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Abstract
The existence of singularities often affects the learning dynamics in neural network

and caused plateau phenomena. Using Mathematica, we observed near singular regions by
examining the evolution of the parameter and the dynamics of learning on the training loss
surface. Our result is to investigate that the type of dynamics of learning changes when
the overlap and the elimination singularity is approached from a distance by changing the
initial values of the statistical model, and to clarify the plateau phenomenon observed near
singular regions.

1 Introduction

In a hierarchical structure model which is a neural network, a set of true parameters con-
sists of not a union of several manifolds. Watanabe[1], [2] investigated that the analytic set of
parameters contains singularities by using algebraic geometry and Bayesian statistics.

Let the statistical model be a three-layer neural network, plateau phenomena were observed
in singular regions where two hidden neurons can be rewritten with only one hidden neuron
and pose a serious problem in neural networks[3], [4], [5]. Amari[5] showed that a subset of
critical points corresponding to the global minimum of a smaller network can be local minima
or saddles of the larger network. Amari[3] discussed the learning dynamics near the overlap
singularity and the elimination singularity close to them. Also, Amari[4] introduced coordinate
transformation of parameters of the statistical model and fixed variables moving quickly and
searched trajectories of learning of variables moving slowly. Moreover, he[5] calculated stability
and dynamics of learning near singular regions. Guo[6] classified dynamics of learning near the
overlap singularity and the elimination singularity into five patterns.

Currently, the dynamics of learning near the elimination singularities far away from the
overlap singularities still remains unknown. By continuously changing the initial value of learn-
ing, we investigate that the type of dynamics according to Guo’s classification of overlap and
elimination singularity when approaching from a distance changes.



2 Definition

Definition 1 (Input, noise, training data, test data) We assume that an R1-valued ran-
dom variable X that follows a probability density function p(x) is input and that an R1-valued
random variable Z that follows a normal distribution, the average and standard derivation of
which are (0, σ), is noise. For θ0 = (w∗

11, w
∗
12, w

∗
21, w

∗
22, w

∗
31, w

∗
32) ∈ R6, an R1-valued random

variable Y is determined by the training data or test data as follows[1], [2]:

Y := f(x, θ0) + Z = w∗
31 tanh(w

∗
11x+ w∗

21) + w∗
32 tanh(w

∗
12x+ w∗

22) + Z.

Definition 2 (Function approximation model) For parameters θ = (w1, w2, w31, w32) ∈
R6, and R1-valued function f(x, θ), an R1-valued random variable Y is determined as a function
approximation model as follows[1], [2]:

Y := f(x, θ) + Z = w31ϕ(x,w1) + w32ϕ(x,w2) + Z = w31 tanh(w1
Tx) + w32 tanh(w2

Tx) + Z

= w31 tanh(w11x+ w21) + w32 tanh(w12x+ w22) + Z.

where w1 = (w11, w12), w2 = (w21, w22), x = (x, 1).

Definition 3 (Statistical model, true density function) A conditional probability density
that follows function approximation model Y and is referred to as a statistical model is defined
as follows[1], [2]:

p(y|x, θ) := 1√
2πσ

exp

(
−|y − f(x, θ)|2

2σ2

)
.

A conditional probability density that follows output Y and is referred to as a true density
function is defined as follows[1], [2]:

q(y|x) := 1√
2πσ

exp

(
−|y − f(x, θ0)|2

2σ2

)
.

Definition 4 (Overlap singularity,elimination singularity) An overlap singularity is de-
fined as the special region in the parameter space in which wi satisfies[3]

R0 := {θ ∈ R6|w1 = w2}.

The elimination singularity is defined as the special region in the parameter space in which wi

satisfies[3]

R1 := {θ ∈ R6|w31 = 0} ∪ {θ ∈ R6|w32 = 0}.

We recall the following coordinate transformation from the parameter θ = (w1, w2, w31, w32)
to the parameter ξ = (a, b, v, w)[3]:

a = w2 −w1, b =
w31 − w32

w31 + w32

, v =
w31w1 + w32w2

w31 + w32

, w = w31 + w32.

Using coordinate ξ, the coordinate θ is as follows :

w1 = v +
1

2
a(b− 1), w2 = v +

1

2
a(b+ 1), w31 =

1

2
w(1 + b), w32 =

1

2
w(1− b).



For y = f(x, θ0) + Z, we define the loss function

l(y,x, θ) :=
1

2
(y − f(x, θ))2.

Then, for a learning rate η, parameter θ, which is modified by the stochastic gradient descent
algorithm, is as follows:

θ(t+ 1)− θ(t) := −η
∂l(yt,xt, θt)

∂θ
.

Definition 5 (Learning equation of coordinate θ) For coordinate θ = (w1, w2, w31, w32),
the learning equation is defined as follows:

θ̇(t) := −η

〈
∂l(y,x, θ)

∂θ

〉
=

∫
−η

∂l(y,x, θ)

∂θ
q(y|x)dydx.

For loss e(y,x, ξ) := y − f(x, ξ), negative gradients of the loss function l(ξ) hold as
follows[1]:

lv(ξ) = w

〈
e(y,x, ξ)

∂ϕ(x,v)

∂v

〉
+

1

8
w(1− z2)Q(v, a) +O(a3),

lw(ξ) = ⟨e(y,x, ξ)ϕ(x,v)⟩+ 1

8
(1− z2)

〈
e(y,x, ξ)aT∂

2ϕ(x,v)

∂v∂vT
a

〉
+O(a3),

la(ξ) =
1

4
w(1− z2)

〈
e(y,x, ξ)a

∂2ϕ(x,v)

∂v∂vT

〉
+

1

24
wz(1− z2)

〈
e(y,x, ξ)

∂D(x,v, a)

∂a

〉
+O(a3),

lb(ξ) = −1

4
wz

〈
e(y,x, ξ)aT∂

2ϕ(x,v)

∂v∂vT
a

〉
+O(a3).

where Q(v, a) :=
〈
e(y,x, ξ) ∂

∂v
(aT ∂2ϕ(x,v)

∂v∂vT a)
〉
, D(x,v, a) :=

∑
i, j, k

∂3ϕ(x,v)
∂vi∂vj∂vk

aiajak.

Note that lv, lwis of order O(1). By taking into account the fact that a ≈ 0, we see that
the time evolution of (v, w) is fast and converges to the partial equilibrium states that satisfies
lv(ξ) = lw(ξ) = 0 quickly.

On the other hand, note that la and lb is of order O(a) and O(a2). By taking into account
the fact that a ≈ 0, we see that the time evolution of (a, b) is slow[4].

Definition 6 (Learning equation of coordinate ξ) For the coordinate ξ = (a, b, v, w),
the learning equation is defined as follows:

ξ̇ := −η
∂ξ

∂θT

(
∂ξ

∂θT

)T 〈
∂l(y,x, ξ)

∂ξ

〉
.

Then, the learning equations hold as follows[3]:

v̇ =
b2 + 1

2
lv +

b2 + 1

2w2
aaTlv +

b

w
alw − bla −

b2 + 1

w2
alb, ẇ =

b

w
aTlv + 2lw − 2b

w
lb,

ȧ = −blv + 2la, ḃ = −b2 + 1

w2
aTlv −

2b

w
lw +

2(b2 + 1)

w2
lb.



Then, we fix (v, w) to its best approximation (v∗, w∗). We examined the evolution of
parameter (a, b). For ξ∗ = (v∗, w∗,0, b), we defined

H(v∗, w∗) :=
1

4
w∗

〈
e(y,x, ξ)

∂2ϕ(x,v)

∂v∂vT

〉∣∣∣∣
ξ=ξ∗

.

For loss function l(y,x, ξ),
〈

∂2l(y,x,ξ)
∂ξ∂ξT

〉∣∣∣
ξ=ξ∗

= (1− b2)H(v∗, w∗) holds.

Theorem 1 (Stability of learning near singular regions) For stability of learning near
singular regions, it holds as follows: When the true density function is in a singular region, the
entire critical line of R0 is stable. When the true density function is not in a singular region,
the stability of the entire critical line of R0 is divided into the following three cases according
to the eigenvalue of H(v∗, w∗)[5].

(1) both positive and negative eigenvalues: all points on the critical line of R0 are unstable.

(2) negative definite: the part b2 < 1 is stable, whereas the part b2 < 1 is unstable in R0.

(3) positive definite: the part b2 < 1 is stable, whereas the part b2 > 1 is unstable in R0.

We assume ξ̃ = (v∗, w∗, a, b). The gradient of loss function l(ξ̃) holds as follows[3]:

lv(ξ̃) =
1

8
w∗(1− z2)Q(v∗, a) +O(a3), lw(ξ̃) =

1

2

1− z2

w∗ aTH(v∗, w∗)a+O(a3),

la(ξ̃) = (1− z2)H(v∗, w∗)a+
1

24
w∗z(1− z2)

〈
e(y,x, ξ)

∂D(x,v, a)

∂a

〉∣∣∣∣
ξ=ξ̃

+O(a3),

lb(ξ̃) = −b aTH(v∗, w∗)a+O(a3).

Note that la(ξ̃) is of order O(a) and lb(ξ̃), lv(ξ̃), lw(ξ̃) is of order O(a2). Neglecting higher
terms in the above equations and taking into account the fact that a ≈ 0, the learning equation
near R0 holds as follows[3]:

ȧ = 2(1− b2)H(v∗, w∗)a, ḃ = −b(1− b2)

w∗2 aTH(v∗, w∗)a− 2b(b2 + 1)

w∗2 aTH(v∗, w∗)a.

Theorem 2 (Dynamics of learning near singular regions) An energy function h(a) :=
1
2
aTa of the dynamics of learning near singular regions, it holds as follows[3]:

(1) In the neighborhood of R0, we obtain the equation ḣ = aTȧ = 2w∗2(b2−1)
b(b2+3)

ḃ and the dynamics
of the learning equations are given by

h(a) =
2w∗2

3
log

(b2 + 3)2

|b|
+ C.

(2) In the neighborhood of R0 ∩ R1, we obtain the equation ḣ = w∗2(b2−1)
b(b2+1)

ḃ and the dynamics
of the learning equations are given by

h(a) = w∗2 log

(
|b|+ 1

|b|

)
+ C.



Definition 7 (Classification of dynamics of learning near singular regions) The dynam-
ics of learning near a singularity is classified into following five patterns by changing an initial
value of the statistical model[6].

(1) Overlap singularity: The learning process is significantly affected by overlap singularity.

(2) Cross elimination singularity: The learning process crosses the elimination and reaches
the global optimum after training.

(3) Fast convergence: The learning process converges to the global minimum fast.

(4) Near elimination singularity:When the parameters of the statistical model are near the
elimination singularity in the training, the learning process is significantly affected by
elimination singularity.

(5) Output weight 0: After training, output weight wi becomes nearly equal to 0.

3 Construction of a neural network as the statistical

model using Mathematica.

Using Mathematica, variablesF1, F2, constants elem0, elem1, elem2, elem3 calculate as fol-
lows:

F1[a ] := NetInsertSharedArrays[NetChain[LinearLayer[1, ”Weights”− > a, ”Biases”− > None]], ”Linear1”],

F2[b ] := NetInsertSharedArrays[NetChain[LinearLayer[1, ”Weights”− > b, ”Biases”− > None]], ”Linear2”],

elem0 := ElementwiseLayer[# ∗ (1/2)&], elem1 := ElementwiseLayer[# ∗ (−1)&],

elem2[v ] := ElementwiseLayer[# ∗ (v)&], elem3[w ] := ElementwiseLayer[# ∗ (w)&].

First, to express the condition w11x =
(
v + 1

2
(b− 1)a

)
x, we input the following:

net11[a , b , v ] := NetGraph[elem0, elem1, F1[a], F2[b], elem2[v], T otalLayer[],

NetPort[”Input”]− > 1, 1− > 3− > 4, 3− > 2, 4, 2, 5− > 6]

and net11 output on the left-hand side of Figure 1.
To express the condition w31 tanh(x) =

1
2
w(b+ 1) tanh(x), we input the following:

net12[a , b , w ] := NetGraph[Tanh, elem0, elem3[w], F2[b], T otalLayer[],

NetPort[”Input”]− > 1, 1− > 2− > 3− > 4, 3, 4− > 5]

and net12 output on the light-hand side of Figure 1.

Figure 1: net11, net12



Similarly to express the conditionw12x =
(
v + 1

2
(b+ 1)a

)
x, w32 tanh(x) = 1

2
w(−b +

1) tanh(x), similarly we input in the same way.net21, net22 output on the Figure 2.

Figure 2: net21, net22

Next to express the condition w31 tanh(w11x) =
1
2
w(b+1) tanh[

(
v + 1

2
(b− 1)a

)
x], we input

the following:

net1[a , b , v , w ] := NetGraph[net11[a, b, v], net12[a, b, w], NetPort[”Input”]− > 1, 1− > 2]

and net1 output on the left-hand side of Figure 3.
Similarly, to express the condition w32 tanh(w12x) =

1
2
w(−b+1) tanh[

(
v + 1

2
(b+ 1)a

)
x], we

defined net2.
Finally, to express the condition w31 tanh(w11x) +w32 tanh(w12x), we input the following:

parameterNet[a , b , v , w ] := NetGraph[net1[a, b, v, w], net2[a, b, v, w], T otalLayer[],

NetPort[”Input”]− > 1, NetPort[”Input”]− > 2,1, 2− > 3− > NetPort[”Output1”], ”Input”− > enc]

and parameterNet output on the light-hand side of Figure 3.

Figure 3: net1, parameterNet
Let us define the loss function as a log density ratio function. We input the following:

gaussianLikelihood[y , µ ] := PDF [NormalDistribution[µ, 1], y]

trainingNet[a , b , v , w ] := NetGraph[< |”params”− > parameterNet[a, b, v, w], ”lhood”− >

ThreadingLayer[gaussianLikelihood], ”neglog”− > ElementwiseLayer[−Log[#]&]| >,

NetPort[”Output”],NetPort[”params”, ”Output1”]− > ”lhood”,”lhood”− > ”neglog”− > NetPort[”Loss”]]

and trainingNet output on the light side of Figure 4.

Figure 4: trainingNet(log density ratio)



For training data and test data, we input the following:

G[a , b ] := Mean[trainingNet[a, b, v0, w0][< |”Input”− > dataX, ”Output”− > enc[dataY ]| >]]

H[a , b ] := Mean[trainingNet[a, b, v0, w0][< |”Input”− > testX, ”Output”− > enc[testY ]| >]]

and defined training loss function G and validation loss function H.

4 Dynamics of learning near singular regions

4.1 Framework of dynamics of learning

Example 1 (Training data, true density function) For input X on −3 ≤ x ≤ 3 and
noise Z of σ = 0.05, let the training data (are listed in Appendix.) be

0.25 tanh(0.2x) + 0.25 tanh(0.4x) + Z,

and the true density function be

q(y|x) = 1√
2πσ

exp

(
−|y − (0.25 tanh(0.2x) + 0.25 tanh(0.4x)) |2

2σ2

)
.

For a = 0.2, b = 0, v = 0.3, w = 0.5, we consider that the dynamics of learning evolving
under the influence of a critical line classified into five cases by changing the initial values
of the statistical model for the case in which the true distribution near the singular regions
is realizable by the statistical model. Let us define the loss function as the log density ratio
function, and input the following:

results1[a , b ] := NetTrain[trainingNet[a, b, v, w], < |”Input”− > dataX, ”Output”− > enc[dataY ]| >,

{”Weights”, ”TrainedNet”, ”RoundLossList”}, LossFunction− > ”Loss”,Method− >

”ADAM”, ”LearningRate”− > 0.1, BatchSize− > 30,MaxTrainingRounds− > { },
T rainingProgressFunction− > appendToLog]

In addition, the neural network was trained.

4.2 Dynamics of overlap singularity and cross elimination singularity

Let the initial values of the statistical model be a = 0.15, b = −2.0, −1.8, −1.5, −1.3, v =
0.3, w = 0.5. The neural network was trained 140 times. We construct an array of parameters
of a, b under the influence of the critical line. The evolutions of parameters of a and the
evolutions of parameters of b are shown on the left-hand and middle-hand sides respectively, of
Figure 5, and the evolution of parameters of a, b is shown on the light-hand side of Figure 5.

Figure 5: Evolution of parameters of a, b (a = 0.15, b = −2.0, −1.8, −1.5, −1.3)



The neural network was trained 140 times. We construct an array of the training loss, and
the evolution of the training loss and the dynamics of learning of the training loss surface are
shown on the left-hand and right-hand sides, respectively, of Figure 6.

Figure 6: Evolution of the training loss and the dynamics of the training loss surface (a = 0.15, b = −2.0, −1.8, −1.5, −1.3)

We generalize the parameter of b (−2.2 ≤ b ≤ 2.2). The evolution of the parameters of
a, b and the dynamics of learning of the training loss surface are shown on the left-hand and
right-hand sides, respectively, of Figure 7.

Figure 7: Evolution of the parameters of a, b and the dynamics of the training loss surface (−2.2 ≤ b ≤ 2.2)

Result 1 (1) We find that plateau phenomena were observed on critical line a = 0 and that
the dynamics of learning do not reach the true distribution in case b = −2.0, −1.8.

(2) We find that plateau phenomena were observed when crossing critical line b = −1 and
that the dynamics of learning reach the true distribution in case b = −1.5 − 1.3.

(3) As the parameter b evolves to 0, the dynamics of learning change from overlap singularity
to cross elimination singularity and from cross elimination singularity to fast convergence.



4.3 Dynamics of near elimination singularity and output weight 0

Let the initial values of the statistical model be a = 0.5, 0.6, 0.7, 1.2, b = 0.75, v = 0.3, w = 0.5.
The neural network was trained 100 times. We construct an array of parameters of a, b under
the influence of critical line. The evolutions of parameters of a and the evolutions of parameters
of b are shown on the left-hand and middle-hand sides respectively, of Figure 8, and the evolution
of parameters of a, b is shown on the light-hand side of Figure 8.

Figure 8: Evolutions of parameters of a, b (a = 0.5, 0.6, 0.7, 1.2, b = 0.75)

The neural network was trained 100 times. We construct an array of the training loss, and
the evolution of the training loss and the dynamics of learning of the training loss surface are
shown on the left-hand and right-hand sides, respectively, of Figure 9.

Figure 9: Evolution of the training loss and the dynamics of the training loss surface (a = 0.5, 0.6, 0.7, 1.2, b = 0.75)

We generalize the parameter of a (0 ≤ a ≤ 2.2). The evolution of the parameters of a, b
and the dynamics of learning of the training loss surface are shown on the left-hand and right-
hand sides, respectively, of Figure 10.

Figure 10: Evolution of the parameters of a, b and the dynamics of the training loss surface (0 ≤ a ≤ 2.2)



Result 2 (1) We find that plateau phenomena were observed on critical line b = −1 and that
the dynamics of learning do not reach the true distribution in case a = 1.2.

(2) We find that plateau phenomena were observed approaching critical line b = −1 and that
the dynamics of learning reach the true distribution in case a = 0.6, 0.7. Moreover, we
find that the dynamics of learning reach the true distribution more quickly in case a = 0.5.

(3) As the parameter of a evolves to 0, the dynamics of learning change from output weight 0
to near elimination singularity and from near elimination singularity to fast convergence.

5 Conclusion

Firstly we constructed the neural network as the statistical model using Mathmatica.
Secondly, we observed plateau phenomena near singular regions by examining the evolution of
the parameter and the dynamics of learning on the training loss surface. Finally we investigated
that the type of dynamics of learning changes when the overlap and the elimination singularity
is approached from a distance by changing the initial values of the statistical model.

The purpose of our research is not to study the current state of the art in neural networks
but to make some concepts in phenomena in neural networks correspond (explain) to learning
in educational activities. Specifically, it is to clarify what state the phenomenon of plateau and
over-fitting and over-generalization are in educational activities.

The results can also be the foundation to investigate the singular learning dynamics in
educational activities.
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6 Appendix

6.1 Training data of Example1

For input xs, and output ys as follows:

xs = {2.467685732795669, 1.6313896711002975, 1.7039693114471142,−2.353539095169551,
2.5106926463104458,−2.9742536653063, 1.4778884503387921,−1.7619315572659175,
0.8575206146347014,−1.9522402751318726,−2.9186556422433796, 2.3433244821789305,
− 2.3174593747595598, 0.24745360478229195,−0.43473282858294837, 2.0777962243403962,
− 0.7489587340884398, 0.40283200240701333, 1.4393667305075848, 2.6884952319559243,
0.4233060018195829, 1.3133371734415373,−1.8687861826912897, 2.641499809476027,
1.3536619131864676, 1.4261447937286373,−1.5373889449365947, 2.5833410435168336,
− 0.7634883775841974,−1.418229957030034},

ys = {0.25047549494898375, 0.14195709642758433, 0.2416763776071971,−0.34055590890961035,
0.3082658314034902,−0.4292549244954509, 0.15038776701404105,−0.23410034295044008,
0.1674469014375939,−0.26548937037643955,−0.3321460817933551, 0.2720167181157782,
− 0.2892455062624837, 0.0520546848151971,−0.0009290519327547, 0.2940081059525326,
− 0.14421683321295234, 0.08562704853302514, 0.25724997978192643, 0.2668005655536598,
0.043918697553646746, 0.19753643159405437,−0.2627853499983649, 0.25989101875041354,
0.1395086144673041, 0.17062611740258554,−0.18466386529707135, 0.3690548490941195,
− 0.16241114605952112,−0.14051890248769974},

Then,we defined training data as follows:

{2.46769 → 0.250475, 1.63139 → 0.141957, 1.70397 → 0.241676,−2.35354 → −0.340556,
2.51069 → 0.308266,−2.97425 → −0.429255, 1.47789 → 0.150388,−1.76193 → −0.2341,
0.857521 → 0.167447,−1.95224 → −0.265489,−2.91866 → −0.332146, 2.34332 → 0.272017,
− 2.31746 → −0.289246, 0.247454 → 0.0520547,−0.434733 → −0.000929052,
2.0778 → 0.294008,−0.748959 → −0.144217, 0.402832 → 0.085627, 1.43937 → 0.25725,
2.6885 → 0.266801, 0.423306 → 0.0439187, 1.31334 → 0.197536,−1.86879 → −0.262785,
2.6415 → 0.259891, 1.35366 → 0.139509, 1.42614 → 0.170626,−1.53739 → −0.184664,
2.58334 → 0.369055,−0.763488 → −0.162411,−1.41823 → −0.140519}.
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