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Abstract: Recent years in Mathematics Education research saw the emergence of ‘Big Ideas in 
Mathematics’ and ‘Computational Thinking’ as two areas of intense research. This paper 
highlights the technological and pedagogical affordances of electronic spreadsheets, which make 
them a convenient and practical technological nexus between ‘Big Ideas in Mathematics’ and 
‘Computational Thinking’ in a Mathematics classroom.  To demonstrate how such a connection is 
realized in authentic classroom settings, some instructional exemplars that have been designed and 
deployed in Asian (senior) high schools are provided here. Our present approach for generating 
such mathematics lessons may be considered as one of the ways for mathematics teachers to 
transform their understanding of big ideas of mathematics into tasks and lessons in the classroom. 
      
1.  Introduction: Big Ideas of Mathematics and Computational Thinking 
In recent years of Mathematics Education research, two areas of intense research started to emerge, 
namely, ‘Big Ideas in Mathematics’ and ‘Computational Thinking’.  As defined in Charles (2005): 

A big idea is a statement of an idea that is central to the learning of mathematics, one that links 
numerous mathematical understandings into a coherent whole. (p. 10) 

Several countries have begun to emphasize not only a need for their teachers “to understand big 
ideas of mathematics and be able to represent mathematics as a coherent and connected enterprise” 
(National Council of Teachers of Mathematics 2000, p. 17), but also for students of this age to 
understand “the connections of mathematical concepts and their application in their world as a 
motivation to learn” (Australian Curriculum Assessment and Reporting Authority 2013).  For 
instance, in Singapore the big ideas in mathematics are articulated explicitly in the 2020 
Mathematics document (Ministry of Education, 2018) as a set of eight big ideas that are very much 
aligned with Charles’s (2005) definition: Big Ideas about (1) Equivalence, (2) Proportionality, (3) 
Invariance, (4) Measures, (5) Functions, (6) Notations, (7) Diagrams, and (8) Models.  It is 
envisioned that teachers, by organizing their teaching around these big ideas, may be able to focus 
their efforts on supporting their students to make connection among these ideas – this very ability 
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of making connections has earlier been identified as a positive indicator for students’ understanding 
(Hiebert and Carpenter, 1992). 

Concurrently, computational thinking has repeatedly been featured in mathematics curricula 
and teaching standards worldwide.  For example, the new PISA 2021 draft spells out computational 
thinking skills as an essential skill set which is expected to be mastered by the 21st century student.  
Cognizant of the growing role of technology in students’ lives, PISA 2021 also acknowledges that 
the “long-term trajectory of mathematical literacy should also encompass the synergistic and 
reciprocal relationship between mathematical thinking and computational thinking” (OECD, p.7).  
While Papert’s (1980) original use of ‘Computational Thinking’ stressed on computational 
representations for highlighting and accessing powerful ideas, Wing’s (2006) latter popularization 
of this term focused on the attributes of this paradigm, i.e., decomposition, pattern recognition, 
abstraction and algorithm design.  Notably, Ho et al (2019) used those Computational Thinking 
Practices first proposed by Hoyles and Noss (2015) and Tabesh (2017), i.e., Pattern recognition 
(seeing a new problem as related to previous problems), Abstraction (seeing a problem at diverse d 
levels of detail), Decomposition (solving a problem comprises solving a set of smaller problems), 
and Algorithm design (seeing tasks as smaller associated discrete steps), as operational labels in 
lesson designs that incorporate computational thinking into mathematics teaching and learning.  
Recently, practitioners have broadened the meaning of ‘Computational Thinking’. Sanford (2018), 
describes it as “a partnership of human mind and digital machinery” (p. 104); thus implying that 
one of the goals of education would be for students to think of digital aid as “just part of a natural 
process as common as using a pencil or a reference book” (p. 104).   See Chan et al (2022) for a 
thorough and recent survey on the tools and approaches for integrating computational thinking and 
mathematics. 

Although it is intuitive that there should be some linkages between the applications of ‘Big 
Ideas in Mathematics’ and of ‘Computational Thinking’ to Mathematics Education, a thorough 
search reveals the paucity of literature lying in their intersection. Encouraged by the theme 
‘Connecting All Applications to Mathematics and Technology’ of the 27th ATCM, the authors 
propose a nexus between ‘Big Ideas in Mathematics’ and ‘Computational Thinking’ by appealing 
to the technological and pedagogical affordances of electronic spreadsheets (Microsoft Excel being 
a common prototype).  Such a connection would enable instructors of mathematics to design and 
deploy mathematics lessons which exploit electronic spreadsheets as the vehicle to achieve 
simultaneously the educational goals of ‘Big Ideas in Mathematics’ and ‘Computational Thinking’.  
The purpose of this opinion paper is to persuade our readers that one possible and practical link 
between ‘Big Ideas in Mathematics’ and ‘Computational Thinking’ – too seemingly disjoint topics 
in Mathematics Education research – can be made through the technology of electronic 
spreadsheets.  Apart from building this theoretical bridge, we are motivated by practical concerns; 
one of which is aptly articulated by Choy (2019) – “besides grappling with the definitions of big 
ideas, teachers also have to deal with the challenges of transforming their understanding of the big 
ideas into tasks or lessons” (p. 107).  Our theoretical consideration gives rise to practical ways of 
generating spreadsheet-based lessons to tackle such practice-related challenges.    

This paper is organized as follows. In Section 1, we motivate our scholarly discussion.  
Section 2 expounds on those technological affordances of electronic spreadsheets, which connect 
with certain big ideas in mathematics.  Section 3 translates these connections into actual classroom 
implementation revealing the pedagogical affordances of spreadsheets. We adapt a task design 
schema developed by Ho et al (2021) that teachers can use to design lessons and tasks aimed at 
invoking big ideas in mathematics and computational thinking.  Using this schema, we construct 
two instructional exemplars: Number Patterns Problem and Spaghetti Problem which have been 



designed and deployed in authentic school settings of the authors’ respective countries.  Lastly, we 
make some concluding remarks in Section 4.  In this paper, we shall use Microsoft Excel as the 
illustrating software for electronic spreadsheets due to ease of access by teachers and students in 
most countries; whence, we waste no time to explain basic MS Excel terminology. However, the 
instructional exemplars may be deployed using other spreadsheets such as Google Sheets. 
 
2.  Technological affordances of spreadsheets and big ideas in mathematics 
 
2.1  Numbers, The Base Ten Numeration System, Equivalence, Relations and Functions 
Charles (2005) singles out Numbers as the Big Idea #1 which focuses on the infinitude of real 
numbers, each corresponding to a unique point on the number line (p. 12).  We are reminded of the 
set of counting numbers (1, 2, 3, …), that of whole numbers (0, 1, 2, 3, ….), and two further 
extensions, namely, that of integers and rational numbers.  Thus, a minimum requirement for any 
computing device is its ability to store and calculate with these numbers.  Other than this basic 
capability, MS Excel can assign formats (number, currency, date, time, percentage, fraction, 
scientific, text) to any number located in a cell (see Figure 1 (left) for various formats of 0.14). 
 

             
Figure 1.  The number ‘0.14’ in various formats 

 
A student’s entry of 14/100 (fraction format) into C4 was automatically expressed as 7/50; 

this automated conversion presents her a chance to encounter Equivalence (Big Idea #3) – the idea 
that “any number … can be represented in an infinite number of ways that have the same value” 
(Charles 2005, p. 14).  Changing the format of C4 from fraction to number (specified to 2 decimal 
place) converts the fraction 7/50 back to 0.14, affirming her that 7/50 is equivalent to 0.14.  Not all 
the formats of 0.14 are equivalent: for example, 1.4E-01 (A7), being the standard form notation 

 of 0.14 in Excel, is equivalent to 0.14 but 0.14% (B4) is not.  Exploring number 
formats reminds the learner that a real number can corrected to a specified accuracy of decimal 
places, thus reinforcing one’s understanding of Big Idea # 2 Base Ten Numeration System which is 
summarized by Charles (2005) as the “base-ten numeration system extends infinitely to very large 
and very small numbers (e.g., millions & millionths)” (p. 14).  The opportunistic teacher may also 
heighten his students’ curiosity by asking why A4 reads as “3:21 AM”.  Finally, when the student 
replaced “0.14” by another number in A1, entries in B1, C1, A4, B4, C4, A7, B7 and C7 were 
automatically updated.  This phenomenon teases out Relations & Functions (Big Idea #12), which 
highlights that “mathematical rules (relations) can be used to assign members of one set to 
members of another set” (p. 18, Charles, 2005), accounting for dependencies among cells.   



This simple number-format facility of Excel (when exploited in the lesson) offers several 
opportunities to engage learners in mathematical thinking, leveraging on certain big ideas in 
mathematics.  Excel has two important features.  Firstly, Excel facilitates computation as can be 
seen from its ability to express “0.14” in various formats and to create functional relations between 
cells.  Secondly, Excel helps learners forge their big ideas in mathematics through the creation of a 
meaningful product (yes, the spreadsheet!).  Forging big ideas involves ‘acting out’ mathematical 
thoughts through treatment, transformation, organization, presentation and analysis of relevant data 
within some given contexts. Reminiscent of the “Act-It-Out” heuristic on Mathematical Problem 
Solving (Toh et al, 2011), this second aspect opens a door to using “computational thinking to forge 
ideas” (Papert, 1980) and creates an environment to improve one’s learning through the act of 
“constructing a meaningful product” – the core of Papert’s constructionism (Papert, 1996).  In 
short, electronic spreadsheets possess simultaneously the technological affordance of computation 
and the pedagogical affordance to forge big ideas in mathematics that, through intentional 
instructional design, can help students learn mathematics.  We now dig deeper by pairing up those 
specific technological capabilities of the Excel spreadsheets with their corresponding big ideas in 
mathematics. 

 
2.2  Variable, Equations and Inequalities 
Letters are used in mathematics to represent unknown in equations and form algebraic expressions.  
This spells out Big Idea #10 Variables (p. 18, Charles, 2005). Together with the concept of function 
in Big Idea #12 Relations & Functions, variables are used to build mathematical relationships – the 
value of one quantity depends on the value of the other quantity. In Excel, one can define the 
content of a cell in terms of others, treating them as variables.  Take for example the equation 

 that connects the variables x and y, where x ranges over .  In Excel, a 
table of values is drawn up as in Figure 2 to demonstrate how the variable y is written as a function 
of the variable x, simply by allocating range A2:A8 of cells headed by “x” as instances of x and the 
corresponding range B2:B8 headed by “y” as instances of y.  The relationship between the cells in 
these ranges is typified by that of the first pair of cells, namely A2 and B2, where B2 is assigned 
the value obtained by squaring the value found in A2, i.e., B2=A2^2 (Figure 2, left).  In fact, we 
see that Big Idea #13 Equations (and Inequalities) (p. 19, Charles, 2005) comes into the picture 
here as an equation has been set up to define the assignment of values to variables, where variables 
are denoted by cell references in Excel.   

Excel has a powerful tool called the fill handle – appearing as a small square in the bottom-
right corner of the selected cells (see Figure 2, right).  By clicking, holding and dragging the fill 
handle until all of the cells one wants to fill are selected, the same function applies to selected series 
of cells “but transposes the cells references as one fills up, down or across” (p. 7, Marley-Pane and 
Dituri, 2019).   

      
Figure 2.  Assignment of values in cells using variables, equations and fill handle 

 



For example, after dragging the fill-handle through the range B2:B8, all the cells in this range 
would be designated the square of the values entered in the corresponding cells in the range A2:A8; 
in particular, B5=A5^2.  The workings and power of the fill function are discussed in Baker and 
Baker (2010), and why this feature makes spreadsheets a technology well-suited to mathematics 
education has been expounded by several authors (Marley-Pane and Dituri, 2019; Abramovich and 
Brantlinger, 1998).  Hvorecky and Trencansky (1998) explained that the fill function essentially 
characterizes the manipulation with spreadsheet values in three steps: “(1) The initialization of (a 
relatively small number of) cells, (2) the definitions of relationships between initialized cells and 
selected ones, and (3) spreading of the relationship through the sheet” – whence, “spreadsheet”. 
 
2.3  Comparison, Inequalities, Estimation 
Excel can carry out Boolean-valued comparisons between two numbers using the inequalities “<” 
(less than), “>” (greater than), “<=” (less than or equal to) and “>=” (greater than or equal to).  For 
example, in Figure 3, various comparisons have been made between the values of “x” and “y” and 
presented in the corresponding columns; for example, C2=(A2<B2). This capability allows the 
student to realize Big Idea #4 Comparison, where numbers, expressions, and measures can be 
compared by their relative values (p. 14, Charles, 2005). Estimation by rounding up (respectively, 
down), to nearest multiple of a given number, in Excel is possible via the floor function 
(respectively, ceiling function); for example, G2=FLOOR(A2,1) rounds down the value in A2 to 
the nearest integer and H2 = CEILING(A2,0.01) rounds up the value in A2 to the nearest multiple 
of 0.01 (see Figure 3).  At this juncture, the teacher can challenge his students to devise a simple 
formula for correcting a number to the nearest integer; e.g., 2.4 is corrected to 2 while 2.6 to 3. 
 

 
Figure 3.  Comparison and estimation in Excel 

 
2.4  Data Representation and Data Distribution 
Excel can display visual representations, e.g., charts, box-and-whisker plots, scatter plots, and 
graphs. Figure 4 (left) shows a histogram obtained by highlighting the frequency table in the range 
B2:C7. Figure 4 (right) shows how a regression line (with its equation) and  (the square of the 
Pearson’s linear correlation coefficient) can be calculated for a bivariate data set (ranging over 
A2:B7), together with its scatter plot.  This technological affordance of the spreadsheet relates to 
Big Idea #19 Data Representation (Charles, 2005), where data can be represented visually using 
tables (an intrinsic advantage of spreadsheets), charts, and graphs (p. 21). 

      
Figure 4.  Visual representations (histogram, scatter plot) of data in Excel 



Additionally, Excel has inbuilt functions to calculate mean, mode and median.  Figure 5 shows how 
these three measures of central tendency for the data set {1.1, 1.1, 1.5, 1.6, 2.1, 2.1, 2.1, 3.4} can be 
calculated: B3 = AVERAGE(B1:B11), B5 = MODE(B1:B11), and B7 = MEDIAN(B1:B11).  It 
also can calculate the standard deviation: E3 = STDEV(B1:B11).  This feature of Excel can be 
paired with Big Idea #20 Data Distribution, where there are special numerical measures that 
describe the center and spread of numerical data sets (p. 21, Charles, 2005). 
 

 
Figure 5.  Inbuilt functions to calculate Mean, Mode, Median and Standard deviation 

 
2.5  Spreadsheet features as building blocks that enable computational thinking practices 
The simplicity and power of the above Excel features – like Lego© blocks of big ideas in 
mathematics – enable one to build complex instructional tools, for specific learning purposes, out 
of these ‘atomic’ technological affordances.  In this way, we see that the aforementioned 
spreadsheet features provide a sandbox for students to practice their computational thinking.  
Spreadsheets thus become a practical way for both teachers and students to harness the symbiotic 
power of big ideas in mathematics and computational thinking.      
 
3.  Pedagogical affordances of spreadsheets and some instructional exemplars 
We now address Choy’s (2019) problem: “teachers … have to deal with the challenges of 
transforming their understanding of the big ideas into tasks or lessons” (p. 107). 
 
3.1  Task design schema 
Task design schemas can create cognitive shortcut for the task designer so that the specific task 
design that leverages on computational thinking can be stored and retrieved from the designer’s 
long term memory efficiently (Ho et al, 2019).  Here we propose a modified four-stage schema 
suited for our current purpose (Figure 6). 
 
 
 
 
 
 
 

Figure 6.  Task design schema: Leveraging big ideas in mathematics and computational thinking 
 
Identifying the big idea and teaching strategy.  When planning an instructional package to teach 
a certain topic, the instructor naturally examines the entire topic to identify the big idea in the topic.  
The instructor then decides on an appropriate instructional strategy for the lesson or task. 
Starting with a spreadsheet design.  The lesson or task will involve certain data to be organized 
in tables, i.e., certain identified fields with appropriate headers. What are the underlying 
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relationships between cells in this spreadsheet? Which visual representation of the data is 
appropriate for the lesson or task to bring out the big idea in an impactful manner?  
Building an Excel spreadsheet exemplar.  Which technological affordances of spreadsheets can 
be exploited in connection to the identified big idea in mathematics? The Excel spreadsheet 
exemplar will be the meaningful product to be constructed by the students or used by the teacher.  
In what way is this a meaningful product?  What role does the spreadsheet play in lesson delivery? 
Meeting the learning objective.  Does the Excel exemplar engage the students in deepening the 
understanding of the relevant concepts in the topic?  At this stage, the instructor reflects on the 
design of the lesson and task in connection with the manufactured exemplar as well as whether the 
lesson meets the intended learning objective. 
 
3.2  Two instructional exemplars 
In this subsection, we describe two instructional exemplars that made essential use of Excel 
spreadsheets.  Both the lessons have been implemented over two 90-minute sessions in schools 
from two different countries, namely, Singapore (Number Pattern Problem) and India (Spaghetti 
Problem).  In our description we use the task design schema for designing the lesson, leaving out 
issues of efficacy (see Chan et al (2021) for discussion of the efficacy of the first implementation). 
 
3.2.1  Number Pattern Problem: Learning algebra by Grade 8 students  
Identifying the big idea and teaching strategy.  In this lesson, we harness on the link between Big 
Idea #9 Patterns and Computational Thinking (focusing on Pattern Recognition and Abstraction).  
One of the subtopics in Number Topics (Grade 8, Singapore) involves writing down an algebraic 
expression that represents the nth term of a number pattern sequence (Ministry of Education 2018). 
Typically, a diagram showing the first three patterns (of dots) in a sequence is given (see Figure 7).  
The students are asked to recognize the progression of number pattern by drawing out the next few 
patterns, e.g., Pattern 4.  The learner is to write down the general formula for the number of dots 
found in Pattern n, in terms of n.  This learning objective is aligned with the big idea statement for 
Patterns that “relationships can be described, and generalization made for mathematical situations 
that have numbers or objects that repeat in predictable ways” (p. 17, Charles, 2005). 
 
 
 
 
 
 
           Pattern 1                      Pattern 2                         Pattern 3                            Pattern 4 

Figure 7.  A number pattern sequence. 
Starting with a spreadsheet design.  In a typical lesson, students will be asked to complete a table 
as shown in Table 1.   
Table 1.  Number of dots in the nth number pattern 

Pattern number n Number of dots Tn 

1  
2  
3  
4  

This tabular form suggests spreadsheets are an ideal technological nexus between big ideas in 
mathematics and computational thinking.  Here we deviate from the usual lesson task.  Our lesson 

 
? 



design is aimed to help an experimental group of seventy Grade 8 students from a Singapore 
secondary school deepen their understanding of number patterns in two ways.  Firstly, recursive 
relationships provide an algorithmic way to compute accurate numerical solution to this problem, 
even if the closed formula is not observed by the students.  Secondly, the graphical features of the 
spreadsheet can be employed to analyze the relationship between n and Tn and even predict Tn 

A spreadsheet approach is ideal for the purpose of teaching number patterns via recursion as 
advised by Hvorecky and Trencansky (1998). Here we adopt Papert’s constructionist approach, i.e., 
the students learn the big idea of Patterns by using the technological affordances of fill form in 
Excel spreadsheets. In our ensuing description of the instructional design of this spreadsheet 
exemplar, we make use of the labels for Computational Thinking (CT) Practices, denoted by 
[Pattern recognition], [Abstraction], [Decomposition], [Algorithm design], to operationalize the 
definition of Computational Thinking in conveying Big Idea #9 Patterns. 
Lesson induction  [Pattern recognition] The students worked in pairs and set up a driver-navigator 
role, i.e., the driver is the one who will work on the spreadsheet, e.g., typing the codes in the cells, 
while the navigator will give the needed instructions and directions for the driver.  Augmenting to 
the spreadsheet, students are also given physical hands-on worksheet to complete certain tasks on 
pen-and-paper form. The lesson began with showing a video about patterns and how they are 
ubiquitous in real world.  Students began to recall prior knowledge about number patterns (acquired 
in their primary school mathematics). 
Development (I)  [Algorithm Design] Students were explicitly taught the concepts of CT, which is 
a way of thinking and solving problems through the use of the computers.  This was intended to 
give an experiential emphasis on the partnership between the human and the digital technology in 
problem solving (Sanford, 2018).  Here the lesson objective was made clear to the students, i.e., (a) 
learn to generate number patterns using spreadsheets, and (b) construct the general term of a given 
number pattern. 
[Pattern recognition & Algorithm design]  The teacher demonstrated how Excel spreadsheets work 
by introducing spreadsheet as a large array (or matrix) of boxes called cells, i.e., in the same spirit 
as (Hvorecky and Trencansky, 1998).  Each cell was a place to store a datum and is referenced 
using its coordinates – a concept learnt in mathematics and also one which ties in with Big Idea #15 
Orientation and Location (articulating that objects in space are oriented in an infinite number of 
ways, and an object’s location in space can be described quantitatively).   
 
Building an Excel spreadsheet exemplar.  Instructions are then given for the students to key in 
words in cells, e.g., heading “Pattern number (n)” in A1, and the number ‘1’ in A2.  Crucially, to 
generate the list of consecutive counting numbers 1 to 10, the teacher demonstrated the use of the 
fill handle by transposing the formula in A3 = A2 + 1 to the rest of the cells in range A2:A11.  The 
students are then taught the recursion method for number patterns; precisely, in this case, the 
counting numbers are generated recursively by the rule of successor, i.e., .   
Development (II)  In this part of the lesson development, the students are to focus on the CT 
Practice of Algorithm design.  The end goal is for them to create an algorithm that calculates the 
nth term of the number pattern sequence based on the questions crafted on a physical worksheet, 
the first part of which comprises the number patterns shown in Figure 7, and the table to be 
completed as shown in Table 1.  The important difference here is that they complete the table by 
partnering with the computer, i.e., they do not carry out the menial task of computation by their 
human effort.  In order that the students knew the end goal, i.e., the final useful product – the Excel 
exemplar, they would be shown what this final product looked like on the screen (Figure 8). 



 
Figure 8.  Final product of the Excel exemplar 

 
The students are guided to apply the CT practice of Decomposition, addressing sub-tasks: (1) What 
is the starting number (which cell and what to initialize)? (2) How to use the recursive method to 
generate the number pattern? What is the algebraic formula for the recursive rule? Using the 
answers to (1) and (2), students used their spreadsheet to find the 10th and 100th term. 
Development (III)  When the number n gets larger, the recursive method will be troublesome to 
use, even though we have a spreadsheet for it.  Thus a (closed) formula in terms of n is a direct and 
faster method.  To find such a direct relationship between n and Tn the students drew a scatter plot 
as a graphical representation to show the underlying pattern (Figure 9).  
  

 
Figure 9: Scatter plot used to reveal the algebraic relationship between Tn and n 

 
[Pattern recognition & Abstraction] The students invoke Big Idea #9 Patterns (via multiple 
representations -pictorial, tabular, graphical) to observe a linear relationship between the two 
variables (a straight line passes through all the points in the scatter plot).  The teacher then helped 
students transit from the concrete case for n = 10 (Figure 10, left) to the abstract one for a general n 
(Figure 10, right). 

                         
Figure 10: Engaging the CT Practice of Abstraction 

 
After the students managed to derive the equation  they used the 
spreadsheet (see Figure 11) to create a new column C for the number of dots Tn that is generated by 
the closed formula, say C2 = 4*n+2.  The students then check that the values of Tn derived 
recursively (B2:B11) – in the first part of the lesson – and those directly using the closed formula 
they obtained (C2:C11) are equal (see the “True” values appearing in D2:D11 as a result of 
comparing for equality, e.g., D2 = (B2 = C2), …, D11 = (B11 = C11)).  Even if students do not 



manage to derive Tn initially, they can test different formulae for column C, and check the results.  
This enables students to experience yet another key practice in computational thinking, namely 
testing and debugging.  The derived formula was then applied to find T100. 
 

 
Figure 11.  Comparing the two different methods of calculating Tn 

 
Meeting the Learning Objective.   
Consolidation: The students are guided to realize that a number sequence, such as Tn, may be 
defined by recursion and hence calculated recursively (say, using the spreadsheet) or by a closed 
formula directly in terms of n.  In the event a closed formula is unavailable, recursion provides an 
easy and fast numerical solution of the problem by exploiting computational thinking and the big 
idea of Patterns in the environment of spreadsheets.    
 
3.2.2  Spaghetti Problem: An exploration of Probability by Grade 11 students 
Chance (Big Idea #21) is an important idea in mathematics.  Charles (2005) states that “the chance 
of an event occurring can be described numerically by a number between 0 and 1 inclusive and 
used to make predictions about other events” (p. 21).  Such a number is referred to as probability of 
the occurrence of an event. To demonstrate this big idea, it is of paramount importance that the 
mediating technology – electronic spreadsheets – has the facility for simulating random events to 
which we may assign their probabilities.  One of the powerful features of Excel is its ability to 
generate random numbers, which enables the user to simulate problems based on chance.  
 
Identifying the big idea and teaching strategy.  This can be very useful for students at the senior 
secondary school level who study the topic of probability as a part of the curriculum. Most of the 
problems in the textbooks relate to tossing of coins, rolling of dice or selecting cards from a 
standard deck. These seem a bit contrived; thus, not providing sufficient motivation for students to 
learn. Interesting problems centered on probability abound and can be used to enliven the 
probability class. In this subsection, we describe how twenty-six grade 11 students of a school in 
New Delhi explored the Spaghetti Problem. We shall illustrate the pedagogical approach adopted 
by the teacher in facilitating students’ explorations by first helping them to mathematize the 
problem and then simulate it using Excel. The exploration through guided discovery (Bruner, 1961) 
was completed in two 90-minute sessions. The following problem was posed: 
 
Spaghetti Problem.  A spaghetti stick of length L is randomly broken into three pieces. What is the 

probability that the three pieces will form a triangle? 

 



Lesson induction:  Prior to the activity each student was asked to bring a few spaghetti sticks to the 
class. At the beginning of the first session, they tried to break each stick into three pieces and 
arrange them to form a triangle. A few cases resulted in triangles while others did not. After a few 
trials many students conjectured that the probability of a triangle being formed is ½.  
Development (I)  [Decomposition] The teacher asked the students to come up with a condition, 
which would help determine if the three broken spaghetti pieces form a triangle. To steer their 
thinking, the teacher asked, “given three lengths, how can you check if a triangle is formed? Can 
you relate this to something you have studied in your earlier classes?” This cue immediately 
elicited a response from some students: “The sum of the length of any two pieces must be greater 
than the third”. Many seconded this observation by relating to the triangle inequality learnt in grade 
9.  In order to apply the triangle inequality to the Spaghetti problem, the teacher encouraged the 
students to use algebra to come up with inequations to model the problem. The lengths of the three 
pieces were taken as x units, y units and (L – x – y) units respectively (since the problem mentions 
the length of the stick to be L units). With some scaffolding, students used the condition that the 
three pieces will form a triangle if the sum of lengths of any two pieces is greater than the third to 
arrive at inequalities (1) – (3), which can be reduced further to (4) – (5) below: 
 x + y > L – x – y  (1) 
 x + (L – x – y) > y  (2) 
 y + (L – x – y) > x  (3) 

 x + y > L/2  (4)  
 y < L/2   (5)  
 x < L/2   (6) 

Students acknowledged that the variables x and y must be greater than 0 and less than L. They 
argued that neither lengths, x or y, can exceed L units. Students visualized the situation by 
considering specific values of x, y and L.  Finally, they concluded that 0 < x, y < L. 
Development (II)  [Abstraction] At this point the teacher encouraged students to think of the 
lengths of the pieces x and y as being an ordered pair. The realization that each broken stick can be 
associated with an ordered pair of numbers (x,y) and can be represented as a point on the 
coordinate plane led to much excitement among students. They were familiar with the concept of 
ordered pairs from their study of coordinate geometry. Further, using ordered pairs to represent 
broken spaghetti sticks, presented them with a novel way of representing and thinking about the 
problem opened the door to a new kind of exploration. Students agreed that since x and y are 
greater than 0, all these points will lie in the first quadrant of the coordinate plane. Also, the 
inequalities (4), (5) and (6) represent those ordered pairs (x,y) which lead to the formation of a 
triangle. In their curriculum they had learned to graph linear inequations. The first step was to 
graph the equations x + y = L/2, x + y = L, x = L/2 and y = L/2 which led to Figure 12.  

 
Figure 12. Students graphed the equations emerging from modeling the Spaghetti problem 

The next step was to find the common feasible region which satisfied the inequations (4), (5) and 
(6). A majority of the students were able to conclude that the common region is the triangle DEC. 
The teacher guided the others who were unable to reach this conclusion on their own. It was 
reiterated that the common region DEC represented only those ordered pairs (x,y) or broken 
spaghetti sticks from which triangles could be formed. 

The next question was – what does triangle OAB represent? This led to plenty of discussion 



in the class. Some students suggested that broken sticks would lead to points which lie on the “left 
side” or “lower side” of the line x + y = L (They were referring to the side containing the origin). 
This led to the conclusion that every time a spaghetti stick is broken, the corresponding ordered pair 
(x, y) will lie on or inside the triangle OAB.  

The teacher asked, “what will happen if we break a large number of spaghetti sticks into 
three pieces each?” After some discussion students arrived at the conclusion that this would lead to 
a large number of points inside the triangle OAB.  Then the ‘aha’ moment of the class happened 
when the students realized that only those points that actually lie on or inside triangle DEC 
represent cases where a triangle can be formed. The teacher then emphasized that if a sufficiently 
large number of spaghetti sticks are broken such that their corresponding ordered pairs (x,y) fill up 
triangle OAB, then the fraction of those that form triangles will be given by: 

 
Thus, for a sufficiently large number of broken sticks, the probability of a randomly broken stick 
(into three pieces) forming a triangle will be given by Area of triangle CDE/Area of triangle OAB.  
After this, it was a matter or working out the algebra. Students worked out the areas of the two 

triangles and arrived at the classical or theoretical probability, i.e., ¼ via   =  

A few students pointed out that triangle OAB is divided into four congruent triangles which 
included triangle DEC. Thus, the probability of ¼ was an obvious conclusion, which could be 
reached without even working out the areas of the triangles!  The conclusion that the theoretical 
probability of a randomly broken spaghetti stick, into three parts, forming a triangle is ¼ came as a 
surprise to those students who had initially conjectured the probability to be ½. The few students 
who were still not convinced and said that they would actually like to break many sticks to see if 
the proportion of broken sticks forming triangles is close to 0.25. However, others declared such a 
feat to be impractical. Questions arose such as: “How many sticks should we break to verify the 
answer? What would be an optimum number of sticks?” For the teacher, this was another high point 
of the class. This seemed to be the most appropriate time to encourage students to simulate the 
problem on a spreadsheet. 
 
Starting with the spreadsheet design.  What should go into the spreadsheet? 
Development (III)   [Decomposition] The first thing to do is to decide what data determines the 
random event of breaking a given piece of spaghetti stick at two points (to yield three pieces).  
Figure 13 shows possible positions of the breaking points X and Y: 
 
 

Figure 13.  Possible breaking points P and Q on a given spaghetti stick. 
The point X may be thought of as the point of distance X from the left end O, and likewise for Y.  
So these two numbers are randomly generated to give many different scenarios of breaking a given 
spaghetti sticks at two points.  This preliminary thought process yields this simple table. 
 
Table 2.  A simple table listing possible breaking points of a given spaghetti stick 
Spaghetti Number X Y 
1   
2   
⁝   

X Y O 



Building an Excel spreadsheet exemplar.  [Algorithm design] Prior to this activity, the students had 
simulated the roll of a pair of dice using the RANDBETWEEN command in MS Excel. The Excel 
syntax =RANDBETWEEN(1, n) generates a random integer between 1 and n. Thus, Excel was the 
natural choice for simulating the breaking of spaghetti sticks described in the Spaghetti Problem. 
The teacher explained that the lengths of the three pieces represented variables, which were 
generated randomly via RANDBETWEEN.  For convenience, the length of each spaghetti stick 
was assumed to be 100 units and those of the three pieces were a, b and c units respectively. As 
each stick is broken at two points, these “breaking points” were represented by X and Y 
respectively (in the sense of Figure 13). Hence, the smaller of these two would be assigned to the 
first piece a, and the difference |Y – X| be assigned to b. The third piece is of length (100 – a – b). 
Students were encouraged to visualize the process before proceeding with a 7-step simulation: 
Step 1: A column of numbers from 1 to 100 was created in column A to keep track of the 
simulations. (This was done by entering 1 in cell A2 followed by =A2+1 in cell A3. Dragging the 
formula from cell A3 and till cell A101 created the required column of numbers.)  
Step 2: Since the stick is broken at two points, X and Y respectively, the values of these variables 
were obtained by entering =RANDBETWEEN(1,100) in B2 and C2, where entry in B2 
represented X and that in C2 Y. The fill handles at B2 and C2 then produce 100 pairs of X and Y. 
 

 
Figure 14: The RANDBETWEEN command generates two numbers X and Y between 1 and 100. 
Step 3: The smaller of the two numbers X and Y was assigned to a. To simulate this, the following 
conditional formula was entered in cell D2=IF(B2<C2,B2,C2).  
Step 4: After X or Y is assigned to a, the difference X – Y or Y – X was assigned to b. This was 
achieved by entering the following conditional statement in E2=IF(B2<C2,C2-B2,B2-C2).  
Step 5: Finally, simulate the length c of the third piece: F2=100-(D2+E2) at cell F2. 
Once the data was generated (Figure 15), students were encouraged to explain and question 
different aspects of the data. The first observation was that each row of the generated data 
represented one broken spaghetti stick. Students checked each case for the correct output.  
 

 
Figure 15: The pieces of lengths a, b and c are simulated in columns D, E and F respectively. 



Step 6: The next step was to identify those cases in which a triangle was formed. Some students 
explained that if one of the three pieces a, b or c is greater than or equal to 50 units then a triangle 
cannot be formed. They concluded that a triangle will be formed only if the maximum length 
among a, b and c is less than 50 (half the length of the original stick). Alternatively, the students 
could apply the inequalities (4) to (6) to reach the same condition.  This was then translated into the 
formula =IF(MAX(D2,E2,F2)<50,“YES”,“NO”) which entered in G2. This led to the output in 
cell G2 - “YES” if a triangle was formed and “NO” otherwise (Figure 16). 
 

 
Figure 16: The conditional statement =IF(MAX(DE,E2,F2)<50,“YES”,“NO”) was used to verify 
if each row of the simulation represents the formation of a triangle. 
 
Step 7: Finally it was required to count the number of cases in which a triangle was formed 
(indicated by “YES” in column G) to compute the empirical probability. For this the formula 
=COUNTIF(G2:G101,“YES”)/100 was entered in J2. The empirical probability was computed as 

 
 

 
Figure 17: The empirical probability of a triangle being formed in these 100 simulations is 0.28. 

 
Meeting the Learning Objective.  It was emphasized that since each row represents the data of one 
broken stick, the entire data is a simulation of 100 sticks. Each time a cell in the spreadsheet was 
clicked, a new set of 100 simulations would be obtained. The empirical probability would show up 
in cell J2 on their sheet. Students were asked to create 10 simulations each (leading to a total of 
1000 broken sticks) and to note the empirical probability (Figure 17). A student proposed a shortcut 
to this. She suggested that column A should accommodate numbers from 1 to 1000 (in the very first 
step and each formula can be evaluated to arrive at a spreadsheet with 1000 simulations at one go! 
This suggestion was welcomed by everyone. The teacher asked students to compare the empirical 
probability obtained from 100 simulations with that obtained from 1000 simulations. The 
spreadsheet was further modified to accommodate 5000 simulations. A careful observation of the 
data generated led students to conclude that as the number of simulations increases, the empirical 
probability gives a better approximation and is closer to the theoretical probability ¼. 
Consolidation  Simulation enabled the students to explore the Spaghetti problem numerically, 



which would be impossible without a spreadsheet. As a natural extension of the problem, students 
inquired: if a stick is broken into four pieces, what is the probability that they will form a 
quadrilateral? Some ventured to find the answer by extending the spreadsheet simulation for three 
pieces to four pieces to find the empirical probability. Others attempted a theoretical investigation. 
This instructional exemplar resulted in students’ engagement in multiple paths of inquiry. 
 
4.  Concluding remarks 
This paper proposes the use of spreadsheet as a connection between big ideas in mathematics and 
computational thinking, and how such a connection can be translated using a simple task design 
schema to create engaging mathematics lesson activities. Apart from the obvious time-saving 
benefit of using spreadsheets in preference to programming languages and packages (Morshita et 
al, 2001; Baker and Sudgen, 2003), the use of spreadsheet forges a new non-algebraic way of 
learning algebra (Sutherland and Rojano, 1993).  We amplify the versatility of spreadsheets in 
mathematics education by making explicit the link between big ideas in mathematics and 
computational thinking.  By so doing, we hope to encourage teachers to exploit this connection and 
to put it to good use in creating effective mathematics lessons that engage students’ mathematical 
and computational thinking.  In an early paper presented by D’Sourza and Wood (2001) in the 6th 
ATCM, the use of spreadsheets was proposed (theoretically) to improve students’ learning of 
mathematics in a collaborative environment.  Our present paper can be taken as a realization of 
D’Sourza and Wood’s proposal, perhaps taken a step further by considering not just collaborative 
but constructionistic environment – where students are computationally-minded forgers of big ideas 
in mathematics.    
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