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Abstract

In ([9]) and ([10]), we describe an antipodal linear transformation LE on an ellipsoid
Σ, and see Σ is inside and tangent to LE (Σ) . In this paper, we discuss how two geometry
figures are congruent and are related by an isometry through this linear transformation
LE. We describe how a locus ellipsoid LE (Σ) can be written as a standard form of
XMXt = 1, where M is a symmetric and positive definite matrix, and how the rotated
ellipsoid Σr stays being tangent to XMXt = 1. Next, we explore that the minor and mean
axis of XMXt = 1 span a plane π which intersects the ellipsoid in the “smallest”possible
ellipse. We rotate this plane by keeping the mean axis fixed, and tilting the minor axis
towards the major axis. At some unique point one obtains a plane π′ that intersects the
ellipsoid in a round circle. We shall explore finding such sheared map T . This paper will
benefit those students who have backgrounds in Linear Algebra and Multivariable Calculus.
In particular, we need the eigendecomposition for the ellipsoid of LE (Σ).

1 Introduction

An isometry ([6]) is a transformation which maps elements to the same or another metric
space such that the distance between the image elements in the new metric space is equal to
the distance between the elements in the original metric space. In a two or three-dimensional
Euclidean space, two geometric figures are congruent if they are related by an isometry. In
this paper, we will discuss how the three-dimensional locus, two-dimensional space curve and
a one-dimensional vector of a linear transformation will all stay as isometry after rotations.
The original locus problem in 2D was stated in ([7]), the corresponding 3D versions were

discussed in ([8]) and ([9]). When the fixed point A is placed at an infinity, our locus problem
from ([10]) becomes the following:
A Locus problem: We are given a fixed point A = (ρ cosu0 sin v0, ρ sinu0 sin v0, ρ cos v0)

with ρ → ∞ and a generic point C on a surface Σ. We let the line l pass through A and C



and intersect a well-defined D on Σ, we want to determine the locus surface generated by the
point E, lying on CD and satisfying

−−→
ED = s

−−→
CD, (1)

where s is a real number parameter.
We briefly summarize the properties for the locus surface we have discussed in ([10]). The

locus surface determined by E in (1) can be written as Einf = sC + (1 − s)Dinf . In [10] we
assume an ellipsoid Σ in R3 is given in either its standard form (2) or the parametric form in
(3).

x2

a2
+
y2

b2
+
z2

c2
= 1, (2)

x(u, v) = a cosu sin v, y(u, v) = b sinu sin v, z(u, v) = c cos v. (3)

If s ∈ R+\{1/2}, we see the locus surface ∆∞(s, u0, v0) for an ellipsoid Σ is also an ellipsoid.
Moreover, there exists a matrix LD = [lij]3×3 such that LD C = Dinf . Consequently,

LE = sI + (1− s)LD (4)

is a linear transformation from R3 to R3 such that LE C = Einf , where C ∈ Σ, and therefore,
the locus surface ∆∞(s, u0, v0) is the image of Σ under the linear transformation given by the
matrix LE = [leij]3×3. We often use the notation LE (Σ) = ∆∞(s, u0, v0). More importantly,
the transformation LE is such that Σ is in the interior of ∆∞(s, u0, v0) when s > 1, and Σ is
tangent to ∆∞(s, u0, v0) at an elliptical curve, see [S1] for exploration. We refer to the Figure
1 that an ellipsoid Σ is shown in yellow, the locus ∆∞(s, u0, v0) is shown in blue for s = 2 and
angles u0 = 1.0472 and v0 = 0.7854 are given for the fixed point A is given at an infinity.

Figure 1. Ellipsoid and its
locus

Three problems for explorations:
Assume that we fix the parameters s > 1, u0 and v0.

1. How can we transform the locus ellipsoid, LE (Σ) = ∆∞ into its standard implicit form,
which is denoted by ∆0?



2. Since the ellipsoid Σ in (2) or (3) is always in the interior of ∆∞ when s > 1 and tangent
to it. We want to find the followings:

(a) The rotated Σr that is in the interior of ∆0 and tangent to ∆0.

(b) The new intersecting curve between Σr and ∆0.

3. We consider the locus ellipsoid LE (Σ) satisfying XMX t = 1 with M being positive
definite and symmetric matrix. The minor and mean axis of XMX t = 1 span a plane π
which intersects the ellipsoid in the “smallest”possible ellipse. We rotate this plane by
keeping the mean axis fixed, and tilting the minor axis towards the major axis. At some
unique point one obtains a plane π′ that intersects the ellipsoid in a round circle. We
want to find such shear map T, which shears the ellipsoid XMX t = 1, by keeping this
plane fixed, into another ellipsoid of rotation, E1.

We start with the followings:

2 Background and Basic information

We recall that LE has full rank of 3, and the eigenvalues for LE are {2s − 1, 1, 1}. The
corresponding eigenvectors are labeled as v1, v2 and v3 respectively in (5),

v1 = [cosu0 tan v0, sinu0 tan v0, 1]t , (5)

v2 =

[
−a2

c2
secu0 cot v0, 0, 1

]t
,

v3 =

[
−a

2

b2
tanu0, 1, 0

]t
.

and they are linearly independent (except v0 = 0 or π). The vectors v1, v2 and v3 are shown
in color blue in Figure 1. The orange curve γ(t) (shown in Figure 1) is the intersecting curve
between Σ and ∆∞(s, u0, v0), can be found using the techniques from ([9]):

1. We want to find the tangent plane T at a point P on the ellipsoid C =

 x̂
ŷ
ẑ

 such that T
is passing through the fixed point A = (x0, y0, z0) = (ρ sin v0 cosu0, ρ sin v0 sinu0, ρ cos v0) .

If the ellipsoid is the level surface of F (x, y, z) = x2

a2 + y2

b2
+ z2

c2
− 1 = 0. Then the gradient

at a point of the ellipsoid is OF (x, y, z) =
(

2x
a2 ,

2y
b2
, 2z
c2

)
, then we see the tangent plane as

follows:
T (x, y, z) = OF (x, y, z) · (x− x0, y − y0, z − z0) = 0, (6)

We thus solve F (x, y, z) = 0 and T (x, y, z) = 0 for the variables x, y, which we obtain
two branches for x and y respectively.

2. Next we let ρ→∞ since the fixed point A is when ρ→∞, we denote the respective two
branches by x1(t), x2(t), y1(t) and y2(t).



3. We form two branches for γ(t)

γ+(t) = [x1(t), y1(t), z(t)], and

γ−(t) = [x2(t), y2(t), z(t)], (7)

where γ(t) = γ+(t) ∪ γ−(t) and z(t) = c cos(t).

4. We include γ(t) in [S2], and we remark that γ(t) does not depend on the scaling factor
s. The elliptical disk determined by γ(t) is spanned by the vectors v2 and v3.

In this paper, unless otherwise specified, we assume that the parameters s > 1, u0, and v0

are given in advance, and we write the locus ellipsoid LE (Σ) = ∆∞(s, u0, v0) simply as ∆∞.We
interchange the use of LE as a linear transformation and its corresponding matrix LE = [leij]3×3

with no confusion. To keep the entirety of this subject, we briefly state how we can write ∆∞
in its implicit form by applying the principle axes theorem as follows:
We recall from [10] that we applied LE on the Σ in its parametric form, therefore, LE (Σ)

will be expressed in its parametric form. We can transform LE (Σ) into its implicit form by
making use of the conversion matrix for LE as follows:

Q∆ =

((
[leij]3×3 0

0 0

)−t)
4×4


b2c2 0 0 0

0 c2a2 0 0
0 0 a2b2 0
0 0 0 −a2b2c2

( [leij]3×3 0
0 0

)−1

4×4

. (8)

1. We find the eigenvalues and eigenvectors of matrix Q∆, say λ1, λ2, λ3, λ4 for eigenvalues,

and w1, w2, w3, and


0
0
0
1

 for the eigenvectors.

2. If X∗ = [x, y, z, 1], then the implicit form of LE (Σ) or ∆∞, can be expressed as

X∗Q∆ (X∗)t = 0, (9)

and Q∆ is symmetric and can be written as

Q∆ =


A B

2
C
2

0
B
2

D E
2

0
C
2

E
2

F 0
0 0 0 −a2b2c2

 , (10)

Subsequently, the implicit equation of ∆∞ can be written as

Ax2 +Bxy + Cxz +Dy2 + Eyz + Fz2 + J = 0, (11)

where the coeffi cients A through J can be found in [S2] or [S3].



3. If we consider the submatrix Q
′
∆ =

((
[leij]3×3

)−t) 1
a2 0 0
0 1

b2
0

0 0 1
c2

([leij]3×3

)−1
of the ma-

trix Q∆ (10), we remark that the matrix [leij]3×3 is positive definite since all eigenvalues
are positive for s > 1; therefore, the matrix Q

′
∆ is also positive definite, since it is a prod-

uct of three positive definite matrices, and thus Q
′
∆ is a positive definite and symmetric

matrix.

In the rest of this paper, we often consider the sub-matrix the following matrix M, which
is derived from Q

′
∆

M =
1

a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 , (12)

and use
XMX t = 1 (13)

to represent the implicit equation for which is associated with LE (Σ) , where X = [x, y, z].

Equivalently, if we consider L−1
E (X), and let G =

 1
a2 0 0
0 1

b2
0

0 0 1
c2

 . Then the equation of

X
(
L−tE GL

−1
E

)
X t = 1 (14)

represents the implicit equation for ∆∞.We note the implicit forms of (11), (13) and (14) are
all identical. Furthermore, the eigenvalues of M are λ1, λ2, λ3 respectively.
We remark that when considering the standard form of ∆0, we may use the symmetric and

positive definite matrix M ((12) and consider

x̃2(√
1
λ1

)2 +
ỹ2(√

1
λ2

)2 +
z̃2(√

1
λ3

)2 = 1, (15)

see Theorem (3).
In this paper, we shall discuss how an isometry can be related to this linear projective

transformation LE.

2.1 Locus is an isometry for spheres

Let the fixed point A be given for parameters u0, v0, and s, and LE be applied on a sphere of
x2 +y2 +z2 = r2, which is denoted by Σr

1. Since Σr
1 is symmetric with respect to the origin, it is

natural to expect the shape of LE (Σr
1) stays unchanged regardless of the projection angles u0

and v0, once the scaling factor s is fixed. Specifically, if we move the fixed points A1, A2, ..., An
sequentially:

A1 → A2 → ...→ An (16)

with An = A. Then ∆i, the locus surface of Σ with respect to Ai, for i = 1, 2, ...n, moves
sequentially

∆1 → ∆2 → ...→ ∆n, (17)



and we would expect that ∆n = ∆. In other words, ∆i stays isometric under rotations if we
apply LE on spheres, once s is given. It is clear we have the following observation for spheres.

Theorem 1 For given s > 1, let Σr
1 be the sphere x

2 + y2 + z2 = r2, A1 = (u1, v1) and
Ai = (ui, vi), where i = 1, 2, ...n. If we set a = b = c = r and fix the parameter s, then for given
angles u0, and v0, LE (Σr

1) are all isometric copies.

Proof: If we set a = b = c = r in M in ((12), the eigenvalues for M are respectively,
λ1 = 1

(2s−1)2r2 , λ2 = 1
r2 , and λ3 = 1

r2 . The corresponding eigenvectors are v1, v2, and v3 of LE,
when we substitute a = b = c = r for v2, and v3 in (5). In other words, once we convert LE (Σr

1)
into the standard form, they will be all identical as shown below:

x̃2(√
1
λ1

)2 +
ỹ2(√

1
λ2

)2 +
z̃2(√

1
λ3

)2 = 1. (18)

Consequently, the following is obvious result to express LE (Σr
1) in its standard form:

Corollary 2 If a linear transformation LE(s, u0, v0) is applied on a sphere Σr
1, with specified

s, u0 and v0, then LE
(
s, 0, π

2

)
= ∆0 is the copy of ∆1 when it is written in its standard form.

We shall next state one important concept of converting ∆∞ to ∆0, which students learn
in a basic Linear Algebra class.

3 Transition matrix

We want to find a proper rotation so that it preserves the rigid transformation from (Σ,∆∞)
to (Σr,∆0) . The process of finding such proper rotation matrix is a standard exercise students
learned from Linear Algebra. We describe two bases in R3, first let S = {e1, e2, e3} to be the
standard basis for R3. We let v∗1, v

∗
2 and v

∗
3 be the unit eigenvectors for the matrixM (12) asso-

ciated with LE (Σ) , since the matrixM (12) is positive definite and symmetric, the eigenvectors
of M are linearly independent and orthogonal. The eigenvectors for M are demonstrated in
Figure 1, which are labeled as axis1, axis2, and axis3 respectively. Therefore, {v∗1, v∗2, v∗3} forms
another orthonormal eigenvectors for M (12), and we let B = {v∗1, v∗2, v∗3} be the second set of
basis for R3. Now we set the 3× 3 transition matrix

P = [v∗1 : v∗2 : v∗3]. (19)

Then we see
P−1MP = D, (20)

where D is the diagonal matrix, consists of eigenvalues λ1, λ2 and λ3 of the matrixM (12). We
observe the following commutative diagram (26) associated with LE that

∆∞ = P (∆0) , (21)

∆0 = P−1 (∆∞) . (22)



Furthermore, we see
Σr = P−1 (Σ) , (23)

Σr  ∆0 and Σr is tangent to ∆0. If we view P as simply a rotation matrix, it also follows from
diagram (26) that

∆0 = P−1LEP (Σr) , (24)

∆0 = P−1 (∆∞) . (25)

LE
Σ −→ ∆∞ = LE (Σ)

P−1 ↓ ↑ P
P−1LEP

Σr −→ ∆0

(26)

Theorem 3 The ellipsoid ∆0 is a copy in the standard form of the locus ellipsoid ∆∞ = LE(Σ).
Explicitly, ∆0 has the equation of

x̃2(√
1
λ1

)2 +
ỹ2(√

1
λ2

)2 +
z̃2(√

1
λ3

)2 = 1, (27)

where the diagonal entries of Λ∗ are written in descending orders, and λ1, λ2, and λ3 are the
eigenvalues of the matrix M (12).

Proof

As noted from (12) thatM = 1
a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 , andXMXT = 1 represents the implicit

form of ∆∞. It is clear that

XMX t = X
(
PDP t

)
X t

= (XP )D (XP )t (28)

= 1. (29)

We see that if Y = XP, then Y DY t = 1 is exactly (15), when ∆∞ is written in its standard
form.
The following observation answers the question in (2).

Theorem 4 In reference to Theorem (3), consider the ellipsoid Σr = P−1Σ. Then,

a. For s ∈ R+ \ {1}, the ellipsoid Σr and the ellipsoid in standard form ∆0 intersect them-
selves tangentially at an elliptical curve, say γr .

b. If

∆0 =

(x, y, z) ∈ R3 :
x̃2(√

1
λ1

)2 +
ỹ2(√

1
λ2

)2 +
z̃2(√

1
λ3

)2 ≤ 1


the solid ellipsoid which boundary is ∆0. Then we have Σr ( ∆0 when s > 1.



Proof
We recall the matrix P is formed by the orthonormal eigenvectors forM (12), P is orthogonal

with PP t = P tP = I3, a 3× 3 identity matrix. We see

PP t = P tP = I3 (30)

P t = P−1, P =
(
P t
)−1

(31)

Since the linear transformation defined by the orthogonal matrix P is injective, so is P−1, we
see

Σr ∩∆0 = P−1 (Σ) ∩ P−1 (∆∞) = P−1 (Σ ∩∆∞) = P−1 (γ) , (32)

where γ is the elliptical curve where Σ and ∆∞ intersect themselves tangentially.
Now, let us denote by ∆∞ the solid ellipsoid which boundary is ∆∞. Again, since P−1 is

injective, we see
Σ ( ∆∞ ⇒ Σr = P−1 (Σ) ( P−1

(
∆∞
)

= ∆0. (33)

4 A sheared ellipsoid with circle cross section

In [4], it posts the question of ‘Find the radius of the largest circle on the ellipsoid Σ : x2

a2 +
y2

b2
+ z2

c2
= 1 with semi-axes a > b > c.’The existence of such circle can be found in [4]. In

this section, we will explore problem 3 by constructively finding such cross section circle C for
the ellipsoid locus LE (Σ) . Furthermore, we will find the shear map T so that the cross section
containing two semi-axes of tilted ellipsoid of LE (Σ) is a circle C, which is also the intersection
of the tilted ellipsoid of LE (Σ) and LE (Σ). In general, since an ellipsoid can be thought as an
image of a linear transformation on the unit sphere. One may explore the TRD decomposition
for a matrix of an ellipsoid using the idea from [2]. Consequently, we can transform an ellipsoid
E back to the unit sphere using three steps, a shear map T , a rotation map R and a dilation
D, which is discussed in details in [5].

4.1 Finding a sheared map for an ellipsoid when a > b > c

Before we consider the general case of problem 3 (3), we consider the ellipsoid Σ of the form
x2

a2 + y2

b2
+ z2

c2
= 1,We refer to the following Figure 2. We let OA1 = a,OA2 = b and OA3 = c be

major, mean and minor axes for the ellipsoid Σ respectively. We note that the plane π=OA2A3

in dark red of Figure 2 contains the median and minor axes of Σ. Our objective is to rotate Σ
into the ellipsoid Σ′, which contains an the circle C lying on the plane π′ = OA2A

′
3 containing



two equaled semi-axes (see the circle in orange lying on the plane π′ = OA2A
′
3 in Figure 2).

Figure 2. Tilting Minor axis

In other words, we need to rotate the minor z−axis or OA3, toward the major x−axis or OA1,
until we obtain an the circle C lying on the plane containing two equaled axes (see the circle
in orange lying on the plane OA2A

′
3 in Figure 2). Therefore, the median y−axis is fixed, and

hence we apply a rotation matrix around y-axis, say

Ry =

 1 0 0
0 1 0
A 0 ±1

 . (34)

We note that Ry

 x
y
z

 =

 x
y

Ax± z

 .Without loss of generality, we consider Ry

 x
y
z

 = x
y

Ax+ z

 , and the ellipsoid Σ : x2

a2 + y2

b2
+ z2

c2
= 1 becomes Σ′ : x2

a2 + y2

b2
+ (Ax+z)2

c2
= 1. These

two equations of Σ and Σ′ are reduced to (Ax+ z)2 − z2 = 0 or (Ax+ z + z) = 0, and the
plane equation

z = −Ax
2

(35)

is the intersecting plane equation where the circle lies.

1. Consider the cross section with y = 0, the original ellipsoid Σ becomes

x2

a2
+
z2

c2
= 1, (36)

and we substitute (35) into the equation yields,

x2 =
1

1
a2 + A2

4c2

=
1

4c2+a2A2

4a2c2

=
4a2c2

4c2 + a2A2
.

2. Use Eq. (36) again, we obtain

z2 = c2

(
1− 4a2c2

a2 (4c2 + a2A2)

)
(37)



3. Since we are rotating the minor (z) toward the major axis (x), and if P (x, y) denotes
the intersection point for the ellipses on the plane of y = 0, we want the distance P to
O = (0, 0, 0) to be equal for both ellipses. Therefore, it should be

x2 + z2 = b2, or (38)(
4a2c2

4c2 + a2A2

)
+ c2

(
1− 4a2c2

a2 (4c2 + a2A2)

)
= b2 (39)

4. Consequently, we get

A =
2
√

(b2 − c2) (a2 − b2)c

(b2 − c2) a
. (40)

Therefore, the plane z = −Ax
2

= −
(√

(b2−c2)(a2−b2)c

(b2−c2)a

)
x will intersect both Σ and Σ′ at a

circle. If we denote the intersecting circle by [x(t), y(t), z(t)], then we have

x(t) = t (41)

y(t) = ±
√

(b2 − c2) (a2b2 − a2c2 − a2t2 + t2c2)b

(b2 − c2) a

z(t) = −At
2
,

where t ∈ [0, 2π] . In other words, the intersecting curve is the union of γ1(t)∪ γ2(t), with
γ1(t) = r1(t) ∪ r2(t) and γ2(t) = r3(t) ∪ r4(t), where t ∈ [0, 2π] , and

r1(t) =

(
t,

√
(b2 − c2) (a2b2 − a2c2 − a2t2 + t2c2)b

(b2 − c2) a
,−At

2

)
, (42)

r2(t) =

(
t,−

√
(b2 − c2) (a2b2 − a2c2 − a2t2 + t2c2)b

(b2 − c2) a
,−At

2

)
, (43)

r3(t) = −r1(t), (44)

r4(t) = −r2(t). (45)

Next, we want to find the furthermost point on Σ to the plane of z = −A
2
x. We do this by

applying Lagrange Multipliers, which is the place we need to switch to numerical computations
using a CAS ([3]).

1. We let g(x, y, z) = x2

a2 + y2

b2
+ z2

c2
− 1 = 0 and f(x, y, z) = z + Ax

2
= 0.

2. We let L(x1, y1, z1, x2, z2, k1, k2) = (x1 − x2)2+y2
1+(z1 − z2)2+k1g (x1, y1, z1)+k2

(
z2 + A

2
x2

)
,

and set ∇L = 0 to solve x1, y1, z1, x2, z2, k1, and k2.

3. We select the nonzero solutions of k1 and k2, and make

vL = (x1, y1, z1) , (46)

which is the desired furthermost point on Σ. For simplicity, we use the vector −→vL =
−−→
OvL.



4. The unit normal vector for the z = −A
2
x is

−→n =

(
A
2
, 0, 1

)∥∥(A
2
, 0, 1

)∥∥ . (47)

5. The projection vector of −→vL along −→n is

−→vP = (‖−→vL‖ cos θ)−→n , (48)

where θ is the angle between −→vL and −→n , i.e. θ = cos−1

(−→vL · −→n
‖−→vL‖

)
. Finally, we see that

−→vm = (0, b, 0) and −→v⊥ = −→vP × −→vm spans the circle with the radius being equal to ‖−→vm‖ =
‖−→v⊥‖ = b, and the the direction and the length of the semi-major axis for the sheared
ellipsoid Σ′ is −→vP and ‖−→vP‖ respectively.

6. The matrix T for the sheared map of the standard form of the ellipsoid should map
the matrix V = [−→vm,−→v⊥,−→vL], which contains three vectors from the ellipsoid Σ, to a new
corresponding matrix W = [−→vm,−→v⊥,−→vP ] on the sheared ellipsoid Σ′. In other words, we
need TV = W and solve for T as follows:

T = WV −1. (49)

4.2 Sheared map for a locus written in a general form

Now we consider the case when Σ is written in the standard form x2

a2 + y2

b2
+ z2

c2
= 1, and LE (Σ)

is written in a general form of XM∆∞X
t = 1, with M∆∞ = 1

a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 and X =

[x, y, z]. We describe how we can find the the sheared map for the ellipsoid of XM∆∞X
t = 1.

1. Since M∆∞ is symmetric and positive-definite, it is diagonalizable, and we find the tran-
sition matrix P for M∆∞ such that

P−1M∆∞P = DM∆∞ , (50)

where DM∆∞ =

 λ1 0 0
0 λ2 0
0 0 λ3

 is the diagonal matrix, which consists of the eigenvalues

of M∆∞ , λ1 < λ2 < λ3.

2. Next, we recall that 1√
λi
, i = 1, 2, 3, corresponds to the length of each respective

semi-axis, and Mλ =


1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3

 . We note that XMλX
t = 1 is the ellipsoid

∆0. We recall from (49) that the matrix T for the ellipsoid, written in XMλX
t = 1, will

map V = [−→vm,−→v⊥,−→vL] to W = [−→vm,−→v⊥,−→vP ]. We obtain the sheared ellipsoid Es,0 = T (∆0)
for ∆0. In view of the nature of the construction of T and (39), the sheared ellipsoid will



have the cross section being a circle. Since the transition matrix P is simply a rotation
matrix, the sheared ellipsoid of ∆∞ is P (T (∆0)) , and P (T (∆0)) shall have a cross
section being a circle too. In other words, the shear map T ′ : ∆∞ → T ′(∆∞) should
satisfy the following commutative diagram and we see T ′ = PTP−1 :

T ′

∆∞ −→ T ′(∆∞)

P−1 ↓ ↑ P
T

∆0 −→ T (∆0)

(51)

5 Examples

Example 5 We consider the linear transformation LE : Σ → ∆∞ on an ellipsoid of Σ :
x2

a2 + y2

b2
+ z2

c2
= 1, with a = 5, b = 4, c = 3, s = 3, u0 = π

6
, and v0 = π

3
, we see that LE = 8755

3571
2700

√
3

3571
9600
3571

1728
√

3
3571

6271
3571

3200
√

3
3571

3456
3571

1800
√

3
3571

9971
3571

 =

2.45169 1.30959 2.68832
0.83814 1.75609 1.5521
0.96778 0.87306 2.79222

 . Our tasks are (i) Expressing

∆∞ in its standard form ∆0. (ii) Find the rotated Σr that is inside and tangent to ∆0. (iii)
Find the intersecting curve between Σr and ∆0. (iv) Find the vector that points to the major
axis, and with the norm of the largest eigenvalues for ∆0.

We consider the positive definite and symmetric matrix:

M =
1

524232

 8376624
89275

−93312
√

3
3571

−331776
3571

−93312
√

3
3571

657675
3571

−172800
√

3
3571

−331776
3571

−172800
√

3
3571

814000
3571

 . (52)

The implicit form for ∆∞ can be found through XMX t = 1, where X = [x, y, z]. We remind
readers that the parametric form for ∆∞ can be obtained from LE (Σ) .

1. The intersecting curve γ(t) between Σ and ∆∞ can be found by using the equation (7)
with a = 5, b = 4, c = 3, s = 3, u0 = π

6
, and v0 = π

3
, which is expressed in two parts

γ(t) = γ+(t) ∪ γ−(t), where

γ±(t) =

[
−800 cos t

219
∓ 25

√
3
√

1971− 3571 cos2 t

657
,
−800 cos t

657
± 16

√
1971− 3571 cos2 t

210
, 3 cos t

]
,

(53)
and t ∈ [0, 2π]. We depict γ(t) in the red curve (see Figure 3). We depict the vector(√

1
λ1

)
v∗1 in black in Figure 3.

2. The eigenvalues ofM (found through the CAS ([3] after removing negligible complex por-
tions), are respectively λ1 = 0.00245971750, λ2 = 0.05324874268 and λ3 = 0.08483262385.



We found the transition matrix P = [v∗1 : v∗2 : v∗3], which consists of orthonormal eigen-
vectors of M below:

P = [v∗1 : v∗2 : v∗3] (54)

=

 0.76082767296684587207
0.42914149371881194358
0.48680471486689723325

−0.59247039192190548461 −0.26480197647252925903
0.76542026211097316451 −0.47955124931414372035
0.25121834536090880609 0.83660654583710139213


(55)

We see P−1MP = D, where D is a diagonal matrix consisting of eigenvalues of matrix
M, (52), λ1, λ2, and λ3. In view of the diagram (26), the rotated ellipsoid Σr = P−1 (Σ) =
(s11, s12, s13)t can be expressed in shown in parametric form (56), which can be shown
that its implicit form is exactly shown in (57).

s11 = 3.80413836483423 cos (u) sin (v) + 1.71656597487525 sin (u) sin (v)

+ 1.46041414460069 cos (v) ,

s12 = −2.96235195960952 cos (u) sin (v) + 3.06168104844389 sin (u) sin (v)

+ 0.753655036082727 cos (v) ,

s13 = −1.32400988236264 cos (u) sin (v)− 1.91820499725658 sin (u) sin (v)

+ 2.50981963751130 cos (v) , (56)

219.5837x2+115.8274xy+175.1803xz+207.6117y2+48.1441yz+341.80462 = 3600. (57)

3. It can be shown that

∆0 =

{
(x, y, z) ∈ R3 :

x2

(20.163)2 +
y2

(4.333 6)2 +
z2

(3.4334)2 = 1

}
. (58)

The intersecting curve γr(t) = P−1γ(t) shown in yellow in Figure 4, and can be found as
follows:

γr(t) =

−1.4847 cos(t)− 1.1052 sin(t)
4.2046 cos(t)− 1.0179 sin(t)
0.7919 cos(t) + 3.332 sin(t)

 . (59)

4. We depict how the ellipsoid Σr (shown in green in Figure 4) is inside and tangent to ∆0

(shown in light blue in Figure 4) and the vector v =
(√

1
λ1
, 0, 0

)
is shown in red (see



Figure 4).

Figure 3. The graphs of Σ,
LE (Σ) and its intersecting

curve.
Figure 4. The graphs of Σr,∆0

and its intersecting curve

Example 6 We consider the parameters of a = 5, b = 4, c = 1, u0 = π
3
, v0 = π

4
, and s = 3 for

the linear transformation LE. Then find the sheared map for the ellipsoid of XMX t = 1, where

M = 1
a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 . (Complete computations can be found in [S3].)

1. M∆∞ =

 41891
1056875

− 24
√

3
42275

− 768
42275

− 24
√

3
42275

1619
27056

−48
√

3
1691

− 768
42275

−48
√

3
1691

155
1691

 ,

2. DM∆∞ =

 0.0175664583978446 0 0
0 0.0439013885141853 0
0 0 0.129669409149472

 .

3. P =

 0.492115662759820 −0.856262698599654 −0.156959757159834
0.664928628967863 0.486100824357473 −0.567076632295043
0.561864834700000 0.174700256800000] 0.808571411300000

 . We see

DM∆∞ = P−1M∆∞P. (60)

4. We proceed using the Lagrange method on the standard form, or XMλX
t = 1 below:

x2(√
1
λ1

)2 +
y2(√

1
λ2

)2 +
z2(√

1
λ3

)2 = 1 (61)

5. The plane equation that will intersect XMλX
t = 1 at a circle(√

(b2 − c2) (a2 − b2)c

(b2 − c2) a

)
x+ z = 0, or (62)

0.5541194455x+ z = 0. (63)



6. The intersecting curve between XMλX
t = 1 and plane is γ1(t) ∪ γ2(t), with γ1(t) =

r1(t) ∪ r2(t) and γ2(t) = r3(t) ∪ r4(t), where t ∈ [0, 2π] and

r1(t) =
(
t, 1.138916142 · 10−9

√
−1.007646405 · 1018t2 + 1.756055540 · 1019,−0.5541194455t

)
,

r2(t) =
(
t,−1.138916142 · 10−9

√
−1.007646405 · 1018t2 + 1.756055540 · 1019,−0.5541194455t

)
,

r3(t) = −r1(t),

r4(t) = −r2(t).

7. The vector vm = (0, b, 0)t = (0, 4.772664123, 0)t. After solving the Lagrange equation, we
obtain

−→vL = (x1, y1, z1)t (64)

=

 6.284852576
0

1.536520588

 .

8. The unit normal vector for the plane is −→n = (0.484682749365491, 0, 0.874690020900000)t ,
and

−→vP = (‖−→vL‖ cos θ)−→n (65)

=

 2.12782456791426
0

3.84001064246040

 ,

where θ is the angle between −→vL and −→n . Furthermore, we have
−→v⊥ = −→vP ×−→vm (66)

=

 −4.17460168123777
0

2.31322796879084

 .

9. We depict the sheared ellipsoid (fromMλ) in blue, the intersecting curve γ1(t)∪ γ2(t) (in
red), and vectors, −→vP (in black), −→vm (in yellow), and −→v⊥ (in red) respectively in Figure 5
below:

Figure 5. Sheared ellipsoid,
intersecting curve and
respective axes.



10. Now the matrix sheared matrix T for Mλ is

T =

 0.541053294104186 0 −0.828245082577262
0 1 0

0.254311294151032 0 1.45894670583444

 ,

11. We remark that if the ellipsoid XMλX
t = 1 is ∆0 =


√

1
λ1

cos(u) sin(v√
1
λ2

sinu sin v√
1
λ3

cos v

. Then T (∆0)

is the tilted ellipsoid of ∆0 with a circle cross section. Furthermore, P (T (∆0)) is the
tilted ellipsoid of ∆∞ with a circle cross section. If the intersection curve between ∆0

and T (∆0) is γ1(t) ∪ γ2(t), then the intersecting curve between P (T (∆0)) and ∆∞ are
Pγ1(t) ∪ Pγ2(t). We depict the pictures for ∆∞ (in green), P (T (∆0)) (in blue) and
Pγ1(t) ∪ Pγ2(t) (in red) respectively in Figure 6.

Figure 6. P (T (∆0)) , ∆∞,
and Pγ1(t) ∪ Pγ2(t)

6 Conclusion

We hope that the linear transformation LE described in this paper will link to interesting areas
in projective geometry. Those three questions listed in (1), (2) and (3) provide good exploratory
activities to those students who have learned multi-variable calculus and introductory linear
algebra. Some natural and extended areas for readers to explore are the followings:
There are more areas need to be further investigated. For example, we recall that LE :

Σ→ ∆∞ is a bijection when the parameters a, b, c, s, u0 and v0 are given for LE. Consequently,
the implicit form of the locus ellipsoid of LE(Σ) is uniquely determined and can be represented
by a positive and symmetric matrix M as seen in (12). Conversely, if ∆∞ is given by such a
matrix M , then it is hard to find a, b, c, s, u0 and v0 for such projective linear transformation
LE.
Since an ellipsoid can be thought as the image of the unit sphere under a linear transforma-

tion. After writing the image ellipsoid as a quadratic form of XMX t = 1 for some matrix M
with X = [x, y, z], one may study how we can decompose the matrix M as M = TRD, where
T is a sheared map, D is a dilation and R is a rotation, see ([5]).



We recall that the locus problem was originated from a college entrance exam (see [7]).
With the help of technological tools, the problem was extended to more challenging forms
as seen in ([8]), ([9]), and ([10]). Consequently, the explorations lead us to deeper areas in
projective geometry, algebraic geometry and etc. We hope that when mathematics is made
more accessible to students, it is possible more students will be inspired to investigate more
challenging areas in mathematics. We do not expect that exam-oriented curricula will change
in the short term. However, encouraging a greater interest in mathematics for students, and
in particular providing them with the technological tools to solve challenging and intricate
problems beyond the reach of pencil-and-paper, is an important step for cultivating creativity
and innovation.
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8 Supplementary Electronic Materials

[S1] A GeoGebra file to explore a given ellipsoid and its locus.

[S2] A Maple file for (5)-computing intersecting curve between the ellipsoid and its locus, and
etc.

[S3] A Maple file for (6)-a tilted ellipsoid.
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