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Abstract

Groundwater pollution is a general concern in countries using pumping wells for water
consumption. Also, the determination of protected zone around pumping wells is a prac-
tical concern. The delineation of this zone is frequently obtained using numerical models
such as MODFLOW and or FEFLOW. In this contribution we derived the equation of
the plane curve of the protected zone using a steady state solution of the groundwater
flow equations and the theory of envelopes. Cassini ovals appear in some particular cases,
providing new applications of these plane curves. A Dynamic Geometry System, such as
GeoGebra and/or Desmos, is used to explore the protected zone. A Computer Algebra
System may be used for the computations, in particular to characterise the delineation
curves for the zones of influence for wells.

1 Introduction

Protection of pumping wells from pollution is one of the most important concerns in the modern
management of water resources. In Israel, where almost seventy percent of the available water
comes from groundwater, the protection of production wells against dissolved pollutants is of
critical concern. In the past, well protection techniques have focused on the delineation of
zones of influence of pumping wells using advanced modeling tools. The aim of this paper is to
develop a new approach, based on analytical derivation of the sensitivity of the well locations
to the zone of influence of a series of wells. Figure 1 shows a standard situation with different
kinds of wells.

Inside the zone of influence of a pumping well a particle of polluted species will flow through
the well. On the opposite, a particle of polluted species outside the zone of influence will not
reach the pumping well. Also, in the case of recharging wells the zone of influence of these
wells corresponds to the zone of depollution. For example, in the pump and treat strategy
for depollution of groundwater aquifers, the zone of depollution corresponds to the zone of



Figure 1: Acquifer and wells

influence of the recharge wells. When remediation design of a groundwater site is performed,
the optimal locations of the pumping recharge wells and the pumping rates are certainly the
significant parameters in the design. Therefore, a precise determination of the zone of influence
with respect to the pumping rates and the distance between wells is needed for well design. A
classical approach to delineation of pollution has been to use conceptual groundwater models
such as MODFLOW or FEFLOW; see the USGS webpage devoted to Groundwater Modeling .
These models are based on the analysis of geological, geophysical and geochemical data, without
consideration of groundwater flow. Selection of an appropriate conceptual geohydrological
model, based on hydrodynamics, requires the use of a calibrated three-dimensional flow and
transport simulation for each conceptual scenario. This task, however, is time consuming and
requires rather detailed knowledge of the model’s input parameters. For this reason, a simplified
and less computer-intensive model is useful in providing a good first assessment of the zone of
influence of a polluted well [1].

This is precisely the situation that arises in the observation of source locations of saliniza-
tion in many of Israel’s deep aquifers. When many of the aquifer parameters are unknown or
unavailable, the problem becomes one of identifying a conceptual model based upon the infor-
mation that is available. Measurements, such as wellhead, well concentration, well pumping
rate and the location of the wells must therefore be used to recover more knowledge of the
contaminant transport characteristics.

We explore graphically the influence zones of the wells, using a Dynamic Geometry System,
such as GeoGebra or Desmos. The curves which appear in this exploration are a parameterized
family, containing Cassini ovals as a subfamily. Some envelopes and offsets of these curves
have been studied by in [5]; in the present paper, these ovals are themselves the requested
envelope, but with regards to another definition, as described in Section . The equations have
to be transformed into polynomial equations. For this purpose, the algebraic computations are
performed either with the CAS implemented into GeoGebra, or with another CAS. For this,
we used Maple.

2 Flow equations

Tracing the movement of the elemental area over time, as determined by the flow field, then
generates the particle paths. Because the concentration of the source, denoted by , in the
Lagrangian interpretation of advective transport, is associated with a single particle and equals

 https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs?qt-science_center_objects=0#qt-science_center_objects


that of a particle emerging from the source, it must not change over time. It is therefore easy
to see that the equation for advective transport in the form

DC

DT
=
qs
θ

(Cs − C)

simplifies to become
DC

DT
= 0.

Plainly stated, in purely advective transport the concentration associated with a fluid particle
does not change with time as the particle moves along its path line. Therefore, in a series of
wells, the pollution arrives to the well only when the particle flow through the well inside a
zone of influence of the wells.

2.1 Generation of Flow Field

We begin first with the generation of the flow field from which particle tracking will be com-
puted. Flow fields can be generated either by exact analytical solutions or through the use
of numerical approximations. In the case of two-dimensional flow in a homogeneous single
aquifer of idealized geometry, the solution of steady state flow may be derived analytically
using the potential flow theory as described in [12, 17]. Although analytical techniques have a
greater degree of accuracy, they lack the flexibility to model irregular boundaries and compli-
cated boundary conditions. For irregular boundaries, realistic aquifer geometries and aquifers
with heterogeneous properties, numerical methods are generally used to solve the flow and
transport equations. This document will focus on the combination of analytical and numerical
techniques, or semi-analytical solutions, which are sometimes referred to in the literature as
Analytical Element Methods (AEM).

2.2 Numerical solutions

The two most common numerical techniques for solving groundwater flow equations are the
finite difference (including integrated finite difference of constant volume methods) and finite
element methods [11]. These methods use a series of nodes or elements to solve the governing
equations of groundwater flow and transport. The most significant restriction in numerical
methods is the need to discretize the domain into a three-dimensional network of nodes or
elements. This type of limitation can be lessened by solving regional Dupuit-Forchheimer flow
through superposition of analytic elements, as proven in [16, 9].

In the case of finite differences, the error introduced is that identified with the Taylor
series approximation and will be affected by the size of the discretization and the behavior of
the function being approximated. While finite elements allow slightly more flexibility when
dealing with boundaries and have a similar degree of numerical accuracy, they require more
computational effort and therefor more computer time.

2.3 Analytic solutions

In analytical modeling the flow field is generated by utilizing formal mathematical closed-
form solutions to generate the appropriate flow field. Analytical solutions are restricted to



simple geometries, but provide an extremely accurate way to study the behavior of groundwater
flows under hypothetical conditions. The analytic element method, as developed in [17] for
groundwater flow, uses the method of images and the principle of superposition to produce
flows associated with various aquifer features.

2.4 Steady flow

In the analytical element method, simulation of regional flow is accomplished by using super-
position to combine the equations for the fluid potential for each feature, or element. Features
such as injection wells and pumping wells are simulated by using the equation describing the
fluid potential in an infinite domain for a straight-line source [17] and the method of images.
Derivation of the solution of a straight-line source with a given strength is obtained from the
integration of a point source along a prescribed length. Aquifer heads and flow velocities may
then be obtained by combining the equations of potentials for all of the prescribed elements.

In order to then transform the domain from an infinite region to one that adheres to the
specified boundary conditions, the method of images is used [17]. The method of images
consists of locating image conditions such that the combination of an aquifer feature and its
image produces the desired equipotential. Aquifer heads and flow velocities are, consequently,
obtained by combining the equations for the potentials and the images for all of the prescribed
elements. For features located on the boundary, such as areas of infiltration, special analytical
solutions are used. For example, the modeling of an area of infiltration can be simulated
analytically using the potential for a circle derived by Haitjema [8] or through the use of the
potential for a rectangle derived by Steward [15].

Closed form solutions for circular and rectangular surfaces exist in the form of specified
constant discharges with varying heads. When closed form solutions are not available, one
must apply the boundary element method [11]. The boundary element method combines a
discretized numerical solution on the boundary, with an analytical solution inside the domain,
to model more complicated boundary conditions when combined with general geometries.

3 Definition of the zone of influence

3.1 General setting

Before the pumping starts, the hydraulic head is at a level let say . After the pumping starts
around each pumping well, the drawdown due to the pumping from a groundwater level may
be expressed as in [17]: ∣∣Drawndown∣∣ = |φ(x, y)− φw|

where |Drawdown| is the hydraulic head at a point M(x, y) . The zone of influence of a given
well may be defined as the zone of very small perturbation from the initial groundwater level.
Therefore, the zone of influence or and/ or the envelop of the disturbed zone may be expressed
as: {∣∣∣Drawdown∣∣∣ = |φ(x, y)− φw| < ε

ε� 1



Analytical formula for the computation of the formula is difficult and we propose to use a
Computer Algebra System (CAS) to derive this zone.

3.2 Conceptual Model of the Aquifer

The model developed for identifying salinization sources comprises the following steps and
simplifying assumptions:

(i) The aquifer is modeled as one homogeneous unit of constant thickness with parallel vertical
planar boundaries (box like). Constant head or given flow rates on the boundaries are
selected.

(ii) The wells are represented by singularity lines of known strength while the pollutant source
is represented as an area of given water flux (which may be small). To account for
boundary conditions, appropriate images are added.

(iii) A mean, effective, value of the hydraulic conductivity for the formation is determined by
calibrating computed heads against measured heads at a few points, while also taking into
account that the hydraulic conductivity can be expressed as the ratio between the specific
discharge potential and the pressure head.

(iv) The velocity field is determined analytically by differentiation of the potential and division
of the result by the effective porosity. A simple algorithm leads to the velocity values at
each selected point.

The aquifer to be modeled is considered fully-saturated, confined and incompressible. It is
presumed to be at steady state with a homogeneous hydraulic conductivity. The aquifer is of
constant thickness and contains two impervious boundaries formed by planar surfaces on the
top and the bottom.

3.3 Specific cases

3.3.1 Two wells cases

Derivation of the flow field around a well by analytical methods originates with the solution of
the potential in an infinite domain for a straight-line source [17, 12]. Wells are treated as lines
with a given strength derived from the integration of a point source along a prescribed length.
Consider a two dimensional infinite confined aquifer of transmissivity T and two pumping wells
separated by a distance x0.

1. Same rates:The first well is located at the origin of the coordinates system and both
wells are pumping with the same rate Q. The drawdown due to the pumping from a
groundwater level φw is given by the following equation [17]:

φ(r)− φw =
Q

2πT
ln
R

r
+

Q

2πT
ln
R

r1
,



where R is the radius of influence of both wells, r =
√
x2 + y2 and r1 =

√
(x− x0)2 + y2.

One may express the drawdown as:

φ(r)− φw =
Q

2πT
ln
R2

rr1
.

The zone of influence of the wells corresponds to the domain where φ(r) − φw 6= 0.
Therefore, the boundary of the zone of influence is given by the following equations:{

φ(r)− φw = Q
2πT

ln R2

rr1
= 0

R2 = rr1 =
√

(x2 + y2)((x− x0)2 + y2)
(1)

The last equation defined a family of surfaces with a parameter :

F (x, y, x0) =
√

(x2 + y2)((x− x0)2 + y2)−R2. (2)

2. Different rates: The drawdown due to the pumping from a groundwater level φw is given
by the equation [17]).

φ(r)− φw =
Q1

2πT
ln
R

r
+

Q2

2πT
ln
R

r1
,

One may express the drawdown as:

φ(r)− φw =
Q1

2πT
ln
Rq+1

rrq1
, where q =

Q2

Q1

.

Therefore, the boundary of the zone of influence is given by the following equations:{
φ(r)− φw = Q1

2πT
ln Rq+1

rrq1
= 0

Rq+1 = rrq1 = (x2 + y2)(1/2) ((x− x0)2 + y2)q/2.
(3)

The last equation defined a family of surfaces with two parameters :

F (x, y, x0, q) = Rq+1 − (x2 + y2)(1/2) ((x− x0)2 + y2)q/2.

3.4 A line of wells

Consider a two-dimensional infinite confined aquifer of transmissivity T and a line of n pumping
wells separated by a distance X0. The first well is located at the origin of the coordinates system
and both wells are pumping with the same rate Q. The drawdown due to the pumping from a
groundwater level φw is given by the following equation [17]:

φ(r)− φw =
Q

2πT

n−1∑
i=0

ln
R

ri
,

where R is the common radius of influence of all the wells. We have:

ri =
√

(x− ix0)2 + y2, i = 1...n



One may express the drawdown as follows:

φ(r)− φw =
Q

2πT

n−1∑
i=0

ln
Rn

n−1

Π r1
i=0

The boundary of the zone of influence is given by the equation:φ(r)− φw == 0

Rn =
n−1

Π r1
i=0

√
(x− ix0)2 + y2.

(4)

The last equation defined a family of surfaces with a parameter x0:

F (x, y, x0) =
n−1

Π r1
i=0

√
(x− ix0)2 + y2 −Rn. (5)

3.4.1 Computation of the zone of influence

With this simplified approach, the optimal design for a remediation using pump and treat
system will correspond to the design that assures a total recover of the zone of influence.
Mathematically speaking, it corresponds to an envelope, in the sense of Definition 4 in next
Section, of the parameterized families of surfaces (either with one or two parameters) given by
the functions in Equations (2) or (5).

4 Different definitions of envelopes of 1-parameter fam-

ilies of plane curves

Envelopes of 1-parameter families of plane curves have been studied for a long time, but there
exist 4 different definitions of this kind of objects. Kock [10] gives 3 different definitions of an
envelope of a 1-parameter family of plane curves:

Let {Ck} be a family of real plane curves dependent on a real parameter k.

Definition 1 (Synthetic) The envelope E1 is the union of the characteristic points Mk, where
the characteristic point Mk is the limit point of intersections Ck ∩ Ck+h as h → 0. In other
words, the envelope E1 is the set of limit points of intersections of nearby curves Ck.

Definition 2 (Impredicative) The envelope E2 is a curve such that at each of its points, it
is tangent to a unique curve from the given family. The locus of points where E2 touches Ck is
called the characteristic point Mk.

Definition 3 (Analytic) Suppose that the family of curves is given by an equation F (x, y, k) =
0 (where k is a real parameter and F is differentiable with respect to k); then an envelope E3 is
determined by the solution of the system of equations:{

F (x, y, k) = 0
∂F
∂k

(x, y, k) = 0

i.e., the envelope is the projection onto the (x, y)−plane of the points in the 3- dimensional
(x, y, k)−space, belonging to the surface with equation F (x, y, k) = 0.



Simple examples are given in [7]. With other notations, Bruce and Giblin ([3], Chap. 5),
show that E1 ⊂ E3 and E2 ⊂ E3, and give several examples. They add a 4th definition, different
from the previous three.

Definition 4 The envelope E4 is the boundary of the region filled by the curves Ck.

Among the above definitions, the only one which is easily computable is Definition3. This
is the only definition given by Berger [2](sections 9.6.7 and 14.6.1). Examples for Definition
4 have been studied in [4, 5]; in this 1st paper in reference, the question was related to the
determination of a safety zone around a mobile device. This is the meaning of an envelope that
interests us in what follows to determine zones of influence of wells.

5 Some case studies

5.1 Two wells

For two wells, one at the origin (0, 0) and another one at the position (a, 0). The drawdown of
the head for steady state solution of the flow equation for a confined aquifer is given by:{

h(x, y) = φ(x, y) = h0

φ(x, y) = Q1

2πKb
ln r0√

x2+y2
+ Q2

2πKb
ln r0√

(x−a)2+y2

where h0 denotes the initial head before pumping, K the hydraulic conductivity, b the depth
of the aquifer, Q1 the pumping rate of the 1st well and Q2 the pumping rate of the 2nd well.
A simple way of building the zone of protection is to compute the zone determined by the
equation φ(x, y) = 0. This equation is equivalent to the following:

ln

(
r0√
x2 + y2

)(
r0√

(x− a)2 + y2

)q

= 0,

where q = Q2

Q1
.

Finally the equation
[x− a)2 + y2]q/2[x2 + y2)1/2] = rq+1

0 (6)

defines the curves of delineation of the zone of influence of the two wells. It depends on three
parameters:

• the ratio between the pumping rates: q = r = Q2

Q1
;

• The distance between the two wells: a=L;

• The radius of the well: r0 = p.

It is important to understand the engineering aspects of these three parameters.

• q = r = Q2

Q1
described the effect of the pumping rate on the zone of influence;

• a = L analyses the effect of the distance between the wells on the zone of influence;



• r0 = p analyses the effect of the well design of the singular well on the zone of influence.
Depending on the internal radius of the well the the well has a ” potential radius of
influence” r0.

In the following figures, obtained with Desmos,for Q1 = Q2 we present three different types
of graphs. These graphs show three cases of ”zone of influence”.

a. Two separate zones of influence; see Figure 2.

Figure 2: Equal pumping; r = 1, L = 10, p = 2.3

b. A narrow zone of influence, as illustrated un Figure 3.

Figure 3: Equal pumping; r = 1, L = 10, p = 2.6

c. A large zone of influence, as shown in Figure 4.

The equations appearing in the figures have been written in a simplified form, suitable for
the specific cases, namely: √

x2 + y2 ·
√

(x− L)2 + y2
r

= pL. (7)

Consider the particular case for which r = 1. Squaring both sides of Equation (7), we obtained
a quadratic equation

(x2 + y2) · ((x− L)2 + y2)) = p2L2. (8)

The delineation curve is now a bicircular quadratic of a specific kind1

1Recall that a complete catalog of quadratic curves exists; as soon as a plane algebraic curve is of degree 4,
it is easy to determine which kind of curve it is.



Figure 4: Equal pumping; r = 1, L = 10, p = 4.8

Proposition 5 For r = 1, the delineation curves are Cassini ovals.

Proof. Denote F1(L/2, 0) and let r = 1. Now look at the equation
√
x2 + y2

√
(x− L2 + y2 =

pL which appears in the algebraic window of Figures 2, 3 and 4. It describes the geometric
locus of points M(x, y) such that OM · F1M = pL , i.e. the given curve is a Cassini oval with
foci O and F1.

We can see that also by an algebraic computation. Apply the change of coordinates (x, y) =
(X + L/2, Y ) . Then we have:√

x2 + y2 ·
√

(x− L)2 + y2 = pL

i.e. √(
x+

L

2

)2

+ y2 ·

√(
x− L

2

)2

+ y2 = pL.

Squaring both sides and expanding them, we have:

(X2 + Y 2)2 − 1

2
L2X2 +

1

2
L2Y 2 +

1

16
L4 − p2L2 = 0,

which is easily identified as the equation of a Cassini oval; see [5] and the references there.
Recall that, even if the plot shows two components, the polynomial is irreducible and the curve
is irreducible. This is easy to check with the factor command of any CAS. The more the wells
are distant, the more the curve shows points of inflexion, until it has two components, shaped
as loops. This is illustrated in Figure 5.

Here are a few rows of Maple code for Figure 5.

restart:with(plots):setoptions(scaling = constrained):setoptions(thickness = 2);

F := (X^2 + Y^2)^2 - 1/2*L^2*X^2 + 1/2*L^2*Y^2 + 1/16*L^4 - p^2*L^2 = 0;

p := 4.8;

for k from 10 by 2 to 16 do

implicitplot(subs(L = k, F), X = -15 .. 15, Y = -15 .. 15);

end do;

Remark 6 Cassini ovals are defined by equations whose general form is (x2 + y2)2 + ax2 +
by2 + c = 0, where a, b, c are real numbers. They may have one or two components, which are



(a) L = 6 (b) L = 16 (c) L = 20

Figure 5: The influence of the distance between wells

not distinguished by factorization of the polynomial. Another description of Cassini ovals is as
the intersection of a torus with a plane parallel to the torus axis. The general setting in the
literature is with a regular torus. Equations as above describe sometimes the intersection of a
self-intersecting torus with a plane parallel to the axis; in such a case, the intersection may have
two components, one inside the other. Details are explained in see [6], where Cassini ovals are
called by their other name: spiric curves. The physical meaning of the question under study
here is enough to understand why such a situation does not occur here and we don’t have a
component in the interior of the other one.

The influence of the parameters p and L can be explored separately, using the following
rows of Maple code:

• For the influence of L (note that here the value of F is fixed, but this can be easily
changed, even introduced in a for loop):

plots[animate](implicitplot, [subs(p = 4.8, F) = 0, X = -20 .. 20,

Y = -10 .. 10], L = 0 .. 20);

• For the influence of p (with a similar remark as above, this time regarding the value of
L):

plots[animate](implicitplot, [subs(L = 3, F) = 0, X = -20 .. 20,

Y = -10 .. 10], p = 0 .. 10);

For other values of the parameter r, other shapes are obtained, and have to be studied
separately. Figure 6 shows an example with r = 2. If r = 2 the obtained delineation curve is as
sextic2. For such curves, no complete catalog exist, but an algorithm is available3, to determine
the topology of a given sextic. The website Mathcurve presents rational sextics and a few non
rational ones. A list of 64 cases is given. The pear-shaped curve which we obtained here does

2An algebraic curve of degree 6.
3Developed in 2021 at Max Planck Institute for Mathematics in the Sciences, and implemented in Mathe-

matica

https://mathrepo.mis.mpg.de/planeSexticCurves/SexticClassifier.html
https://mathcurve.com/courbes2d.gb/sextic/sextic.shtml


Figure 6: Inequal pumping; r = 2

not appear in the list, and checking whether this curve is rational or not is beyond the scope
of the present work. See also [13] (the classification is performed for sextics over C, which is
not exactly our concern here) and the references there.

Figures 7 and 9 corresponds to r = 3 and r = 4 respectively. Here too, it is possible to derive
from the data a polynomial equation for the delineation curve. Of course degrees are higher,
making the identification with a classical curve harder, if possible. A general exploration of these

Figure 7: Inequal pumping; r = 3,L=10,p=4.8

sextics with similar code as above shows that for pL close to 0, the curves are convex, then have
two disjoint components, then have one component with points of inflexion (shaped somehow
like cougurds), and again tend to convex shapes. See Figure 8. This surprising behaviour from
a single component to a single component and in-between cases with two components is not
intuitive. It reinforces the need to make a computerized exploration for different values.

Similar exploration can be performed for any value of the parameter r.

6 Conclusions and directions for future work

Starting from the end, we wish to emphasize the importance of finding Cassini ovals. Jean-
Dominique Cassini (8 June 1625 – 14 September 1712), an Italian and French naturalized



(a) pL = 0.6 (b) pL = 1.6 (c) pL = 2.6 (d) pL = 9.6

Figure 8: The influence of the distance between wells - sextics

Figure 9: Inequal pumping; r = 4, L = 10, p = 4.8

mathematician and astronomer conjectured that the planetary orbits around the Sun were the
ovals which will be later called after his name. After Kepler proved that these orbits were
actually ellipses (1st Kepler law), Cassini ovals seemed to have lost of their importance and
some mathematicians considered them as a nice topic in mathematics and not more. Actually,
Cassini ovals appear in electrostatics and to describe some magnetic fields. A mathcurve page
is devoted to numerous properties of these ovals. We describe here another application of
Cassini ovals and of some of their generalizations. For a reader non familiar with Cassini ovals,
a GeoGebra applet is available to check the various possible shapes, according to the choice of
the foci and of the parameter..

Regarding the contents of the work above, we wish to make the following (not so) final
remarks:

1. One can compile easily using a CAS the zone of influence of a series of wells.

2. We present the different solutions for the 2 wells problem with constant pumping wells.
This can be generalized to any number of wells in a line. Subsequent work will address
the issue of non aligned wells.

3. Parameters such as distances between wells are also considered. Here we did not analyse
this effect available for at least three wells.

https://mathcurve.com/courbes2d.gb/cassini/cassini.shtml 
https://www.geogebra.org/m/qnvqjnn9


4. More work is needed for the analysis of the well design of each singular well on the zone
of influence. We focused on the distance between wells. The other parameters encode
the volume of pumping per time unit, whose influence deserves a separate amelioration
of our model.

5. More work is needed for understanding the influence of different pumping rates and well
design. In particular, we discovered through a CAS assisted dynamical exploration that
for a fixed rate and different values of the distance, very different shapes for the influence
zone are obtained. This can have very important consequences in the field, for actual
wells connected to the aquifer.

With our approach, it will be possible to analyze the optimal location of the wells.
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