

the visual thinking of a child is developed into abstract thinking in a continous process, something 

that is requisite for logical thinking in geometry”. The five levels of thinking reflect on students’ 

progress and increasing development in the way in which they are able to reason about geometrical 

objects and their relationships and focuses “on the role of instruction in teaching geometry and the 

role of instruction in helping students move from one level to the next” (see [10]). Central to this 

model, is the description of that, which are: Level 1 (Recognition), Level 2 (Analysis), Level 3 

(Informal deduction) Level 4 (Formal deduction) and Level 5 (Rigor). Another important aspect of 

the van Hiele model is the five phases it specifies in the apprenticeship/learning process, which are, 

in brief: 1) information (inquiry), 2) directed orientation, 3) explication, 4) free orientation, 5) 

integration. Instruction that takes this sequence into account promotes the acquisition of a higher 

level of thought. Concretely according to Pierre van Hiele (see[10] ):  



The first phase is one of inquiry/information: “The student learns to know the field under 

investigation by means of the material which is presented to him. This material leads him to 

discover a certain structure. One could say that the basis of human knowledge consists of this: 

mankind is characterized by the relevation of structure in any material, however disorganized it may 

be, and this structure is experienced in the same way by several people which results in a 

conversation that they can have about this subject.” 

In the second phase, that of directed orientation , “The student explores the field of investigation 

by means of the material. He already knows in what direction the study is directed; the material is 

chosen in such a way that the characteristic structures appear to him gradually”. 

In the course of the third phase, explicitation takes place. “Acquired experience is linked to 

exact linguistic symbols and the students learn to express their opinions about the structures 

observed during discussions in class. The teacher takes care that these discussions use the habitual 

terms.It is during this third phase that the system of relations is partially formed.”  

The fourth phase is that of free orientation. “The field of investigation is for the most part known, 

but the student must still be able to find his way ther rapidly.This is brought about by giving tasks 

which can be completed in different ways. All sorts of signposts are placed in the field of 

investigation: they show the path towards symbols” 

The fifth phase is that of integartion: “The student has oriented himself , but he must still acquire 

an overview of all the methods which are at his disposal. Thus he tries to condence into one whole 

the domain that his thought has explored. At this point the teacher can aid this work by furnishing 

global surveys. It is important that these surveys do not present anything new to the student; they 

must only be a summary of what the student already knows.”  

 

3. Relative research studies  
 

Battista (see [5]) found that spatial visualization and logical reasoning were important 

determinants of geometry achievement. Clements, Battista, and Sarama (see[7]) designed a research 

Logo-based curriculum Geometry  to look at how elementary students learn geometric concepts and 

characterize how Logo might facilitate students’ learning. Clements, Battista and Sarama concluded 

that “compared to the traditional curriculum, the research Logo-based curriculum had only 

moderate positive effects on the students’ ability ...”. The experimental group outperformed the 

control group in identifying better lines of symmetry for a given figure, justifying why pairs of 

figures were congruent, and better understanding of slides (translations), turns (rotations) or flips 

(reflections). Sedig, Klawe, and Westrom (see [32] quoted in [33]) conducted an empirical study 

and they found that “adding scaffolding to direct manipulation of representations of transformation 

geometry concepts significantly improved student learning”.  

Dynamic geometry systems such as the Geometer’s Sketchpad (see [16]) or Cabri II (see[21]), or 

any other DGS software are microworlds designed to facilitate the teaching and learning of 

Euclidean geometry. The Geometer’s Sketchpad, is a highly visual dynamic tool for exploring and 

discovering geometric properties. Many researchers have conducted studies, using the van Hiele 

model as descriptor for their analysis and concluded that students who used the Sketchpad displayed 

(see [29]): more positive reactions when testing conjectures and constructions (see [13]); achieved 

significantly higher scores on a test containing concepts (see, [9]). Dixon concludes that students 

who were taught about the concepts of reflection and rotation in a GSP environment significantly 

outperformed their peers who had received traditional instruction in the content measures of these 

concepts); achieved significantly higher scores between the pre- and post-tests (see, [37] and [1]). 

Hollebrands (see [15]), examined the ways in which the Geometer’s Sketchpad, mediated students’ 



understanding of geometric transformations; her study investigated the ways in which they used  

technological affordances and the ways they interpreted technological results in terms of figures and 

drawings. She declares that “students learning geometric transformations in a technological context 

may develop understandings that are influenced by their interactions with the technological tools.”   

 

4. Τhe role of LVAR to theoretical thinking  
 

Researchers around the world agree that learning is a complex process, being both 

constructivist as it depends on active individual construction, and sociological, since it becomes part 

of culture having sociocultural aspects. The arrival of computers led to a good deal of hope being 

invested in the autonomous cognitive activity a learner could develop when presented with specific 

tasks and activities (see [2]). The general framework owes much to Piaget’s approach: faced with a 

sufficiently problematic context, the learner has to negotiate gaps in or inconsistency problems with 

his/her knowledge. As the students become familiar with the technological tools, they control their 

world, and their cultures and modes of knowing thanks to their acquired competence (see [6]). 

Since tools exert an influence over the technical and social way in which they conduct an activity, 

they are considered essential to their growth and development. 

Dynamic geometry softwares are representational infrastructures (see [19]) that may be used to 
make changes both in geometry and the expression of geometric relationships, consequently in the 

teaching and learning of mathematical concepts. These systems can play an intermediary/mediatory 

role organizing students’ thought processes, so they can build an internal representation based on an 

external model (see [17]). In Geometer’s Sketchpad v4 DGS environment, LVAR are interpreted as 

“encoding the properties and relationships for a represented world consisting of mathematical 

structures or concepts” (see [33]) in line with Goldin and Janvier (see [12]): a) “a physical situation, 

or situation in the physical environment”, can be described /modelled mathematically embodying 

mathematical ideas; b) a combination of “syntactic and structural characteristics” enhanced by 

selected different interaction techniques facilitated by the DG Sketchpad v4 enviroment where the 

problem is transferred or a geometrical theory is discussed; c) a formal mathematical proof, 

“usually obeying axioms or theorems or conforming to precise definitions, --including mathematical 

constructs that may represent aspects of other mathematical constructs”; d) “an internal, individual 

cognitive configuration, inferred from behavior or introspection, describing some aspects of the 

processes of mathematical thinking and problem solving”.  

The goals in developing LVAR were to (1) provide DGS –based problems that are adaptations of 

variations and extensions of existing activities, (2) getting students to solve problems individually 

or in a classroom orchestrated process, which developed mathematical understanding and formal 

mathematical proof (3) provide experiences that are more effectively presented by selected  

interaction techniques facilitated by the DGS environment than by other didactic materials and (4) 

provide this experience in the context of the figurative or drawing design mode (see [23]), by means 

of  which pupils develop their aesthetic sense and acquire actual cognitions in geometry. 

This idea is in accordance with Parzysz (see [28]) drawings and figures. He defined a drawing as 

a representation of a geometrical object and a figure as the “text defining it [the geometrical 

object]”. Hollebrands (see [15]) writes that “building on Parzysz’s ideas, Laborde defines drawing 

as that which refers to the material entity (the physical drawing) while figure refers to the set of 

discursive representations and diagrams referring to the geometrical referent (the theoretical 

object)”. LVAR in the Dynamic Geometry environment play an ambiguous complementary role 

exactly as Laborde (see [20]) reports for the diagrams in the plane geometry: “on the one hand, they 

refer to theoretical geometrical properties, while on the other, they offer spatiographical properties 



that can give rise to a student’s perceptual activity”. In the same way, LVAR exactly link the 

material digital entities on the screen with the theoretical mental referent which can be worked on.  

Sedig and Sumner (see [33]) have distinguished between basic and task-based interactions with 

VMRs. To achieve pupil interaction using LVAR, the researcher used a diverse set of interaction 

techniques including “animating” a point on its path, ‘tracing” a segment, “hiding and showing” 

action buttons, and “linking” or “presenting” action buttons. In so doing, she successfully linked 

both the steps in constructional and transformational actions and the various sequential phases in the 

proof. According to Lagrange (see [22]) “A technique plays an epistemic role by contributing to an 

understanding of the objects that it handles, particularly during its elaboration. It also serves as an 

object for a conceptual reflection when compared with other techniques and when discussed with 

regard to consistency.” Through LVAR the teacher can guide the students by means of elucidation 

or questions eliciting conclusions which form a step-by-step visual proof. The software’s successive 

pages also play a significant role, and can be seen as a vivid section in a book revealing the various 

stages in the proof. The sequence of increasingly sophisticated construction steps could thus 

correspond to the numbering of the action buttons which allows student to interact with the tool 

when they want to, or when they are encouraged to do so by their teacher in class. 

The theoretical framework includes the notions of instrumental genesis (see [36]) and the 

distinction between phases of instrumentation and instrumentalisation (see for instance [2], [3], [4] 

and [14]), which are fundamental in teaching in computer environment. During the instrumental 

genesis both the phases (instrumentation and instrumentalization) coexist and interact. Then the 

user structures that Rabardel (see [31]) calls utilization schemes of the tool/artefact. Utilization 

schemes are the mental schemes that organize the activity though the tool/artefact. This process 

involves many studies, among them, for example the one of Artigue (see for instance [4]), based on 

the research of Verillon & Rabardel (see [31]) about the ways by which an artefact becomes an 

instrument for a student. From Trouche’s point of view, “instrumental geneses are individual 

processes, developing inside and outside classrooms, but including of course social aspects” (see 

Figure 3) (personal e-mail correspondence with Luc Trouche on April 4, 2008 quoted in [29]). 

Trouche supports that “an artefact is tranformated thus through instrumental geneses, oriented by 

finalized actions, assisted by instrumental orchestrations, into an intrument”.    

 
 

Figure 4.1: The schema of instrumental approach (personal e-mail correspondence with Pr. Luc 

Trouche on April 2, 2008) based on Trouche’s (see [34]) instrumental approach ,quoted  in [29]) 

 

Artigue (see [4]) supports that “an instrument is thus seen as a mixed entity, constituted on the 

one hand of an artefact and, on the other hand, of the schemes that make it an instrument for a 

specific person. These schemes result from personal constructions but also from the appro-priation 

of socially pre-existing schemes.” Artigue (see [3]) reports on the ‘genesis of reflection about 

instrumentation issues, and the dialectics between conceptual and technical work in mathematics’.        

Reflecting on dynamic diagrams constitutes the conscious representation of actions or mental 



processes and then considering their results or composition. The students act on dynamic 

diagramms (for instance LVAR)  to construct their knowledge or to investigate the problem solution 

and they interplay with the dynamic diagramms to express their thoughts. In that case they use 

dynamic diagramms as tools/ artefacts with which they shape their thoughts. Noss and Hoyles (see 

[24]) argue that during instrumental genesis in a computing environment ‘students’ activity is 

shaped by the tools’/in our case the dynamic LVAR, ‘while at the same time they shape’ the 

dynamic LVAR ‘to express their arguments’. During the construction/ action of a diagramm the 

student structures an internal invisible side of the representation which is a part of the process on 

the external representation /model.  

LVAR give to the users-pupils the affordance to improve/ facilitate their understanding, and to 

transit to a higher van Hiele level by acting in a auxiliary/ complementary manner, assimilating 

/accommodating students prior  knowledge, or as a confirmation of the pupil’s thought processes 

/mental approach. As Kaput (see [17], [18]) writes “a representational framework for mathematical 

cognition and learning is consistent with constructivism”. During the interaction with LVAR 

students interplay with the spatiographical features of the diagrams and their spatial characteristics 

and construct a deep understanding of their properties referring to the theoretical object from the 

“reflection shaped by the tools and the language operationalized by them” (see [25]). Meaning that 

through LVAR and the operationalization of reflective abstraction, formed or structured previously 

abstract items of mental operations can become the content in future acts of abstraction (see [38]). 

According to Hollebrands (ibid.)  “students are usually asked to work on material drawings, the 

spatial graphical features of the signifier, but they are expected to reason about figures, the 

signified. ...To reason more formally about geometrical properties, rather than just about the spatial 

characteristics of diagrams, students need to have deep understandings of those properties. Deeper 

understandings may be indicative of a student who engages in reflective abstraction and possesses 

an object conception of a concept (see [15]).” 

 

5. What are the different modes of the LVAR? What is the relation between 

LVAR and the phases of the van Hiele model?  

 
The next section presents the different LVAR modes. Screenshots of the sequential 

representations of two modeled problems in the software are presented, correlated with excerpts 

from dialogues recorded during the research process, as student participants constructed their 

solutions to the problem. Example 1, 2 are parts of the solutions of the problems 1, 2 representing 

the different LVAR modes.  

The first problem is a revision of the problem created by George Gamow (see [11]) involving 

pirates and buried treasure. Gamow’s problem hinges on a treasure map found in an old man’s attic. 

Here is the revision provided by the researcher (see [29] and [30]): “In the Odyssey, Homer (c74-77) 

mentions that the pirates also raided Greek islands. The pirate in our story has buried his treasure on 

the Greek island of Thasos and noted its location on an old parchment: “You walk directly from the 

flag (point F) to the palm tree (point P), counting your paces as you walk. Then turn a quarter of a 

circle to the right and go to the same number of paces. When you reach the end, put a stick in the 

ground (point K). Return to the flag and walk directly to the oak tree (point O), again counting your 

paces and turning a quarter of a circle to the left and going the same number of paces. Put another 

stick in the ground (point L). The treasure is buried in the middle of the distance of the two sticks 

(point T).” After some years the flag was destroyed and the treasure could not be found through the 

location of the flag. Can you find the treasure now or is it impossible?” 



The second problem is the following: “A power plant is to be built to serve the needs of the cities 

of A (Athens), B (Patras) and C (Thessaloniki).Where should the power plant be located in order to 

use the least amount of high-voltage cable that will feed electricity to the three cities?”(see[26]) 

The researcher carried out the didactic experiment having in mind the didactic approach of Dina 

Van Hiele-Geldof which: 1) “Promotes a building up of geometry by way of structure 2) First 

directs the thinking activity of the pupils to the analysis of structure prior to the formation of 

associations 3) Concurrent with that, provides an opportunity for the pupil to develop thinking 

focused on structuring” (see [10]).   

5.1 Mode A-the inquiry/information mode  

A part of the problem requires the use of an action button (animation, for example, or the trace 

command) so that the result can be seen (becomes perceptible) during the investigation. The 

original diagram is transformed / converted into a "diagram in motion" reinforcing the original 

image since the stimulus received from the visual representation leaves the properties of the figure 

unaltered despite the transformation it undergoes. 

In this phase of the problem, the students familiarize themselves with the field under investigation 

using the isolated parts of the diagrams which lead them to discover a certain structure through their 

interaction with the diagram or during discussions. “Reflection upon the manipulation of material 

objects, by taking the relations between those shapes as an object of study, can lead to geometry” 

(Dina van Hiele in [10]) 

First problem’s example:  When the students interact with the linking visual representations they 

can visualize the sequential steps of all the visual representations that appear during the animation 

of point F as the segment KL is being traced. Besides the students verify visually that the distances 

KT,TL remain equal as  proint F is moved on its path PO and  that T remains the midpoint of  KL 

for every point F. Namely the depicted representations display spatial-graphical shapes and their 

relations. 

 

 
 

Figure 5.1.1: first problem’s example- Sequential 

phases of the figure while point F is animated and 

KL is traced 

Figure 5.1.2: second problem’s example-

Sequential phases of experimentations with 

the lengths of the segments and the angles 

 

This process results in a connection between the ‘spatio-graphical’ and the ‘theoretical field’ as 

Laborde (see [20]) describes. The pupils react to this visual stimulus and respond instantaneously. 

Their responce is a result of the reaction which occurs to  the visual stimulus. This is to say that the 

pupil mentally transforms the meaning of congruence / equality of the segments perceived visually 

in the diagram to the meaning of symmetry. That means that the pupil constructs an instrument out 

of his/her interaction with the tool which also includes an instrumented action scheme relating to 

the meaning of symmetry. The depicted representations lead the students to globally recognize a 

more sophisticated representation which reflects the shape of a square. At the same time this 

process results in the pupil visually connecting the meaning of the square with the equality of its 

sides and moreover the equality of its diagonals –i.e a relationship between the two meanings. 

Students working on figure 5.1.1 (see [29]) discuss: 



218. Researcher : Which is the position of  point T as we drag point F?                            (RVR) 
219. M4: it is the symmetry centre of the shape                                                                                                    
220.R: Can you conjecture what kind of quadrilateral is shaped?                                                                                                          
221. All the pupils: it seems a square                                                                                 (RVR) 

Second problem’s example: The students investigate the modifications of the calculations/sum of 

the segments to identify the different positions of point K. Changing the position of point K by 

dragging it is dynamically linked to the changes/ modifications in the resultant angles in the table 

and the upcoming change/ modification in the sum of the segments. This process afford /encourages 

students to observe that the minimal sum is observed when the angles are at 120
o
.(Figure 5.1.2) 

The students are usually led to draw rough conclusions regarding the position of the point under 

investigation; for instance, that it is the circumcenter of the triangle. The construction of the 

circumcenter and the measurements cognitive conflicts in the students. The addition of a new line in 

the table for new measurements every time point K is dragged can lead students to posit conclusions 

which converge on the angles between the segments being equal to 120 degrees. During this process 

we have a reversible (bi-directional) transformation of a) the geometrical into an algebraic model, 

and of b) the algebraic conclusions drawn from comparisons between on-screen dragging into the 

geometrical representation.  

‘Students are able to perceive structure in almost any material however unordered it may be and that 

this structure can be perceived in the same way by different students. This allows them to discover 

the intrinsic ordering in the material that is presented to them. For example the knowledge of shapes 

is developed through manipulation of material objects.”(Dina van Hiele, see [10])  

5.2. Mode B- the directed orientation mode 

The sequential constructional phases of the problem are displayed as a global shape which is 

gradually added to when action buttons are pressed. The steps in the construction of the 

diagrammatic reconstruction which are displayed by pressing the action buttons are linked to 

suitable questions and their answers.  

According to Olivero (see [27]) “The possibility of hiding and showing elements ...is a powerful 

tool of dynamic geometry software, because according to what is left visible the focus can shift to 

different elements. Hiding or showing elements of a configuration at stake changes the nature of the 

figure to explore because what is visible changes and therefore the potential elements of the 

focusing process change too. What students see on the screen influences the construction of 

conjectures and proofs and choosing what they want to see on the screen influences the proving 

process”.  

In concrete terms, the sequential constructional steps of the solution to the problem emerge step-

by step. The process has the following advantages: the student can recall/redisplay the correct 

answer in his question or the teacher’s question which appears when he clicks on the appropriate 

button; the process can be repeated as many times as the student wants, which saves time in a 

proving process (or there is not time consuming during the proving process).  

The students discover an important part of the solution to the problem on the same page of the 

software by means of the gradual display of increasingly complex questions which are connected to 

the revealing/concealing of parts of the configuration of the problem and which cognitively connect 

parts of the solution. Concretely, during this process the students are led to cognitively connect 

additional, complementary, transformational reconstructions of the problem configuration and 

actions aimed at externalizing the student’s thoughts by means of suitable chain questions which 

guide them towards the solution to the problem.  

 



 
Figure 5.2.1: first problem’s example -the sequential phases of the LVAR  

 

First problem’s example: The students progressively observe the rotations by 90 degreees of the 

similarly colored triangles and the construction of segment QS (Figure 5.2.1). The students are led 

to shape an instrumented action scheme relating to the rotation of the segments PF and FO. The 

dialogue that follows is indicative of the construction of a section of the proof by the pupil (see 

[29])  

 
214.M2 : PQSO  is a trapezium because PQ  and  SO are perpendiculars to PO as we concluded 
from the  rotation for  90o. …we must prove that T is the midpoint of any segment that can be. Will 
we join K and S? …. …If we prove that  KL, QS are the diagonals of a parallelogram then the 
diagonals are dichotomized…. . … (Figure 5.2.1)  

216. M1: if we prove that these are parallel lines then the quadrilateral is a parallelogram because 
these are equal, so the diagonals will be intersected, so the diagonals will be dichotomized  
 

 
Figure 5.2.2: second problem’s example -the sequential phases of the LVAR 

 

Second problem’s example: The action buttons provide the student with a sequence of progressive 

instructions: “Connect points A, B, C”; “Construct the interior of the triangle KBC”; “rotate the 

triangle KBG”, or “How has the sum been transformed?”.  

By pressing the button, the student can see the following executing simultaneously: A 

constructional process on the diagram on the screen, and a calculational process in which the sum of 

the segments is transformated. Use and manipulation of the action buttons makes it possible to link 

the following forms of representations--figurative/iconic, symbolic and verbal —which appear 

almost simultaneously on screen. The questions on the buttons point out that the process does not 

substitute the teacher but facilitates him, since the teacher initially prompts the pupils to explore 

/experiment and intervenes with a question essential for the comprehension of the transformation. 

For example in the question “how can we display the sum of the segments on a line as collinear 

points?” the students could be guided by pressing the first button which will display the rotation of 



the triangle by 60
ο
. (Figure 5.2.2). “The empirical experiences are broadened though manipulations. 

These manipulations have been sufficiently mastered by the pupils and they are accompanied by a 

more concious perception in a geometric sence.”(Dina van Hiele , in [10] )   

During this process: a) a geometrical object is transformed into a new geometrical object 

emanating from the rotation. This process leads to the transformation of the sum of the three 

segments AK, KK΄ and K΄B΄ on a crooked line, and followed by b) a mental transformation. That is 

to say the process begins in the spatiographical and leads to the theoretical field. As Olivero writes :  

“A condition that can help the focusing process is the possibility of having a field of experience 
which allows students to manipulate, interact, and change the objects they deal with: such an 

empirical experience is likely to evoke theoretical elements.” (see [27]).  In this particular phase, the 

students grow familiar with the basic links in the nexus/network of relations that take shape. In 

other words, with the structure of the subject that concerns the configurations and the required 

vocabulary or the properties and the relations. Throughout his/her teaching, the teacher organizes 

the activities for the special cases or actions that are expected from the students. The teacher can 

also simultaneously prepare the transformation in the iconic and symbolic representation, 

highlighting the different steps / strands in the solution in different colors so the reaction evoked 

from the stimulus on the screen is direct. 

5.3 Mode C – the explicitation mode  

Transformations in increasingly complex linked dynamic representations of the same phase of the 

problem modify the on-screen configurations simultaneously when, for example, a point is moved 

or has its orientation changed using the dragging or other tool. According to Dina van Hiele (see, 

[10]) “The material has to be representative in the sence that it allows the context to become clear. 

A figure undergoes a metamorfosis as a result of the manipulations followed by a 

phenomenological analysis and an expliciting of its properties: it becomes what we call a geometric 

symbol” (Dina van Hiele in Fuys et al. in [10])  

First and second problem’s examples: The successive phases of the constructional steps have 

been achieved using transformational processes like the use of the translation command (Figure 

5.3.1, 5.3.2). The students can observe the processes that previously emerged progressively being 

modified simultaneously by dragging a point of the original configuration or of the translated 

images.  

The process leads the student to construct an infinite class of transformational processes of the same 

geometrical object on screen, and consequently to a generalization of the conclusions they have 

been led in previous phases  of  the solution. 

  
 

Figure 5.3.1: the transformed  phases of the LVAR (problem 1) 

  
Figure 5.3.2 : the transformed  phases of the LVAR (problem 2) 



According to Dina van Hiele “The results of the manipulation of material objects are now expressed 

in words. The figures aquire geometric properties- so the goal of explicitation is to establish 

properties of figures. As a result the shape becomes less important and the figure become a 

conglomerate of properties” (see [10] )   

5.4 Mode D –the free orientation mode  

Every phase in the solution can be displayed side by side on the same page of the software by 

pressing the action button which presents the global configuration rather than complementary parts 

of the configuration.  

The student can focus his observation in what extra information is presented in the next emerging 

iconic form of the representation. The emerging additional representations can be dragged 

independently; for example dragging the vertices of the triangle in configuration 3, leaves 

configurations 1, 2, 4, 5 and 6 unmodified. (figures 5.4.1, 5.4.2). “Showing construction lines, 

together with dragging the figure, will help the students to keep in mind the properties of the 

construction. Hiding some elements may be useful when wanting to focus on some particular 

configuration” (see [27]). The students are led to a proof that confirms their initial reasoning, 

conjectures and exploratory processes. We could call this the intermediary phase between the 

guided phase and free orientation.  

Meaning that the students appropriate the processes and connect them conceptually. They are thus 

led to discover actions in the software in order to be led to the subsequent free orientation phase.  

The explanation phase is the phase in which procedural is transformed into conceptual 

knowledge—meaning into proof; the phase in which process is transformed into meaning 

First problem’s example: For example, the first thing to appear in the shape, are the outlines of the 

figure that results from rotating segments PF, FO by 90 degrees. Next, the equal triangles are 

highlighted in the same color and then the equal segments or equal angles. The action button under 

each configuration helps the students gain an overall grasp of the modifications to the shapes in the 

new configuration. (see [29])  

For instance, the student is led to produce the following discussion, after all six images have been 

revealed to her (figure 5.4.1) : 232. M7: the segments MΚ and PF΄ are equal, because the triangles  
MKP και FF’Ρ  are congruent as they are right triangles,(mental scheme) they have ΚP = PF , and 
angle < MKP is equal to  <FPF΄ angle – because <ΚPF΄ angle is external to the triangle MKP so 
it is constituted from an angle of  90ο and the angle <FPF΄ so it is equal with the opposite angles 
<(MKP+ 90ο) (Figure 5.4.1) 

  
Figure 5.4.1: first problem’s example  Figure 5.4.2:second problem’s example  

 

Second problem’s example:   

On the screenshot we can see the emerging representations in the global diagram in which the  

student can recall key steps in the solution of the problem (Figure 5.4.2). It is essential that the 



student can display every steps in the solution gathered together on the same screen, allowing them 

to see the progressive changes globally. A difficult problem is thus simplified through the use of 

pictures. The free orientation phase contains the translation of the proving process into condensed 

actions in the software. 

 ‘The field of investigation is for the most part known, but the student must still be able to find his 

way ther rapidly.’(Dina van Hiele in [10]).The students can use their creativity to pose open goals 

with multiple steps and alternative solutions, thereby extending their knowledge to what they have 

seen before. One could call this the second phase of directed orientation in which the students learn 

to find their way through the network of relations assisted by their extant knowledge. For example, 

the proving process leads to a solution that uses Fermat’s problem, which requires the construction 

of the circumscribed circles of the equilateral triangles with a view to finding their intersection, 

which is the solution to the modelled problem. (Figure 5.5.2) 

This means continuous transformations between the theoretical and spatiographical fields.  

5.5 Mode E –the integration mode   

Successive configurations on different pages that are connected conceptually/ cognitively and not 

necessarily constructionally, compose the solution to the problem (see [26]) in global terms as a 

series of steps. This process is linked to the strategies for solving the problem or foreseeing the 

different strands in the solution relating to individual thought processes or different goals. This 

process can help the students progress through the successive steps in the solution to completion. 

The students have the possibility via this process to progress understanding the successive steps of 

the solution to be led to the integration. During this phase the student “must still acquire an 

overview of all the methods which are at his disposal. Thus he tries to condence into one whole the 

domain that his thought has explored. At this point the teacher can aid this work by furnishing 

global surveys.It is important that these surveys do not present anything new to the student; they 

must only be a summary of what the student already knows. ” Dina van Hiele (see [10] ) 

Meaning that the information with which they became familiar in the new network of evoked 

geometrical objects and their interrelationships is reviewed and summarized.  

Second problem’s example (Figures 5.5.1, 5.5.2, 5.5.3): The students are guided to (their)/an 

interpretation of the process in the modelled problem. At this stage, if the students are to guided 

correctly, they must have examined every previous step successfully. For example, students can 

apply the custom-tool “construction of the circumscribed circle” to the sides of the equilateral 

triangles, so that it is in the right place for point K, which is the solution and the interpretation of the 

solution to the real problem. 

   
Figure 5.5.1 Figure 5.5.2 Figure 5.5.3 

   

This process is a combination of advanced actions in the software and the proving process or strict 

justification; meaning that a software process has been transformed into a theoretical process by 



condensing the steps and using the custom tools facilitated by the Sketchpad software to prove that 

the point whose location they have to find is the point at which the circumscribed circles intersect. 

 

6.  Conclusion  
 

According to Laborde (see [20]) it seems that “Dynamic Geometry environments break down the 

traditional separation between action (as manipulation associated to observation and description) 

and deduction (as intellectual activity detached from specific objects) and reinforce the moves 

between the spatial and the theoretical domains.” When the instrumental genesis occurs, 

transformations of linking representations globally or on the objects in the LVAR (i.e artefacts or 

tools in the software) reflect on the assimilation or the accommodation of the situation by the 

subject. The student’s development of geometrical thought takes place through the interaction with 

the LVAR in relation to the progressive adaptation of the schemes of use.  

 

Figure 6.1 

Therefore, it appears that the use of LVAR in Sketchpad dynamic geometry environment proving 

process can organize the problem solving situation using as tools the interaction techniques 

facilitated by the software, and the structuring and restructuring of the user’s  instrumental schemes 

it evokes as the activity unfolds. As the LVAR’S composition changes, there is a transformation of 

the user’s verbal formulations due to rules subjacent to the user’s organized actions. Consequently, 

the scheme of use associated with the constructed instrument changes, leading the students to pass 

from an empirical strategy to a theoretical geometrical one or to pupils mental transformations 

(Figure 6.1). 

Mathematical properties can be described in terms of transformations which may be represented 

through several types of manipulative activities. In the case of modeling a problem in the DGS 

environment, this process can be achieved through interaction techniques in the software during the 

problem-solving process. Initially the students perform actions upon semi-predesigned LVAR. But 

eventually when the LVAR as objects become distinct images, students are able to perform mental 

transformations upon these images, in a cognitive operation which builds upon actions but goes 

beyond them. During the interaction with LVAR two different developments occur simultaneously. 

One is visuo-spatial, using processes on the screen to do things (i.e rotation) that are completed, 

between a preimage (the original figure before transformation) and an image (the corresponding 

figure after the transformation), and the other is conceptual: using concepts (i.e  properties of the 

figures, interrelationships between figures, theorems etc.) thoughts becomes verbalized. In other 

words the interaction with LVAR becomes a versatile approach between visual and mental objects 

(see [34]). The process of proof is developed using verbal formulations and geometrical 



relationships which become conceptualized in the proving process. Students use verbal formulations 

to exchange their ideas meaning that they transform their mental objects into a language mapping, 

corresponding to motion transformations on the software pages. Semperasmatically: actions on 
LVAR (or interaction with LVAR) leading to proof, also leads to the development of geometrical 

thinking. Pupils can develop their level of thinking by proceeding through increasingly complex , 

sophisticated and integrated figures and visualizations to a more complex linked representation of 

problem, and thereby moving instantaneously between the successive Linking Visual Active 

Representations only by means of mental consideration, without returning to previous 

representations to reorganize his/her thoughts  (see [29]). 
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