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Abstract: Let APB∠  be an angle in the three dimensional Euclidean space. When we look at this angle from various 
view points, the angle APB∠  changes its appearance, which we call “visual angle”. Mori and Maeda [5] studied the 
relations among three visual angles of three dimensional orthogonal axes. They found out several geometric properties 
of these visual angles. In this paper, we will make a similar discussion in Minkowski space. In general, visual angle is 
realized on an equidistance surface (view screen) from the view point. For example, in the Euclidean space the view 
screen is a sphere centered at the observer. On the other hand, the view screen in Minkowski space is a (Euclidean) 
hyperboloid of two sheets centered at the observer. We will make clear the difference of visual angles of three 
dimensional orthogonal axes between Euclidean and Minkowski spaces. 
 
1. Introduction 

We see various angles in our daily life. An angle has only one size in degrees (or radians) 
measured by protractor, however, how many degrees is it measured from your view point? We call 
this angle ’’visual angle’’. Mori and Maeda found out relations among three visual angles of three 
dimensional orthogonal axes in Euclidean space. Then, what relations are there among three visual 
angles of three dimensional orthogonal axes in other spaces? In this paper, we investigate three 
visual angles of three dimensional orthogonal axes in Minkowski space. Figure 1.1 shows the 
typical cases of visual angles of orthogonal axes in Euclidean and Minkowski spaces. Everyone in 
Euclidean space E3 can intuitively find out that orthogonal axes do not look like the right picture of 
Figure 1.1 but the left one. Conversely, in Minkowski space M3, orthogonal axes do not look like 
the left one but the right one. The aim of this paper is to make clear the difference of visual angle 
between E3 and M3. In Section 2, we will give the definition of visual angle and how to measure it 
in E3 and M3. In Section 3, let us review the relations among three visual angles of three 
dimensional orthogonal axes in E3(see, [5] and [6]). In Section 4, we will find out a very important 
theorem which shows the relations among three visual angles of three dimensional orthogonal axes 
in M3. Figures in this paper are drawn by dynamic geometry software Cabri II and Cabri 3D. They 
are very useful tools for providing ideas and giving hints for proofs. 
 
2. Definition of Visual Angle 

In this section, let us define visual angle, and introduce how to measure the size of the visual 
angle. 



 
Figure 1.1  Visual angles of three dimensional orthogonal axes in E3 and M3.  

 
Definition 2.1(Visual Angle)  Let APB∠  be an angle in the three dimensional E3 or M3. For a 
viewpoint , let us denote by O

oAPB∠  
the dihedral angle of the two faces OPA  and OPB  of the (possibly degenerate) tetrahedron OPAB  
(see, Figure 2.1) (see, [5]). This angle oAPB∠  is called the visual angle of APB∠  from the 
viewpoint . Its size (measure) is called the visual size of O APB∠  from , and denoted by the 
same notation  as the visual angle without any confusion. 

O
oAPB∠

 

 
Figure 2.1  Definition of visual angle. 

 
Proposition 2.2(Visual Size in E3)  For an angle APB∠  in E3, let 'P , 'A  and 'B  be the central 
projected points of P , A , and B  on the unit sphere S2 centered at the view point O . Then the 
visual size  is equal to the angle 'oAPB∠ P∠  of the spherical triangle ''' BAP∆ (see, Figure 2.2). 
 
Proof.  Let a  (resp. 

r
b
r

) be a vector tangent to the arc '' AP  (resp. '' BP ) at 'P . The angle between 
the vectors a  and b

r r
 is equal to the spherical angle 'P∠  by the definition of spherical triangle. Note 

that both vectors a  and b
r r

 are perpendicular to the line OP  which is the intersection of the planes 
 and . Therefore, the visual size of OPA OPB APB∠  is equal to the angle  of the spherical 

triangle 
'P∠

''' BAP∆ .                                                                   
 
Here, let us briefly review three dimensional Minkowski space M3 (see, [2] p.177). This space is three 
dimensional space with the metric 

2222 dzdydxds −+= , 
 



 
Figure 2.2  Central projection of APB∠  on S2. 

 
in other words, the inner product  of two vectors >< ba

rr, ),,( 321 aaaa =r and ),,( 321 bbbb =
r

is defined 
by  

332211, babababa −+>=<
rr , 

which is called Minkowski product. Transformations, which preserve the Minkowski product is called 
Lorentz transformations. The quadratic hypersurface  

Q ∈= ),,{(: zyx  M3  ,  }0,1| 222 >−=−+ zzyx
is well known as a model of hyperbolic geometry. The distance between two points ),( BAd A  and B on 
Q  is satisfies (see, [4]) 

><−= OBOABAd ,)),(cosh( . 
Note that Q is an equidistant surface from )0,0,0(=O  which plays an important role as a view screen 
in M3 .  
 
Proposition 2.3(Visual Size in M3)  For an angle APB∠  in M3, let 'P , 'A  and 'B  be the central 
projected points of P , A , and B  on Q of the hyperboloid of two sheets( ) 
centered at the viewpoint . Then the visual size 

0,1222 >−=−+ zzyx
O oAPB∠  is equal to the angle  of the 

hyperbolic triangle '
'P∠

'' BAP∆ (see, Figure 2.3). 
 

 
 

Figure 2.3  Projection of APB∠  on Q. 



Proof.  This proof is similar to Proposition 2.2. Let ar  (resp. b
r

) be a vector tangent to the geodesic 
'' AP  (resp. '' BP ) at 'P  on Q. The angle between the vectors ar  and b

r
 is equal to the hyperbolic 

angle 'P∠  by the definition of hyperbolic triangle. Note that both vectors a  and 
r

b
r

 are 
perpendicular to the line OP  which is the intersection of the planes OPA  and OPB . Therefore, the 
visual size APB∠  is equal to the angle 'P∠  of the hyperbolic triangle ''' BAP∆ .                          

 
 
Proposition 2.3 indicates that visual angle in M3 is measured as an angle in hyperbolic geometry. 
 
3. Visual Angle of Three Dimensional Orthogonal Axes in Euclidean Space 

In this section, let us review the relations among the three visual angles of three dimensional 
orthogonal axes due to [5]. Set up a system of orthogonal coordinates  on EXYZO − 3 with the 
origin at the viewpoint . Let us consider to see another three dimensional orthogonal 
axes  with the origin  from the viewpoint O . For simplicity, let us assume that 
both orthogonal axes 

)0,0,0(=O
ABCP − )( OP ≠

XYZO −  and  are positive oriented which is determined by using 
the ’’right hand rule’’. Then, with appropriate rotations centered at O , we can arrange the 
orthogonal axes  parallel to 

ABCP −

ABCP − XYZO −  without changing the visual sizes , oAPB∠ oBPC∠  
and . Let ,  and  be the three visual sizes of oCPA∠ ABV BCV CAV oAPB∠ ,  and oBPC∠ oCPA∠ , 
respectively. As in Figure 3.1, these visual sizes are realized around  which is the central 
projection of 

'P
P  on S2. Then the projection of axisA−  passes through  which 

corresponds to the projection of the vanishing point of 
)0,0,1(=∞A

axisA− . In the same way, the projection of 
 passes through , and that of axisB − )0,1,0(=∞B axisC −  passes through . In the 

following argument, we consider the visual angles as oriented, which are measured in the 
counterclockwise direction looking from the outside of S

)1,0,0(=∞C

2. 
 

 
Figure 3.1  Central projection of three dimensional orthogonal axes  on SABCP − 2. 

 
Theorem 3.1(Law of Visual Angles of Three Dimensional Orthogonal Axes in Euclidean 
Space)  If the point  is not on the axes of ),,(' 000 zyxP = XYZO −  , then three 
visual sizes , , and  are given by 

)1,,( 000 ±≠zyx

ABV BCV CAV
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Conversely, if , , nor  are not equal to 0 and ABV BCV CAV π , then the point 'P (the direction of the 
origin of )  is determined as the following the equation P ABCP −
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where  is the sign of t . 1)( ±=tsign
 
Proof.  To prove this theorem, it is very useful to represent the coordinates of  with direction 
cosine, such as 

'P
)cos,cos,(cos' γβα=P )1coscos(cos 222 =++ γβα  where α (resp. γβ , ) is the 

spherical distance of (resp. ), respectively.  ∞AP' ∞∞ CPBP ','
First, we can easily check that  as in Figure 3.2.  0sin0 ≥⋅ BCVx

 
Figure 3.2  The relation between the sign of and that of . 0x BCVsin

 
Since , we apply the law of cosines for sides (see, [3] p.54) to the spherical triangle 

,  
1, 00 ±≠zy

∞∞∆ CBP'

BCVcossinsincoscos
2

cos γβγβπ
+= . 

So, 

γβ
γβ

sinsin
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⋅
⋅

−=BCV ,  and 
γβ

α
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⋅
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where we use the fact that  has the same sign as BCVsin )(cos 0x=α . Hence, 

00

0
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⋅
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γβ
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The other the equations of (3.1) follow in a similar way. 
Next, we will prove Equation (3.2). , , ABV BCV CAV π,0≠  implies 0tantantan ≠⋅⋅ CABCAB VVV . 

Then multiplying the first and the third equations of Equations (3.1), we get 



2
0cotcot xVV ABCA =⋅ . 

Since  and  have the same sign, BCVsin 0x

ABCABC VVVsignx cotcot)(sin0 ⋅= . 
In the same way, we get the rest of Equation (3.2).  
 
Equations (3.1) indicate that the tangent values of three visual sizes have the same sign for any 
cases (see, Figure 1.1(left)). We will discuss this property again in the last section. 
 
4. Visual Angles of Three Dimensional Orthogonal Axes in Minkowski Space 

In this section, let us investigate the relations among the three visual angles of three dimensional 
orthogonal axes in M3. Set up a system of orthogonal coordinates XYZO −  on M3 with the origin at 
the viewpoint . Let us consider to see another three dimensional orthogonal axes 

 with the origin  from the view point O . For simplicity, let us assume that both 

orthogonal axes  and  are positive oriented, and the vector 

)0,0,0(=O
ABCP − )( OP ≠

XYZO − ABCP − OP  is a time-like, 
future pointing vector such that the central projected point  of  is on Q.  Then, with appropriate 
Lorentz transformations centered at O , we can arrange the orthogonal axes  parallel to 

 without changing the visual sizes 

'P P
ABCP −

XYZO − oAPB∠ , oBPC∠  and oCPA∠ . Let , and  
be the three visual sizes of ,  and 

ABV BCV CAV
oAPB∠ oBPC∠ oCPA∠ , respectively. We prepare two lines in 

Q , 
XL ∈= ),,{(: zyx  Q  }0| =x , 

YL ∈= ),,{(: zyx  Q  }0| =y , 
which are the base lines in the following argument. As in Figure 4.1 drawn in the Poincare model, the 
projection of  intersects  orthogonally, and let  be the intersection. In the same way, 
the projection of  intersects  orthogonally, and let  be the intersection. The projection 
of  passes through =(0,0,1) which corresponds to the projection of the vanishing point 
of .  

axisA− XL 0A
axisB − YL 0B

axisC − ∞C
axisC −

In the previous section, we have already seen that direction cosine is useful to calculate visual size. 
Hence, let us consider a similar thing in Q as in the following proposition.  
 
Proposition 4.1(Parametric Representation)  For an arbitrary point ∈= ),,(' 000 zyxP  Q, let us 
define three parameters α , β , and γ  such as 

)',()(: 00 PAdxsign=α ,  )',()(: 00 PBdysign=β , )',(: PCd ∞=γ . 
Then the coordinates of 'P   is written as  

)cosh,sinh,(sinh),,(' 000 γβα== zyxP . 
 
Proof.  First, let us prove αsinh0 =x . The reflection of 'P  in  is the point , 
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Figure 4.1  Visual angles in the Poincare model with three parameters α , β  and γ . 
 

Therefore, ||||sinh 0x=α , that is, αsinh0 =x . The equation βsinh0 =y  is shown as a similar way. 
As for ,  0z

0',))',(cosh( zOPOCPCd >=<−= ∞∞   
 
In this paper, we consider the visual angles as oriented which are measured in the counterclockwise 
direction looking from the upper side of Q. 
 
Theorem 4.2(Law of Visual Angles of Three Dimensional Orthogonal Axes in Minkowski 
Space)  If the point  is not ( 1),,(' 000 zyxP = ∞C 0 ≠z ), then three visual sizes , , and  
are given by 
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Conversely, if , , nor  are not equal to 0 and ABV BCV CAV π , then the point (the direction of the 
origin 
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Proof.  To calculate , we prepare a signed distance BCVtan 'α , 

),()(:' 00 BCdxsign ∞=α . 
Let ϕ  be the angle between the positive axisX − and , which is measured in the 
counterclockwise direction. And let 

'PC∞

θ  be the acute angle 'P∠  of ∞∆ CPB '0  (see, Figure 4.2).  
Figure 4.2 shows that θtantan =BCV  for every quadrant. Appling the trigonometric function (see 
[1], p.147) to the right triangle , ∞∆ CPB '0

|sinh|
|'tanh|tan

β
αθ = . 

And also, from the right triangles  and ∞∆ CPB '0 ∞∆ CPA '0 , 
 



        
 

Figure 4.2  Two parameters θ  and ϕ  in the Poincare model. 
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Therefore, combining the equations above, 
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Since  as in Figure 4.2, we get  0tan 00 <⋅⋅ yxVBC
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In a similar argument, we get 
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Next, we will prove Equation (4.2). From Figure 4.3 one can see that 0sinsinh ≥⋅ BCVα . 
Multiplying the first and the third equations of Equations (4.1), 

ABCA VVx cotcot2
0 ⋅−= . 

So, the fact that implies that  0sin0 ≥⋅ BCVx

ABCABC VVVsignx cotcot)(sin0 ⋅−= . 
In a similar argument, we get 

BCABCA VVVsigny cotcot)(sin0 ⋅−= . 



 
Figure 4.3  The relation between the sign of and that of . 0x BCVsin

 
Finally, multiplying the second and the third equations of Equations (4.1), 

CABC VVz cotcot2 ⋅= . 
Since , we get 00 >z

 CABC VVz cotcot0 ⋅=   
 
5. Conclusions 

In the previous sections, we have already seen the relations among visual angles of orthogonal 
axes in E3 and M3. The discussion in M3 is parallel to that in E3, however, the crucial difference 
between them is the signs of tangent value. Euclidean case, the tangent values of three visual angles 
of three dimensional orthogonal axes have the same sign. On the other hand, in Minkowski case, the 
tangent values of three visual angles of three dimensional orthogonal axes do not have the same 
sign. Figure 5.1 shows the typical cases of visual angles in each space. The interesting point is that 
when three dimensional orthogonal axes are drawn on the plane at random, we can distinguish 
whether it is Euclidean or Minkowski cases depending on the sign of the tangent values. 
   In this paper, we extend the visual angle in the Euclidean space to that in the Minkowski space. It 
is important that hyperbolic geometry plays a role of the view screen in the Minkowski space. And 
we can make clear the difference of visual angles of three dimensional orthogonal axes between  
Euclidean and Minkowski spaces. 
 

 
Figure 5.1  Typical cases of visual angles. 
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