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Abstract: Let Z/APB be an angle in the three dimensional Euclidean space. When we look at this angle from various
view points, the angle ZAPB changes its appearance, which we call “visual angle”. Mori and Maeda [5] studied the
relations among three visual angles of three dimensional orthogonal axes. They found out several geometric properties
of these visual angles. In this paper, we will make a similar discussion in Minkowski space. In general, visual angle is
realized on an equidistance surface (view screen) from the view point. For example, in the Euclidean space the view
screen is a sphere centered at the observer. On the other hand, the view screen in Minkowski space is a (Euclidean)
hyperboloid of two sheets centered at the observer. We will make clear the difference of visual angles of three
dimensional orthogonal axes between Euclidean and Minkowski spaces.

1. Introduction

We see various angles in our daily life. An angle has only one size in degrees (or radians)
measured by protractor, however, how many degrees is it measured from your view point? We call
this angle ’’visual angle’’. Mori and Maeda found out relations among three visual angles of three
dimensional orthogonal axes in Euclidean space. Then, what relations are there among three visual
angles of three dimensional orthogonal axes in other spaces? In this paper, we investigate three
visual angles of three dimensional orthogonal axes in Minkowski space. Figure 1.1 shows the
typical cases of visual angles of orthogonal axes in Euclidean and Minkowski spaces. Everyone in
Euclidean space E? can intuitively find out that orthogonal axes do not look like the right picture of
Figure 1.1 but the left one. Conversely, in Minkowski space M? orthogonal axes do not look like
the left one but the right one. The aim of this paper is to make clear the difference of visual angle
between E* and M®. In Section 2, we will give the definition of visual angle and how to measure it
in E® and M In Section 3, let us review the relations among three visual angles of three
dimensional orthogonal axes in E3(see, [5] and [6]). In Section 4, we will find out a very important
theorem which shows the relations among three visual angles of three dimensional orthogonal axes
in M3, Figures in this paper are drawn by dynamic geometry software Cabri Il and Cabri 3D. They
are very useful tools for providing ideas and giving hints for proofs.

2. Definition of Visual Angle
In this section, let us define visual angle, and introduce how to measure the size of the visual
angle.
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Figure 1.1 Visual angles of three dimensional orthogonal axes in E* and M°.

Definition 2.1(Visual Angle) Let ZAPB be an angle in the three dimensional E® or M. For a
viewpoint O, let us denote by

Z0APB
the dihedral angle of the two faces OPA and OPB of the (possibly degenerate) tetrahedron OPAB
(see, Figure 2.1) (see, [5]). This angle Z0APB is called the visual angle of ZAPB from the
viewpoint O. Its size (measure) is called the visual size of ZAPB from O, and denoted by the
same notation Z0APB as the visual angle without any confusion.

Figure 2.1 Definition of visual angle.

Proposition 2.2(Visual Size in E® For an angle ZAPB in E° let P', A" and B' be the central
projected points of P, A, and B on the unit sphere S? centered at the view point O. Then the
visual size Z0APB is equal to the angle ZP' of the spherical triangle AP'A'B'(see, Figure 2.2).

Proof. Let & (resp. b ) be a vector tangent to the arc P'A' (resp. P'B') at P'. The angle between
the vectors @ and b is equal to the spherical angle ZP' by the definition of spherical triangle. Note
that both vectors a and b are perpendicular to the line OP which is the intersection of the planes
OPA and OPB. Therefore, the visual size of ZAPB is equal to the angle ZP' of the spherical
triangle AP'A'B'. [ |

Here, let us briefly review three dimensional Minkowski space M? (see, [2] p.177). This space is three
dimensional space with the metric

ds? = dx* + dy® —dz?,



Figure 2.2 Central projection of ZAPB on S

in other words, the inner product <4,b > of two vectors a=(a,,a,,a,) and b=(b,,b,,b,)is defined
by
<d,b>=ab, +a,b, —a,h,,
which is called Minkowski product. Transformations, which preserve the Minkowski product is called
Lorentz transformations. The quadratic hypersurface
Q ={(x,y,2) e M® | x* +y® —2° =-1,2>0},
is well known as a model of hyperbolic geometry. The distance d (A, B) between two points A and B on
Q is satisfies (see, [4])
cosh(d(A, B)) = — < OA, OB >.
Note that Q is an equidistant surface from O = (0,0,0) which plays an important role as a view screen
in M2,
Proposition 2.3(Visual Size in M® For an angle ZAPB in M3, let P', A" and B' be the central
projected points of P, A, and B on Q of the hyperboloid of two sheets(x* +y® —z° =-1,z>0)

centered at the viewpoint O . Then the visual size Z0APB is equal to the angle ZP' of the
hyperbolic triangle AP'A'B’(see, Figure 2.3).

Figure 2.3 Projection of ZAPB on Q.



Proof. This proof is similar to Proposition 2.2. Let a (resp. b ) be a vector tangent to the geodesic
P'A' (resp. P'B') at P' on Q. The angle between the vectors a and b is equal to the hyperbolic
angle ZP' by the definition of hyperbolic triangle. Note that both vectors & and b are
perpendicular to the line OP which is the intersection of the planes OPA and OPB. Therefore, the
visual size ZAPB is equal to the angle £P' of the hyperbolic triangle AP'A'B'.

[ |

Proposition 2.3 indicates that visual angle in M® is measured as an angle in hyperbolic geometry.

3. Visual Angle of Three Dimensional Orthogonal Axes in Euclidean Space

In this section, let us review the relations among the three visual angles of three dimensional
orthogonal axes due to [5]. Set up a system of orthogonal coordinates O — XYZ on E* with the
origin at the viewpoint O = (0,0,0). Let us consider to see another three dimensional orthogonal
axes P — ABC with the origin P(# O) from the viewpoint O. For simplicity, let us assume that
both orthogonal axes O — XYZ and P — ABC are positive oriented which is determined by using
the ’’right hand rule’”. Then, with appropriate rotations centered at O, we can arrange the
orthogonal axes P — ABC parallel to O — XYZ without changing the visual sizes Z0APB, Z0BPC
and ZoCPA. Let V,;, V,. and V., be the three visual sizes of Z0APB, ZoBPC and Z0oCPA,
respectively. As in Figure 3.1, these visual sizes are realized around P' which is the central
projection of P on S? Then the projection of A—axis passes through A_ =(1,0,0) which
corresponds to the projection of the vanishing point of A—axis. In the same way, the projection of
B —axis passes through B, =(0,1,0), and that of C —axis passes through C_ =(0,0,1) . In the

following argument, we consider the visual angles as oriented, which are measured in the
counterclockwise direction looking from the outside of S

Figure 3.1 Central projection of three dimensional orthogonal axes P — ABC on SZ.

Theorem 3.1(Law of Visual Angles of Three Dimensional Orthogonal Axes in Euclidean
Space) If the point P'=(X,,Y,,Z,) is noton the axes of O — XYZ (x,,Y,,z, # £1), then three

visual sizes V5,V , and V., are given by

0 0

z X
tanV,; =— ,tanVy. = - ,tanVe, = Yo (3.1)
XO yO yOZO ZOXO




Conversely, if V5 ,Vg, nor V., are not equal to 0 and 7, then the point P’ (the direction of the
origin P of P— ABC) is determined as the following the equation
x,) [ sign(sinVye)ycotVe, -cotV
Yo | =| Sign(sinVe,)4/cotV g - COtVye |, (3.2)
Zy ) | sign(sinV g )4/COtV. - COLV,,
where sign(t) = +1 is the sign of t.

Proof. To prove this theorem, it is very useful to represent the coordinates of P' with direction
cosine, such as P'= (cos a,cos /3,¢0s y) (cos? a +cos? B +cos® y =1) where « (resp. 3,y ) is the

spherical distance of P'A_(resp. P'B_,P'C_ ), respectively.
First, we can easily check that x, -sinV,. >0 as in Figure 3.2.

Y

B

Figure 3.2 The relation between the sign of x,and that ofsinV,. .

Since y,,z, # £1, we apply the law of cosines for sides (see, [3] p.54) to the spherical triangle
AP'B,C_,

T . .
COSE = COS cosy +sin Bsin ycosVg. .

So,
CoSVge :—w, and sinVg. =&,
sin g -siny sin g -siny

where we use the fact that sinV,. has the same sign as cosa/(= X,) . Hence,

cosa X
COSS-COSy  YoZ,
The other the equations of (3.1) follow in a similar way.

Next, we will prove Equation (3.2). V5 ,Vgc, Vea # 0,7 implies tanV g -tanVy. -tanVg, # 0.

Then multiplying the first and the third equations of Equations (3.1), we get

tanVy. = -



COtV, - COtV 5 = X,”.
Since sinV,. and x, have the same sign,

X = SIgN(SiNVge )4/COtV, - COtV 5 .
In the same way, we get the rest of Equation (3.2). [ |

Equations (3.1) indicate that the tangent values of three visual sizes have the same sign for any
cases (see, Figure 1.1(left)). We will discuss this property again in the last section.

4. Visual Angles of Three Dimensional Orthogonal Axes in Minkowski Space

In this section, let us investigate the relations among the three visual angles of three dimensional
orthogonal axes in M®. Set up a system of orthogonal coordinates O — XYZ on M? with the origin at
the viewpoint O =(0,0,0) . Let us consider to see another three dimensional orthogonal axes

P — ABC with the origin P(# O) from the view point O. For simplicity, let us assume that both
orthogonal axes O — XYZ and P — ABC are positive oriented, and the vector OP is a time-like,
future pointing vector such that the central projected point P' of P ison Q. Then, with appropriate
Lorentz transformations centered at O, we can arrange the orthogonal axes P — ABC parallel to
O - XYZ without changing the visual sizes Z0APB, ZoBPC and ZoCPA. LetV,;, V,cand V.,

be the three visual sizes of Z0APB, Z0BPC and Z0CPA, respectively. We prepare two lines in
Q,

Ly ={(x.y.2) € Q | x=0},

I—Y ::{(X1 y! Z) € Q | y:O}1
which are the base lines in the following argument. As in Figure 4.1 drawn in the Poincare model, the
projection of A—axis intersects L, orthogonally, and let A, be the intersection. In the same way,

the projection of B —axis intersects L, orthogonally, and let B, be the intersection. The projection

of C —axis passes through C_=(0,0,1) which corresponds to the projection of the vanishing point

of C —axis.
In the previous section, we have already seen that direction cosine is useful to calculate visual size.
Hence, let us consider a similar thing in Q as in the following proposition.

Proposition 4.1(Parametric Representation) For an arbitrary point P'=(X,,Y,,Z,) € Q, letus
define three parameters «, S, and y such as
a =sign(x,)d(A,,P), p:=sign(y,)d(B,,P"), y=d(C_,P").
Then the coordinates of P' is written as
P'=(Xy, Yo, 2) = (Sinhx,sinh S,cosh y) .

Proof. First, let us prove X, =sinh« . The reflection of P' in L, isthe point P"'= (=X,, Y,,Z,)
and d(A,,P")=d(A,,P'). Then

cosh(d(P',P")) = —(=X," + Yo" — Z,°)

cosh(2d (A, P")) = —(=x,” = %," —1)

2sinh?(d(A,, P")) +1=2x,” +1.



Y
.
B
a A
Aung P!
A X
C-x- BEI /

Figure 4.1 Visual angles in the Poincare model with three parameters o, 8 and .

Therefore, sinh |« |4 X, |, that is, X, =sinha . The equation y, =sinh 4 is shown as a similar way.
As for z,,

cosh(d(C,,P"))=-<OC,,0P >=z, m

In this paper, we consider the visual angles as oriented which are measured in the counterclockwise
direction looking from the upper side of Q.

Theorem 4.2(Law of Visual Angles of Three Dimensional Orthogonal Axes in MinkowskKi
Space) If the point P'=(X,,Y,,Zz,) isnot C_(z, #1), then three visual sizes V5,V , and V.,
are given by
tanV,g = b tanVy. = o tanVg, =— Yo
OyO yOZO ZOXO

Conversely, if V5 ,Vgc, nor V., are not equal to 0 and 7, then the point P’ (the direction of the
origin P of P— ABC) is determined as the following the equation

X, ) [ Sign(sinVgc)y-cotVe, -cotV,,

Yo |=| SIgN(SINV,)y/— €OtV g - COtVe | (4.2)

Zy J otV -cotVe,

(4.1)

Proof. To calculatetanV,., we prepare a signed distance «',
a"=sign(x,)d(C_,B,).

Let ¢ be the angle between the positive X —axisand C_P', which is measured in the
counterclockwise direction. And let @ be the acute angle ZP' of AB,P'C_ (see, Figure 4.2).
Figure 4.2 shows that [tanV. | = tan @ for every quadrant. Appling the trigonometric function (see
[1], p.147) to the right triangle AB,P'C_,

_|tanhe|

~|sinh B’
And also, from the right triangles AB,P'C_ and AA,P'C_,




Figure 4.2 Two parameters & and ¢ in the Poincare model.

tanha' . (7: j sinh o
0S¢ = ,Sinf ——¢@ | == :
tanh » 2 sinh y
Therefore, combining the equations above,

tanha'= sinha .
cosh y

Hence,

_| sinh o |_| X0|
|tanVBC|_|sinhﬂ-COSh7|_‘yOZO‘.

Since tanVg. - X, - Y, <0 as in Figure 4.2, we get

X
tanVy, = —— (4.3)
OZO
In a similar argument, we get
Yo
tanV., = — . 4.4
4= x (4.4)

To calculate tanV g, note that V,; +V,. +V., = 27,47 for every quadrant. Using the fact that
a+b+c=nx(neZ),ifandonly if tana+tanb+tanc =tanatanbtanc,
Vg +tanVe, (%" +Y5")/(XYoZo) _ 2
1—tanV,. tanV,, 1-1/z,° XY,
Next, we will prove Equation (4.2). From Figure 4.3 one can see that sinh« -sinVg. >0.
Multiplying the first and the third equations of Equations (4.1),
X, = —COtVg, - COtV g .
So, the fact that x, -sinV,. > 0 implies that

tanV,; =

Xy = SIGN(SINVge )y/— COtV, - COLV 5 .
In a similar argument, we get

Yo =SIgn(sinVe, ),/ COtV 5 - COtVge .



Figure 4.3 The relation between the sign of x,and that ofsinV .

Finally, multiplying the second and the third equations of Equations (4.1),
2% = cotV,. - CcotVe, .
Since z, > 0, we get

Zy = /COtVg, - COtV, m

5. Conclusions

In the previous sections, we have already seen the relations among visual angles of orthogonal
axes in E* and M®. The discussion in M? is parallel to that in E3, however, the crucial difference
between them is the signs of tangent value. Euclidean case, the tangent values of three visual angles
of three dimensional orthogonal axes have the same sign. On the other hand, in Minkowski case, the
tangent values of three visual angles of three dimensional orthogonal axes do not have the same
sign. Figure 5.1 shows the typical cases of visual angles in each space. The interesting point is that
when three dimensional orthogonal axes are drawn on the plane at random, we can distinguish
whether it is Euclidean or Minkowski cases depending on the sign of the tangent values.

In this paper, we extend the visual angle in the Euclidean space to that in the Minkowski space. It
is important that hyperbolic geometry plays a role of the view screen in the Minkowski space. And
we can make clear the difference of visual angles of three dimensional orthogonal axes between
Euclidean and Minkowski spaces.

ke kY

In Euclidean case In Minlkcowsl case

Figure 5.1 Typical cases of visual angles.
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