(0) Self-introduction (as chair)

Circle Limit IV (Heaven and Hell) by Escher (July 1960)

$$
S L(2, R) \ni\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right) \rightarrow \frac{(a-d, 2 b)}{a+d+2} \in D^{2}
$$

Locus of viewpoints from which a conic appears circular

Makoto Kishine, St.Viator Rakusei Junior and Senior High School
Yoichi Maeda, Tokai University

$12^{\text {th }}$, December, 2023 at ATCM 2023 Pattaya

(0) Reference for this talk

 https://php.radford.edu/~ejmt/ The Electronic Journal of Mathematics \& Technology (radford.edu)Number 2 (Jun 2023)

Papers

Another Topological View of Curves and Surfaces Inspired by 2D and 3D Locus Problems Wei-Chi YANG, Guillermo DÁVILA, Weng Kin HO

Log in
Exploration of envelopes of parameterized families of surfaces in a technology-rich environmentLocus of viewpoints from which a conic appears circularLog in

Locus of viewpoints from which a conic appears circular
Abstract Makoto KISHINE, Yoichi MAEDA
π (1) Introduction (Ellipse is everywhere!)

Soccer Field

Circle looks like an ellipse.
(2) Reverse problem (Ellipse appears circle)

From where does the ellipse looks like circular?
π (3) Several questions for this talk
Q0: on from which a conic appears circular

Q1: on conic section

Q2: on trigonometric function

Q3: on watching an equilateral triangle

(4) Q1: Makoto's naïve question

Makoto: "We know that if we cut a cone horizontally, it will become a circle.
Why does it become an ellipse when we cut it obliquely?" (egg like oval shape ?)

Yoichi: "Well ..., intuitively, it is not trivial, I thhińk., But, ellípse looks like a circle."
(suspicious, unconvincing)

π (5) Q2 : Entrance exam. for medical school Let a, b, c, d be acute angles.
If

$$
\begin{array}{ll}
\cos a=\cos b * \cos c, & \text { and } \\
\sin b=\sin a * \sin d, & \text { then, }
\end{array}
$$

$\square=\sin c * \tan d$.
Fill the blank as a function of b.
(It looks easy at first glance, but not so easy)
π (6) Q3 : Watching regular triangle problem

From where does the regular triangle looks like regular triangle? (only directly above?)
π (7) Famous Dandelin's construction

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{x^{2}}{c^{2}}-\frac{z^{2}}{b^{2}}=1 \quad\left(c=\sqrt{a^{2}-b^{2}}\right)
$$

π (8) Duality (Ellipse \leftrightarrow Hyperbola)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \Rightarrow \quad \frac{x^{2}}{a^{2}+b^{2}}+\frac{z^{2}}{b^{2}}=1 \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \Rightarrow \quad \frac{x^{2}}{a^{2}-b^{2}}-\frac{z^{2}}{b^{2}}=1
\end{aligned}
$$

(10) What it means to see an ellipse?

To look like a circle \Leftrightarrow A small circle on S^{2}
To look like an ellipse \Leftrightarrow A spherical ellipse on S^{2}

π

(11) Spherical ellipse (the fourth parameter)

major axis : $a=\angle N O A$, minor axis : $b=\angle N O B$, focus : $c=\angle N O C$.
2 foci: $C=(\cos C, 0, \sin c), C^{\prime}=(-\cos C, 0, \sin c)$,
string length $=2 \mathrm{a} . \quad \Rightarrow \cos \mathrm{a}=\cos \mathrm{b} * \cos \mathrm{c}$ (Pythagorean in S^{2})
asymptotic angle : $d=\angle N O D \Rightarrow \sin b=\sin a * \sin d$

π (12) Difficult calculations

Question:
$\cos a=\cos b * \cos c, \sin b=\sin a * \sin d \Rightarrow ?=\sin c * \tan d$

Answer: (Eliminate a!)

$$
\begin{aligned}
& \cos ^{2} a+\sin ^{2} a=1 \quad \Rightarrow \quad \cos ^{2} b \cos ^{2} c+\frac{\sin ^{2} b}{\sin ^{2} d}=1, \\
& \Rightarrow \cos ^{2} c+\frac{\tan ^{2} b}{\sin ^{2} d}=\frac{1}{\cos ^{2} b}=1+\tan ^{2} b, \quad\left(\leftarrow \frac{1}{\cos ^{2} b}=1+\tan ^{2} b\right) \\
& \Rightarrow \tan ^{2} b\left(\frac{1}{\sin ^{2} d}-1\right)=1-\cos ^{2} c=\sin ^{2} c, \quad\left(\leftarrow \cos ^{2} c+\sin ^{2} c=1\right) \\
& \Rightarrow \tan ^{2} b \frac{\cos ^{2} d}{\sin ^{2} d}=\sin ^{2} c, \quad\left(\leftarrow \cos ^{2} d+\sin ^{2} d=1\right) \\
& \Rightarrow \tan ^{2} b=\sin ^{2} c \tan ^{2} d, \\
& \Rightarrow \tan b=\sin c \tan d . \quad(\leftarrow \tan b, \sin c, \tan d>0)
\end{aligned}
$$

π (13) Amazing 7 relations among $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$

$$
\begin{gathered}
\cos a=\cos b * \cos c \\
\sin b=\sin a * \sin d \\
\tan b=\sin c * \tan d \\
\tan c=\cos d * \tan a \\
\tan b=\cos c * \sin d * \tan a \\
\sin a * \cos d=\sin c * \cos b \\
\sin b=\cos a * \tan c * \tan d
\end{gathered}
$$

π (14) Duality revisited
configuration of 7 relations with tetrahedron

Duality : half rotation with "tan $\mathrm{b}=\cos \mathrm{c}^{*} \sin \mathrm{~d} * \tan \mathrm{a}$ "

$$
a \leftrightarrow b, c \leftrightarrow d, \sin \leftrightarrow \cos , \tan \leftrightarrow \cot .
$$

(15) Simple observation leads the solution.

If the vertex angle is less than 60°, there are two ways to fit the equilateral triangle to the isosceles triangle cone.
(16) A3 : Equilateral triangle problem

There are many viewpoints more than expected.

π
 (17) Jiddu Krishnamurti (1895-1986)

K:
"When we are aware of it and come into contact with it directly, the observer is the observed.
There is no difference between the observer and the thing observed.
When fear is observed without the observer, there is action, but not the action of the observer acting upon fear."

This photo tells us the altitude where we are.
π (19) References (GeoGebra file)
https://www.geogebra.org/m/dbqkabee
https://www.geogebra.org/m/n8ecaqea
https://www.geogebra.org/m/wkbg2hnv
https://www.geogebra.org/m/epdxgqz2 https://www.geogebra.org/m/ytxan4vs
https://www.geogebra.org/m/mqy6k5vh
(Ellipse on the ground) (Hyperbola on the ground) (Dandelin's construction) (Duality of Viewpoints) (Parabola on the ground) (Viewscreen)

Enjoy your GeoGebra life !!

