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Counting Angle Bisection Theorems 

Philip Todd 
philt@saltire.com 

Saltire Software 
Brightwood, OR 

U.S.A. 

Abstract:  Some good geometry proof problems involve angles, angle bisectors, circle chords and isosceles triangles. 
We identify similarities between elements of such problems and present techniques for generating new problems from 
old.     

1. Introduction

In order to test symbolic geometry software, it is important to have access to a large number of 
geometry examples whose results are known.  Over the course of the development of Geometry 
Expressions and its browser based sibling GXWeb, we have developed techniques for generating 
new geometry problems from old in order to broaden our suite of test cases.  These techniques may 
be useful for educators who need to broaden their suite of test examples for students.  It is with this 
in mind that we present these ideas.  In particular, we consider angle theorems involving, in one 
disguise or another, the angle bisector. 

The base of an isosceles triangle is perpendicular to the bisector of the angle at its apex, and 
hence has the same direction as the exterior angle bisector of that angle.  We can, therefore, 
consider many theorems involving isosceles triangles to be angle bisector theorems.  The chord of a 
circle makes an isosceles triangle with the radial lines at its ends, and hence many angle theorems 
involving circles can themselves be considered bisector theorems.  The axis of a reflection is the 
external angle bisector of incident and reflected rays, and hence a reflection is simply an angle 
bisection viewed from a different point of view. 

We examine ways of exploiting this perspective to generate new problems from old.  We start 
with a very old problem, from Archimedes’ Book of Lemmas [1], in figure 1. 

Figure 1:  Problem from Archimedes’ Book of Lemmas.  Given that CD and AD are congruent, 
we are to show that angle EAB is three times angle DCA. 

Proceedings of the 26th Asian Technology Conference in Mathematics

1

mailto:philt@saltire.com


In the theorem, the center A of a circle with radius AB lies on the line AC.  D lies on the 
circumference of the circle such that CD=AD.  E is the second intersection between the circle and 
CD. The theorem states that angle EAB is 3 times angle DCA.  (Archimedes uses this theorem in
the opposite direction, as the basis for a method of trisecting the angle.  The method involves a
‘neusis’ or sliding: try to work out how to draw the diagram with BAE given rather than BCE and
you’ll see where this needs to occur.  Try to draw the diagram in GXWeb with BCE specified and it
will fail, as GXWeb does not do the neusis either.)

This theorem can be re-imagined in terms of angle bisectors (figure 2a) or even in a form with 
one angle bisector and one isosceles triangle (figure 2b).  The though process to use when doing 
this sort of re-imagination, is the topic of this paper.  Once you have reimagined a theorem, you can 
use a dynamic geometry system with symbolic theorem proving [2] or a symbolic geometry system 
[3] to verify that it is correct.  This technological safety net allows us to be reasonably loose in our
approach, while maintaining confidence in the mathematical integrity of the end result.

Figure 2:  (a) L0 is the angle bisector of AB and AC, L1 is the angle bisector of L0 and AB.  (b) 
L0 is the angle bisector of AB and BC, AC and BC are congruent 

2. The Angle at the Center and the Angle at the Circumference

The familiar result that the angle subtended by a chord at the circumference of a circle is half 
that subtended at the center (fig. 3) is a useful place to start our exploration.  In order to explore 
alternative castings of this theorem, we first make explicit the isosceles triangles inferred by the 
fact that lines BC and BD are chords of the circle centered at A.  To do this, we add the line AB 
(dashed in figure 3a).  A useful next step is to number the lines in the figure.  With the numbering 
in figure 3a, line 4 is the base of an isosceles triangle between lines 1 and 2, while line 5 is the base 
of an isosceles triangle between lines 2 and 3. 

The symmetry of an isosceles triangle implies that the perpendicular bisector of its base is the 
angle bisector of its apex.  Hence the direction of the base is perpendicular to the direction of the 
angle bisector.  It would thus seem reasonable that for any angle theorem involving isosceles 
triangles, there is a corresponding theorem involving angle bisectors.  In figure 3b, we have started 
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with a triangle whose sides are labelled 1,2,3, then created the angle bisector of 1 and 2 (line 5) and 
the angle bisector of 2 and 3 (line 4).  We have added an angle between lines 1 and 3, and measured 
the angle between lines 4 and 5.  We note that, whereas in figure 3a the angle between lines 4 and 5 
is 𝜃𝜃

2
 in figure 3b the angle is 𝜋𝜋+𝜃𝜃

2
.  Our goal in this endeavor is to find theorems, the fact that the 

angle’s value is given by the inputs is what we claim.  A dynamic geometry system (ideally with 
symbolic components) can be used to establish its actual value. 

Figure 3: (a) An illustration of the theorem that the angle subtended at the center of a circle is 
twice that at the circumference.  Lines are labelled for reference. (b) A theorem involving the angle 

at the vertex of a triangle and that between its angle bisectors. 

We now have a theorem with two isosceles triangles and another theorem with two angle 
bisectors, it is natural to look for a theorem with one of each.  In figure 4a, we start with triangle 
ABC whose sides are labelled 1, 2, 3.  We use a circle centered at A to place D on BC such that 
ABD is isosceles and label AD as line 4.  We then create the angle bisector of ACB, labelling it 5.  
We then specify the angle between lines 1 and 3, and measure the angle between lines 4 and 5.  

If we have three lines L0, L1, L2 such that line L2 is the image of line L1 under reflection in line 
L0, then L0 is the angle bisector of L1 and L2.  Hence, we could expect to be able to rephrase an 
angle bisector theorem as a reflection theorem.  Figure 4(b) illustrates this in the context of the 
theorem of Figure 3(b).  Lines 1, 2 and 3 show the path of a billiard ball which bounce in turn off 
lines 4 and 5.  Whereas in the formulation of figure 3(b) it was natural for lines 1, 2 and 3 to be 
given and 4 and 5 derived, it is more natural here for lines 4, and 5 to be given (along with line 1) 
and line 2 and 3 to be derived.  Therefore we have specified the angle between lines 4 and 5, and 
derived the angle between lines 1 and 3. 
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Figure 4: (a) A theorem relating a triangle angle with that between an angle bisector and the 
base of an isosceles triangle. (b) A theorem relating the angle of the initial and final paths of a 

billiard ball which bounces off two faces in succession.  

3.  Cyclic Quadrilaterals 

Figure 5(a) shows a cyclic quadrilateral, with explicit radial lines numbered 1,2,3,4, and chords 
numbered 5,6,7,8.  The theorem that the opposite angles are supplementary is illustrated as a 
relation between the angles between chords 5 and 6 and between chords 7 and 8. 

 

  

Figure 5: (a) A cyclic quadrilateral (b) A quadrilateral with inscribed circle.. 

Given arbitrary directions 1,2,3,4, the requirement that BCDE is cyclic imposes the conditions 
that line 5 is the base of an isosceles triangle with sides 1 and 2, that line 6 is the base of an isosceles 
triangle with sides 2 and 3, that line 7 is the base of an isosceles triangle with sides 3 and 4 and that 
line 8 is the base of an isosceles triangle with sides 4 and 1.  We can’t have just any directions for 
lines 5, 6, 7 and 8.  In fact if the directions of 5, 6 and 7 are chosen, the direction of line 8 is 
determined, as the theorem attests. 

To create a comparable diagram where angle bisector conditions are used rather than isosceles 
triangles, we can start with a quadrilateral which has an inscribed circle (figure 5b).  In this diagram 
the sides of the quadrilateral are numbered 1,2,3,4.  The angle bisectors meet at the center of the 
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inscribed circle.  We number the angle bisectors 5,6,7,8.  The angle between 5 and 6 is supplementary 
to the angle between 7 and 8. 

4.  Two Cyclic Quadrilaterals 

A theorem in [4] extends two sides of a cyclic quadrilateral to form a second cyclic quadrilateral 
(fig 6a ).  The new cyclic quadrilateral shares three sides with the original.  The theorem states that 
the fourth side of the new quadrilateral is parallel to the fourth side of the original quadrilateral.  
This theorem may be reimagined in a number of ways. 

First, and most simply, we can phrase the theorem as follows:  two cyclic quadrilaterals have 
three sides parallel in pairs, prove that the fourth sides are parallel. 

If we cast one of the cyclic quadrilaterals as a quadrilateral with inscribed circle, we get the 
theorem of figure 6b. Whereas in figure 6a the fact that EFCB is cyclic is given and the parallelism 
of lines EF and AD is to be proved, in 6b the parallelism is given and the fact that AEDG is cyclic 
is to be proved. 

 

   

Figure 6: (a) ABCD is a cyclic quadrilateral. E lies on AB extended and F lies on DC extended 
such that EFCB is cyclic. EF is parallel to AD. (b) ABCD is a quadrilateral with inscribed circle 

center E. Let G be the intersection of the parallel to EB through A and the parallel to EC through D. 
AEDG is a cyclic quadrilateral.  

Reimagining the theorem with angle bisectors for one quadrilateral (figure 7a), we have the 
succinct statement that the intersections of the angle bisectors of any quadrilateral form a cyclic 
quadrilateral. 

If we take a cyclic quadrilateral and exscribe a quadrilateral such that it forms isosceles triangles 
with three sides, then it forms an isosceles triangle with the fourth (figure 7b) 

If a billiard ball bounces off the four sides of a cyclic quadrilateral in turn (figure 7c) then its 
final path is parallel to its initial path. 
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Figure 7: (a) The intersections of the angle bisectors of a quadrilateral are cyclic. (b) EFGH is 
an exscribed quadrilateral to cyclic quadrilateral ABCD such that DEC, BFC and BGA are 

isosceles, then ADH is also isosceles. (c) A billiard ball boounces off the four sides of a cyclic 
quadrilateral in turn. Its final path is parallel to its initial path. 

5. Coalescing Lines 

Another way of creating new theorems from old is by coalescing lines.  For example, in figure 
8(a), we have reproduced the diagram of figure 6(a) but drawn all the implicit radial lines, and 
numbered them (we see that our five lines and two circles have become thirteen lines!).  Imagine 
what would happen if we allowed lines 1 and 8 in the diagram to get closer and closer to each other.  
Line 12 would remain parallel to line 13 and lines 1 and 8 would approach the perpendicular 
bisector of FG, which is perpendicular to line 13.  Once they have coalesced, we have diagram 8(b) 
and this theorem: let F be the intersection of line AB and CD of cyclic quadrilateral ABCD; let G 
be the circumcenter of triangle BCF; then GF is perpendicular to AD. 

  

  

Figure 8 (a) The theorem of figure 6(a) with all the implied radial lines present and numbered. 
(b) Coalescing lines 1 and 8 leads to a new and distinct theorem. 
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A precise statement of this argument would involve calculus, however having stated the 
theorem, we can readily prove it geometrically.  Our goal here is the discovery of theorems, the 
proof to be left to our geometric technology or to our geometry students.  Hence the use of 
imprecise limits as part of the discovery process seems justified. 

 
 

 

Figure 9. Coalescing the lines AB, BC in figure 6b yields this diagram and the theorem: Let E be 
the incenter of triangle ADC. Let G lie on the circumcircle of ADG such that DG is parallel to EC. 

Angle GAC is right. 

A second example of this approach is given in figure 9.  In this figure, we have coalesced the 
lines AB and BC of figure 6b.  Line EC in figure 6b is the bisector of angle ABC and by definition 
parallel to line AG.   In the limit the coalesced line ABC is perpendicular to the angle bisector.  
Hence in our new diagram (figure 9) , we have AC perpendicular to AG. 

 

Figure 10: (a) D lies on side AC and E on side BC of triangle ABC such that ABED is cyclic. G 
lies on side AC such that ABG is isosceles. H is the intersection of ED and BG. EHGC is cyclic. 

(b) D lies on side AC of triangle ABC such that ABD is isosceles. F lies on side BC such that 
ABFD is cyclic. G is the cicrumcenter of CDF. GD is perpendicular to BD. 

Figure 10 illustrates a third application of this technique.  Coalescing lines IG and IH of figure 
10a leads to points H, G and D of the figure coalescing into the single point D of figure 10b and a 
right angle postulated at GDB.  This can readily be confirmed geometrically. 
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6. Cyclic Polygons 

In section 4 above, we were able to generate a number of different theorems from the theorem 
that two cyclic quadrilaterals with three parallel sides have a fourth parallel side.  A natural 
question is this:  do we have a similar theorem for cyclic pentagons?  Do we have a similar theorem 
for cyclic hexagons?  The answers to these questions are no and yes. 

 

Figure 11: Cyclic pentagon FGHIJ has sides FG, GH, HI, IJ parallel to sides AB, BC, CD, DE of 
cyclic pentagon ABCD.  

 
In Figure 11, two cyclic pentagons ABCDE and FGHIJ have parallel sides AB with FG, BC 

with GH, CD with HI and DE with IJ.  The not-necessarily-parallel sides are EA and JF.  As BCDE 
and GHIJ are cyclic quadrilaterals with 3 pairs of parallel sides, the fourth sides, EB and JG are 
also parallel.  As FG and AB are also parallel, EA is only parallel to JF when angle EAB is equal to 
angle JFG.  This is only true when the angle subtended at the center by EB is equal to the angle 
subtended at the center by GJ: that is when the two pentagons are similar. 

 

Figure 12: Cyclic hexagon GHIJKL has sides GH, HI, IJ, JK, KL parallel to sides AB, BC, CD, 
DE, EF of cyclic hexagon ABCDEF. 

The situation with cyclic hexagons is different.  In figure 12, cyclic hexagons ABCDEF and 
GHIJKL have parallel sides GH with AB, HI with BC, IJ with CD, JK with DE and KL with EF.  

Proceedings of the 26th Asian Technology Conference in Mathematics

8



As IJKL and CDEF are cyclic quadrilaterals, IL is parallel to CF.  Now GHIL and ABCF are cyclic 
quadrilaterals with three pairs of parallel sides, hence AF is parallel to GL. 

This argument can be adapted in a straightforward way to show that this property holds in 
general for cyclic polygons with an even number of sides, and does not hold for cyclic polygons 
with an odd number of sides. 

7. Three Cyclic Quadrilaterals and Napoleon’s Theorem

In section 4, we looked at theorems involving two cyclic quadrilaterals.  In section 6, we 
generalized by looking at theorems with two cyclic polygons with more than 4 sides. In this 
section, we consider a different generalization axis and consider theorems involving more than two 
cyclic quadrilaterals. 

In figure 13, the lines AD, BD, CD are not shown, however the cyclic quadrilaterals ADBH, 
BDCI and CDAJ play comparable roles to the two cyclic quadrilaterals in figure 6a.  The fact that 
the sum of BDA, ADC and BDC is 2𝜋𝜋 implies that the sum of angles AHB, BIC and CJA is 𝜋𝜋 and 
hence HA is parallel to AJ, from which we deduce that the line HJ passes through A. 

Figure 13: Given triangle ABC and point D, let H lie on the circumcircle of ADB, let I be the 
intersection of HB and the circumcircle of BDC and let J be the intersection of IC and the 

circumcircle of ADC. HJ passes through A  

The key to this pattern is that each cyclic quadrilateral shares two edges with its neighbor: 
ADBH and BDCI share BD and HI, BDCI and ADCJ share DC and IJ, ADCJ and ADBH share AD 
and JH.   

Figure 14 contains a diagram where this relationship is more obvious.  ABCD is a cyclic 
quadrilateral.  CGFE is another cyclic quadrilateral, with CE and CG the same lines as BC and DC.  
AKLJ is another cyclic quadrilateral with AK and AJ the same lines as DA and BA.  Points L and F 
are put arbitrarily on the circumcircles of AKJ and GCE.  The four lines KL, LJ, EF and FG, when 
extended form a cyclic quadrilateral. 
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Figure 14: ABCD is a cyclic quadrilateral. G lies on DC extended, E lies on BC extended, J lies 
on BA extended and K lies on DA extended. CGFE and AKLJ are cyclic quadrilaterals. N is the 

intersection of LK and FG, O is the intersection of EF and JL. LNFO is a cyclic quadrilateral. 

We leave the reader with the challenge of reimagining this pattern with different manifestations 
of the bisector and illustrate the power of the configuration with a proof of Napoleon’s Theorem. 

Napoleon’s theorem states that the triangle formed by joining the centers of equilateral triangles 
constructed on the sides of a triangle is itself equilateral. A proof based on the above configuration 
takes the following form.  Let D in figure 13 be the intersection of the circumcircles of equilateral 
triangles drawn on sides AB and BC of triangle ABC.  Angles ADB and BDC (and hence CDA) are 
120 degrees.  Hence HIJ is equilateral.  To complete the proof, we relate a particular HIJ to the 
Napoleon Triangle.  

Figure 15: D is the Fermat-Toricelli point of triangle ABC, EF is one side of the Napoleon 
triangle, HI its dilation by a factor of 2 centered at D. 

In Figure 15, E F and G are the centers of the circumcircles of equilateral triangles drawn on the 
sides of triangle ABC.  D is the intersection of the circles.  Napoleon’s triangle is EFG.  If we dilate 
Napoleon’s triangle by a factor of 2 centered at D, its vertices lie on the three circumcircles and its 
edges pass through points ABC, and hence the dilated triangle is an instance of HIJ in figure 13. 

Proceedings of the 26th Asian Technology Conference in Mathematics

10



The diagram of Figure 13 can be generalized so that instead of triangle ABC, we have a general 
polygon 𝐴𝐴1𝐴𝐴2 ⋯𝐴𝐴𝑛𝑛 and point D.  In Figure 14, we could have a chain of n cyclic quadrilaterals 
rather than 3. 

8. Conclusion

We encounter the angle bisector, in disguise, in theorems which feature reflections and in 
diagrams which contain isosceles triangles.  As a circle chord and its two radial lines form an 
isosceles triangle, this latter category includes many diagrams containing circle chords.  In this 
presentation we have described two ways of creating new angle bisector theorems from old.  One 
method involves starting with a theorem which involves only circle chords and replacing some or 
all of these with angle bisectors.  Another method involves coalescing lines of the original model 
and making an informal limit argument.  The availability of software to check the validity of a 
theorem absolves us from the need to do calculus, rather we can use our limit argument to show us 
a candidate theorem, then check it using technology, or geometry. 

Acknowledgements The author would like to thank the referees for suggesting a sensible 
restructuring of this presentation. 
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Abstract

Wavelet methods and artificial neural networks are incorporated to examine the fore-
casting performance of the daily closing price of the Microsoft stock, NASDAQ:MSFT. An
experimental analysis is performed to demonstrate improved performance of the wavelet
neural network. Results in this study suggest that for these neurowavelet models a long
history with a short training is ideal for stock prediction. This model could be used by
investors, financial managers, or others to enhance their ability to select desired stocks.

1 Introduction

Accurate stock market prediction is not only an important topic in the understanding of the
economy but also proves to be a challenging task for investors. It is hard to forecast trends in the
stock market. This unpredictability in market trends in pervasive for many reasons. Not only is
the future inherently unpredictable, but preferences of society can exhibit high spontaneity and
sudden fluctuations in demand. In this work we perform wavelet analysis using the closing price
of a stock as a time series signal. Consider price action as a time series and hypothesize that
through the use of wavelets, data science, and machine learning we may accurately project how
future price moves. Most time series exhibit a high degree of temporal and spatial dynamics
and are described by some nonlinearity and singularities. Financial analysts attempt to provide
rational explanations to problems that arise in the stock market. Through the development of
theoretical models and predictive algorithms, effective information can be obtained for use in
financial planning, analysis and management. Traditional time series models are limited with
the assumption that data are stationary and thus unable to accurately capture nonlinearities
or singularities in the signal. Stock market prices are usually the outcome of interaction among
different nonlinear phenomena, which fluctuate across different spatial and temporal scales
producing a chaotic response curve that is difficult to predict. Our purpose is to develop an
adequate model that characterizes high complexity, and nonstationarity of the stock price as
well as provide accurate forecasting.
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Various approaches have been tested for forecasting and prediction of financial time series.
The last couple of decades have seen remarkable progress in the ability to develop accurate time
series models [1, 2, 5, 6]. Artificial neural networks (ANN) shows great strength in efficiency
of curve-fitting and simulation through the diverse network designs and available training al-
gorithms. ANN have become a popular tool among stock market and elsewhere in the realm
of time series analysis [4, 8, 9]. However, when working with chaotic signals such as a series
of daily stock price, a major bottleneck in the capabilities of ANN has been the ability to
generalize a well-trained simulation to the accurate prediction of extreme events or extended
forecasting. By including multi-resolution information from a wavelet decomposition of the
time series as input the ANN model is specialized to form the hybrid wavelet neural network
(WNN) or neurowavelet model. Among many models developed over this period, WNN type
models have shown to be among the most promising in simulating stock market. This is in part
due to the provable ability of ANN to efficiently approximate highly nonlinear relationships
[3]. The power of ANN is combined with the efficient multiscale representation granted by
the wavelet transform to increase forecast accuracy. This is exemplified in the demonstrable
potential for robust prediction of nonlinear time series by models incorporating a neurowavelet
technique [5, 8, 11, 12].

Wavelet analysis is a useful and powerful tool in performing time-frequency or time-space
analysis of a time series. The wavelet transform can be used as a decomposition of a time series
in to precise resolution in both time and frequency scale planes. Wavelets with multiresolution
(MRA) properties have become useful tools in many applications, which include sub-band
coding data compression, characteristic points detection, and noise reduction and others.

In this study, we combine wavelet analysis and artificial neural networks (ANN) as a hybrid
stock market forecasting model WNN. By ANN we are referring to the concept of using a
machine learning approach to perform stock market forecasting. In order to control for the
innate uncertainty produced by neural network we introduce two controls in the implementation
of the neurowavelet system. As a first measure, a genetic algorithm is used to only select the
best trained networks, this process is repeated to generate a set of networks. Each network is
used to create a prediction, and then these results are averaged together to give the reported
forecast horizon. We use a neuro-wavelet method to perform forecasting on the Microsoft stock.

There are two main experimental variables and two hypothesis which were tested in this
analysis. In the implemented neurowavelet system there are two ways to control the amount
data being used for prediction, and these are the variables of interest here. The first is the
length of the time series to be analyzed by the wavelet transform. The second experimental
variable is the length of the training period supplied to WNN, which we refer to as the Lookback
time. The tested research questions are as follows: Does the addition of additional history data
to the wavelet MRA improve stock market prediction? How much look-back time is needed to
cleanly reproduce market trends?

This paper is organized as follows. In Section 2, we briefly describe wavelet method, neural
networks, data sources and comuter resources. We present our results in Section 3, followed
by discussions in Section 4. We conclude with several comments and state our future plans in
Section 5.
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2 Methods

2.1 Wavelet Analysis

In what follows, we provide some background on wavelet analysis. This information includes
a description of multiresolution analysis, scaling functions, wavelet functions, and the wavelet
transform for both continuous and discrete signals.

A multiresolution analysis (MRA) [7, 10] consists of a sequence of successive approximation
spaces {Vj}j∈Z of L2(R) with the following properties:

(i) Vj ⊂ Vj+1,

(ii) lim
j→∞

Vj =
⋃
j∈Z

Vj is dense in L2(R),

(iii)
⋂
j∈Z

Vj = {0},

(iv) f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,

(v) f(x) ∈ Vj ⇐⇒ f(x+ 2−jk) ∈ Vj, ∀ k ∈ Z,

(vi) There exists a function φ ∈ V0 so that {φ(x− j)}j∈Z is an orthonormal basis of V0.

φ is called a scaling function that generates a MRA with the above properties. Through
translation and dilation of φ, a Riesz basis {φj,k(x)}k∈Z is obtained for the subspace Vj ⊂ L2(R)
by the properties (iv)(v), where

φj,k(x) = 2
j
2φ(2jx− k), j, k ∈ Z. (1)

This family can be generally expressed as φm,n(x) = 1

a
m
2
φ(x−nb

am ), for real numbers a 6= 0 and b.

Since V0 ⊂ V1, there is a set of coefficients {ak}k∈Z , so that φ satisfies the two–scale equation
or refinement equation

φ(x) =
∑
k

akφ(2x− k). (2)

For every j ∈ Z, we define Wj to be the orthonormal complement of Vj in Vj+1, we then
have

Vj+1 = Vj
⊕

Wj (3)

and
Wj ⊥ Wj′ if j 6= j′. (4)

It follows that, for j > J

Vj = VJ
⊕

(

J−j+1⊕
k=0

WJ−k). (5)

By virtue of (ii) and (iii) above, this implies
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Figure 1: Symlet Scaling Function and Wavelet of Order 4

Figure 2: Symlet Scaling Function and Wavelet of Order 8

L2(R) =
⊕
j∈Z

Wj (6)

which is a decomposition of L2(R) into mutually orthogonal subspaces. It turns out that
a basis for W0 can be obtained by dilating and translating a single function ψ(x) called basic
(mother) wavelet which is defined by (wavelet equation)

ψ(x) =
∑
k

bkφ(2x− k) (7)

where bk = (−1)ka−k+1. In fact, {ψj,k(x) = 2
j
2ψ(2jx − k)}k∈Z forms an orthonormal basis for

Wj. Examples of scaling functions and wavelets are presented in Figures 1-4.
Let Pj, Qj denote the orthogonal projection L2 → Vj, L

2 → Wj, respectively. Then
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Figure 3: Daubechies Scaling Function and Wavelet of Order 4

Figure 4: Scaling Function and Wavelet of Order 8
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Pjf(x) =
∑
k

αj,kφj,k(x), (8)

Qjf(x) =
∑
k

βj,kψj,k(x), (9)

where the coefficients αj,k, βj,k are given by the following inner products respectively:

αj,k =< f, φj,k >=

∫ ∞

−∞
f(x)φj,k(x)dx, (10)

βj,k =< f, ψj,k >=

∫ ∞

−∞
f(x)ψj,k(x)dx. (11)

Pjf converges to f in the L2 norm which is the best approximation of f in Vj.
More precisely, the above coefficients can be obtained by applying wavelet transforms which

are defined as follows.
The continuous wavelet transform is defined as:

[wψx(t)](a, b) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt a > 0, b ∈ R, (12)

where the symbol * represents the complex conjugate, x(t) is the given signal and ψ is a wavelet.
The discrete wavelet transform is defined as:

[Dwψx(n)](a, b) =
∑
n∈Z

x(n)gj,k(n), a = 2j, b = k2j, j ∈ N, k ∈ Z, (13)

where gj,k are the coefficients of the wavelet equation associated with ψ.
To provide input data, we calculate wavelet coefficients by choosing appropriate wavelets

and the level of MRA resolution.

2.2 Neural Networks

Artificial neural network (ANN) is one of the most promising methods in artificial intelligence.
It is a mathematical method for data analysis based on learning and analyzing abilities. The
idea is to simulate the human brain in the knowledge acquisition process to solve problems such
as clustering, classification and prediction. ANNs set up components that possess essential
properties of neurons and these are connected by specific weights. An ANN has input and
output layers connected by a hidden layer. These successive layers receive the input information
and propagate it towards the output layer. More precisely, the structure of the information
processing system consists of a large number of interconnected processing elements (neurons).
The networks learn the systems by adjusting to the synaptic connections that exist between
neurons. The nonlinear autoregressive neural network is one of the basic models of ANN
appropriate for estimation of future values of the input variable. It performs multistep neural
network prediction which is for multi-step ahead prediction. In this context, dynamic networks
with feedback can be transformed between open-loop and closed-loop modes. Closed-loop
networks continue to predict when external feedback is missing, by using internal feedback.
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There are many training functions used to train an ANN. The idea is to forecast future
values of a time series, based on its historical (previous) values, utilizing additional external
time series with some time delay parameters. The network training is performed, by some back
propagation algorithm, and uses steepest descent method [8] to obtain least error between the
real data and the predicted values.

2.3 Wavelet Neural Network

The idea of wavelet neural network (WNN) is to combine wavelet analysis and ANN as a
hybrid time series forecasting model. By ANN we are referring to the concept of using a
machine learning approach to perform forecasting. We first use wavelet tools to obtain wavelet
coefficients of input data, we then use them to process through ANN which is one of the
most powerful and useful methods in artificial intelligence. ANN is a typical mathematical
method for data analysis based on learning and analyzing abilities so that we simulate the data
through the knowledge acquisition process to solve problems as we described in the previous
sub-session. The incorporation of wavelet analysis and ANN gives rise to more accurate, efficient
and effective ways of classification and forecasting. The robustness and flexibility of our WNN
system have been proven through additional experiments on other data. In addition, our model
has been extended to incorporate multifarious extraneous measured input signals, without loss
of algorithmic efficiency.

2.4 Data Sources

Microsoft (MSFT) price can be found at https://www.macrotrends.net/ which includes 35 years
stock prices and other financial information.

2.5 Computer Resources

All computational experiments were performed using the High Performance Computing Center
(HPCC) at Michigan State University’s Institute for Cyber Enabled Research (ICER). The
calculations were run on a single machine equipped with a AMD EPYC 7H12 64-Core Processor
@ 2.6GHz and 996 GB of DDR4 ECC RAM. By way of this configuration a homogeneous parallel
cluster was generated using 101 logical cores with 4 GB of memory allocated to each core and
used for each experimental trial.

The predictive neurowavelet system was implemented as a MATLAB function. Compu-
tations were performed using MATLAB/2021a and the following toolboxes: Deep Learning,
Parallel Computing, and Wavelet.

3 Results

The data was divided as 52% for training, 15% for validation and the final 33% as testing data.
After extensive testing with 100,500,2500, and 7500 days of lookback superior results were

observed with 100 days of training. Based on this it was determined that a more accurate
stock prediction is determined using less days WNN training. This is an unexpected result and
stands in contrast of previous experiments applying the same system to a more natural signal
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Figure 5: 10 day forecast horizon (based on the data since 1986)

Figure 6: 20 day forecast horizon (based on the data since 1986)

[1]. Based on further detailed tuning, it was determined that 66 days of lookback should be
used as the optimal length of history for the target signal.

To perform the WNN process, we use 6 delays, one hidden layer of 13 neurons, level 13
DWT with sym3 wavelet. In order to get reasonably good results, we run 100 trials and took
the average. Based on the data since 1986, we obtained 10-day, 20-day, and 30-day closing
price forecasting for NASDAQ/MSFT as shown in Figures ??, ??, and 7. In a similar way,
we based on the data since 1995, we obtained and presented the results in Figures 8, 9, and
10. The model performance is measured by Mean Squared Error (MSE), Root Mean Square
Error(RMSE), RMS Relative Error (RMSRE), and Mean Absolute Percent Error as defined in
Table 3. We calculated the performance of the above methods and present the results in Table
3 and Table 4. The steps of the algorithm are presented in the appendix.
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Figure 7: 30 day forecast horizon (based on the data since 1986)

Table 1: Performance Statistics
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Table 2: Model Configurations (Hyperparameters)

Model Hidden Layers Wavelet Family Resolution Buffer Lookback History

WNN86 (13) Sym3 13 6 66 7814

WNN95 (13) Sym3 13 6 66 5539

MLP[4] (70,28,14,7) - - 1 - 2750

UA [4] (70,70) - - - - 2750
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Figure 8: 10 day forecast horizon (based on the data since 1995)

4 Discussions

The performance with longer history data shows better than less history data. Remarkably, this
means forecasting performs better if we are able to supply a longer history to the WNN during
the closed-loop training and testing segments of model prediction. However, in calibrating the
length of lookback it was determined that a shorter training data produces the best result.
Together, this seems to imply that a long history with a short training is ideal for stock
prediction.

Our WNN method shows better results than some neural network method [4, 12]. Figure 11
presents predictive results of a final response showing an improvement by the WNN presented
here over the neurowavelet designs developed in [12]. The details of the hyperparameters
representing some comparable models from [4] are shown in Table 3. Table 5 provides an
explicit comparison of the measured statistics further demonstrating the superiority of the
WNN method.

The performance gain seen with WNN method is likely due to the higher level wavelet
decomposition incorporating more information of the time series. Also, WNN method can do
better jobs on non-stationary time series and allows choosing different levels of resolution.

5 Conclusions

We use wavelet method together with ANN in predicting stock price and see the effects of our
method by comparing various errors. Wavelet analysis has the ability to improve forecasting
by capturing useful information on various resolution levels of a signal. ANN is very useful in
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Figure 9: 20 day forecast horizon (based on the data since 1995)

Figure 10: 30 day forecast horizon (based on the data since 1995)

modeling and forecasting time series. Combining both techniques, we obtain better results than
other methods. Overall, WNN model using longer training produces better results than other
methods. In fact, it turns out that short-term traders are usually better served by waiting for
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Table 3: Forecast Performance (history: 3/13/1986-3/10/2017)

starting 3/13/2017

horizon (days) MSE RMSRE

10 0.40 0.00045

20 2.52 0.0010

30 1.27 0.00050

Table 4: Forecast Performance (history: 3/13/1995-3/10/2017)

starting 3/13/2017

horizon (days) MSE RMSRE

10 0.44 0.00081

20 1.89 0.00091

30 2.10 0.00072

Table 5: Comparison of Method Performance

Model RMSE MAPE

WNN86-10 0.6296 0.00045

WNN95-10 0.6642 0.00082

MLP-SP500[4] 44.5137 0.0118

UA-SP500[4] 25.4851 0.0067

confirmation of an output at hand, rather than trying to predict what an output will be in the
long run. From what is learned of the outcome, traders establish significant stages to buy or
sell that should be based on what price is actually doing, rather than what we expect it to do.

We will explore various tasks related to the method we presented in this paper, such as
the level of wavelet resolution, genetic evolution parameters, number of neurons, size of delay
buffer, and the structure of the hidden layer. We will also perform forecasting for other stocks.
We envision our study will have impact on understanding and predicting the trends crucial in
maintaining a stable marketplace environment with capacity for safe, effective, and profitable
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Figure 11: Comparison of prediction to fitted testing data for each WNN method.

stock trading. In this way we hope to produce work that helps improve the international
economy and the well-being of our society.
Appendix
The complexity and power of ANN is achieved by the interaction of several neurons through the
nonlinear process. The algorithm is based on the following Scaled Conjugate Gradient (SCG)
training algorithm which is briefly described as follows. The idea is basically to minimize the
error function E(w) of the weight vector w with the following steps.
Step 1. Select the initial weight vector w1 and let k=1.
Step 2. Determine a search directionpk and a step size hk so that E(wk + hkpk) < E(wk).
Step 3. Update vector wk+1 = wk + hkpk.
Step 4. If E ′(wk) 6= 0 then set k = k + 1 and go to Step 2 else return wk+1 as the desired
minimum.
Acknowledgment
The authors wish to thank anonymous referees’ comments which improve the manuscript.

Proceedings of the 26th Asian Technology Conference in Mathematics

24



References

[1] J. A. Criswell, and E. B. Lin, River Flow Forecasting Using An Inverse Wavelet Transform
Neural Network Approach, Int. J. of Applied Mathematics, Computational Science and
Systems Engineering 3, 67-70, 2021.

[2] J. A. Criswell, and E. B. Lin, Noise Removal in River Flow Forecasting, Proceedings of
2021 23rd International Conference on Process Control (IEEE), 219-224, June 2021.

[3] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of
control, signals and systems, 2(4), 303-314. 1989.

[4] P. Gao, R. Zhang, and X. Yang, The Application of Stock Index Price Prediction with
Neural Network, Mathematical and Computational Application, 25, 53, 2020.

[5] Hsieh, T. J., H. F. Hsiao, and W. C. Yeh, Forecasting stock markets using wavelet trans-
forms and recurrent neural networks: An integrated system based on artificial bee colony
algorithm, Applied soft computing 11, 2510-2525, 2011.

[6] E. B. Lin, and J. Criswell, On Wavelet Neural Networks and River Flow Forecasting, Pro-
ceedings of 2021 6th International Conference on Mathematics and Artificial Intelligence,
20-24, 2021.

[7] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998.

[8] Ortega, Luis F, A neuro-wavelet method for the forecasting of financial time series, Pro-
ceedings of the World Congress on Engineering and Computer Science, 24-26, 2012.

[9] Popoola, Ademola Olayemi, Fuzzy-wavelet method for time series analysis, University of
Surrey, United Kingdom, 2006.

[10] Van Fleet, P. J. (2008), Discrete Wavelet Transformations An Elementary Approach with
Applications, Hoboken, NJ, John Wiley and Sons.

[11] Kai-Cheng Wang, Chi-I Yang1 and Kuei-Fang Chang, Stock prices forecasting based on
wavelet neural networks with PSO, MATEC Web of Conferences 119, 01029, 2017.

[12] Tianxing Zheng, Kamaladdin Fataliyev, Lipo Wang, Wavelet neural networks for stock
trading, Proceedings of SPIE - The International Society for Optical Engineering, 2013.

Proceedings of the 26th Asian Technology Conference in Mathematics

25



Understanding Geometric Pattern and its Geometry 
Part 6 – Using Geometer’s Sketchpad for designing 

sizeable geometric projects 
 

Mirosław Majewski  
 

mirek.majewski@gmail.com  
New York Institute of Technology, School of Arts & Sciences,  

Abu Dhabi campus, UAE 
 

Abstract: This document aims to explain a few aspects of dealing with geometric objects in Geometer’s 
Sketchpad that are not entirely related to geometry. We discuss how one can reduce the amount of data 
needed to create bulky geometric constructions without losing the quality and accuracy of the final design. 
We use a real complex geometric pattern to demonstrate our conclusions.  

Introduction 

Designing geometric patterns with GSP (Geometer’s Sketchpad) or any other geometry software1 means 
two things – creating geometric objects and dealing with the software’s non-geometric features. We 
know a lot about geometry, but we often get into trouble with its non-geometric aspects.  

While drawing complex geometric patterns using GSP, I observed that sometimes my computer slows 
down, and it takes a longer time to redraw the image on the screen. Some of my students, using older 
machines, reported that their computers crashed while producing such designs. In this paper, we deal 
with this issue. We will show how one can design even very bulky geometric patterns without slowing 
the performance of their computers and still obtaining good quality designs.  

While working with the program, GSP keeps its sketch entirely memory- resident. No part of the drawing, 
selecting, or dragging objects require access to the file whatsoever. The file on the disk is completely 
independent and is used for long-term storage and data transfer. Thus, in reality, we have two documents 
– one the computer file and another one the in-memory sketch.  

Generally, GSP files aim to be small. They contain a mathematical description of objects used in the 
sketch. The in-memory sketches aim to be as fast as possible. While loading a file from the disk, GSP will 
allocate, compute, and store the equations and parameters of each object most recently sampled to 
rapidly redraw the picture without having to perform any arithmetic every time it needs to redraw even 
a small portion of the window. Thus, we have a reasonably small file on the computer disk, while the in-
memory sketch is a maximal object.    

 
1 Most of the information in this paper is valid also for GeoGebra.  
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How much information is needed for an object? 

Let us examine some of the objects we deal with in Geometer’s Sketchpad.  

A point from the geometric point of view is a small dot. A point means much more in GSP (and any other 
geometry software) – its coordinates, color, size, and flag for object’s features – hidden or visible. All this 
information is stored in the in-memory sketch. There is also a visual representation of a point – two small 
circles, one black and another smaller using a specific color.  

Thus, if we have a few thousand points in our design, we already have a considerable amount of hidden 
data. But points are not the bulkiest objects.  

A segment is a collection of two points used to create it, the equation of the line passing through these 
points, the color of the segment, its thickness, and its style. This means that for every segment, we have 
about 3 times more information than for a point. But there is something hidden that we didn’t notice. 
The information about the endpoints of a segment is doubled. Here is an example: 

The black segment below was created by connecting the two points shown here. The blue segment is a 
translation of the black one. I changed color to distinguish them. The top segment does not have visible 
endpoints, but they still exist. This means that if we draw a segment, information about its ends is stored 
twice – (1) in coordinates of points used to create a segment and (2) in the description of the segment 
(look at the blue part).  

 
All this means again a lot of hidden, sometimes unnecessary information is stored in the in-memory 
sketch.  

A polygon should be understood as a collection of many objects: vertices, sometimes (!) segments joining 
these vertices, and filling of the polygon area. This is a lot. Here are also a few things that we should 
consider. While creating a polygon, we use points for its vertices, but while creating a polygon, we also 
create coordinates of its vertices. The next illustration shows what we really create.  

 

Anatomy of a polygon 
In this drawing, the left triangle was created using the three 
points shown here. The top-right polygon is its translation, 
and the drawing right-down is another translation of the 
original polygon. For the last one, we used 50% opacity to 
show its real structure.  
These two right images show that any polygon itself 
contains information about its vertices even if they are not 
visible, and (this is important)  the polygon has in its 
definition also edges (let us call them frames). They are 
clearly seen on the right-bottom triangle.  
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The above analysis concludes that a simple triangle like the one on the drawing contains a large amount 
of data outside of our awareness. Thus the question is: how can we reduce all this information to 
absolutely necessary elements? This way, we could reduce the number of objects and data that, in reality, 
we do not need and thus make in-memory sketches smaller and faster displaying their content. Here are 
some conclusions: 

1. We could reduce the size of our constructions and consequently 
in-memory sketches by not drawing edges of polygons. They are 
already there. Unfortunately, they have the same color as the 
whole polygon, which cannot be changed.  

2. If we want to reduce the number of points, we can consider 
translating or rotating polygons and segments without their 
endpoints.  

3. We can also remove the frames of polygons like the one seen in 
the drawing below. But this possibility has some drawbacks.  

 

Frames of polygons 
In this illustration, the left triangle was created by drawing a 
polygon with vertices ABC. The right one is its reflection about 
a line passing through points A and B. In both cases, we 
removed the frames of each polygon. The drawback is this tiny 
gap between them.  
This means that we can remove these frames without any 
problem in some cases, and in some others, we will get 
unpleasant artifacts in the form of a gap between polygons.  
How do we fix this issue? There are two ways.  

The preferences panel 
In GSP’s Edit menu, at the very bottom, there is the 
[Preferences] option. The illustration to the left shows its 
appearance in the Windows version. Here we can change 
several parameters but the most important for us, at the very 
moment, are polygon tools. Here we can decide if we want 
polygon frames created for us and no white gaps between 
polygons, and here we also determine if we want to have 100% 
opaque (non-transparent polygons).  
This way, we decide the features of our polygons globally. But 
of course, later, we can select any polygon and change its own 
specific features.  
Important – there is a bug in GSP. Suppose that we created an 
unframed polygon with the Frame New Polygon option 
checked. Then each copy of it obtained by translations, 
rotations, or reflections will get a frame.  

A

B

C
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The properties of a polygon 
By the right-mouse click on any polygon, we get several 
options, and one of them is the Properties panel. Here we also 
can apply opacity and framing but only for the selected 
polygons. All other polygons will not be changed at all.  

All this discussion brings us to the two questions: should polygons be created with frames or without, 
transparent or not? You can decide on your own what you prefer and see how this fits into your needs.  

In all my works, when I deal with tangent polygons, I use polygons with frames. If I do not have tangent 
polygons or a few tangent only, I prefer to have polygons without frames, and these few I change to 
framed by hand. I rarely use polygons with lower than 100% opacity.  

The opacity of polygons brings us to a few unexpected problems. Transparent polygons at, say, 50% 
opacity are great at showing an image behind the polygon. But they are awful when we take an image 
from GSP, paste it into MS Word, and then print the Word file. In such cases, I make a right-click on this 
image in Word, and I ask to save it as a PNG file. I then take this PNG file and copy and paste it into the 
Word document, replacing the original image.  

 
Left – original drawing from GSP (obtained 
by cut and paste), right is its copy created 
by MS Word (save as Picture). We do not see 
any difference between these two images in 
an MS Word document, but we see the 
difference after printing it.  

 
In this image, we show three 50% 
transparent squares (from the left): a 
polygon with thick frames and edges drawn 
by us; a polygon without frames but with 
edges drawn by us; a polygon with no 
frames and no extra edges. The left one 
uses maximum data, the right one uses the 
minimum of necessary data.  

A few more conclusions – we can avoid framed polygons if we use contrasting colors, one dark and 
another light. This way, the gaps between polygons with two contrasting colors will still exist, but they 
will be less visible. Tangent polygons with the same dark color should always be framed. If we use 
contrasting colors, we do need to draw extra edges of polygons at all. A good solution is to choose one 
color as a background for the whole design and draw it in the form of a large polygon, usually a rectangle.    
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Custom color palettes 

The original set of colors in GSP may not be enough for a more sophisticated design. Thus we can create 
our own color scheme/palette and save it as a GSP tool. Here I show step by step how one can do it.  

 

A sample photo 
The photo shown here has a very bad quality but an excellent color 
scheme. We will try to develop a color scheme based on this photo.  
For this reason, we will need any graphics program for photo editing. It 
can be the Paint program from Windows, or Photoshop, or anything else. 
In most of these programs, we have a Color Picker tool that looks like the 
one shown in the next image. Positioning it on a particular area will 
display the color parameters of the given pixel.  
Here we see that the point has color parameters R:239, G:191, B:57, and 
O:255. This is the amount of each color component for the given point in 
the image: red, green, blue, and opacity. Ignore the last one.  
Now, we have to choose color parameters for a few different and 
characteristic for this image places. Write them down on a piece of paper 
and go with them to GSP. In Sketchpad, we can create, for example, a 
rectangle divided into smaller cells, and each of them fill with a polygon. 
To each of these polygons, we apply color parameters taken from our 
photograph. Such an object can be saved as a new tool. The next drawing 
shows the color palette that I created for this image. I selected each 
polygon and through the menu  

Display > Color > Other  
I was able to change the color of each polygon.  
In this color palette, the following colors were used:  
[R:242, G:165, B:59], [R:203, G:175, B:138], [R: 123, G:30, B:22] 
[R:235, G:209, B:184], [R:119, G:128, B:49], [R:94, G:5, B:1] 
If we want to use this color palette in our design, we have to put it on the 
screen and select an object in our design, then with [shift] down, select 
the desired color from the palette and again through the menu:  

Display > Color > Other  
apply the new color. We do not need to type color parameters again. They 
are already there. This way, we can change the colors of any number of 
objects in our design. Important – while changing colors, the undo 
operation does not work. We cannot get back old colors by using the ctrl-z 
key.  

 

 

Proceedings of the 26th Asian Technology Conference in Mathematics

30



A real example using the user-created color palette 

 

Pattern from Fatehpur Sikri 
In this example, we will use an existing pattern from Mughal 
architecture, from Fatehpur Sikri. I got it from Richa Raut, an Indian 
architect,  already suggesting a tessellation for it. This is our starting 
point. We will develop this pattern using the color palette created a 
while ago.  
The pattern itself is very interesting. It contains regular stars with 14 
vertices and pentagonal stars with one symmetry line only. A significant 
feature of this pattern is the middle star with four arms. It is an object 
with four-fold symmetry. Thus we may assume that it can be wrapped in 
a square as it is shown here.  
 

The next drawings show the step-by-step construction of the contour, tessellation, and pattern. 

(a) 
 (b) (c) 

(d) 

In drawing (a), we start from the thick horizontal segment and two 
vertical lines perpendicular to it. After dividing the left-bottom angle 90 
degrees into 7 equal parts (in GSP, use 90/7 without bothering about the 
angle’s accurate value), we take the 4th section line to produce the 
contour’s top edge. In the same way, we divide the top right angle into 7 
equal parts.  
In drawing (b), we rotate the contour’s diagonal about 45 degrees in 
each side. This way, we get the central square (c). The red point is the 
center of rotation.  
Drawing (d) shows how to complete the tessellation. The two pentagons 
are not regular, but they have one symmetry line. Can you draw it?  
 

m∠CBD = 45.0°

C

B

D

A
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 (f) 

Here we show how one can approach the construction of the pattern on 
this tessellation. The slant blue line passes through the midpoint of the 
pentagon’s edge (blue point) and the contour’s corner. This part is 
evident from the photograph.  
The second blue line can be drawn in a few different ways. Here I made 
it horizontal, but it can be slightly slanted in both ways. The photograph 
does not show the pattern accurately.  
The selection of both blue lines determines the construction of the 
pattern.  
Drawing (g) shows how we can create the quarter of the large star.  
In (h), we see how we could develop the pattern in half of the trapezium 
(bottom-right).  
In (i), we see how we can draw the pattern inside the central square.  

 (g) (h)  (i) 

 (j) 

In this drawing (j), we see how we can develop the pentagonal star. It 
will never be regular. The reason for this fact is that the two angles 
shown here are different.  
Below – the three drawings show the complete pattern with tessellation; 
the pattern using black segments for edges of polygons;  the pattern 
using only polygons with contrasting colors.  
It is essential to notice that the number of segments in drawing (k) is 
not very large, but we may get a large set of edges when we make a 
large pattern out of it. Thus using the version with framed polygons only 
(drawing (l)) we can produce a design with a significantly smaller 
number of elements – no points, no edges, frames, and polygons only.  

(j)  (k) (l) 
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An image with an absolute minimum of data 
This image uses tangent polygons with contrasting colors. There are no 
borders created by the user.  
Polygons inside the contour are without frames. Polygons tangent to the 
contour edges have frames. There are 39 objects in this creation. In the 
above images, the central pattern (k) has 116 objects, and the right one 
(l) has 54 objects.  
Thus if we create a pattern using 8x8 copies of a template, we will 
produce objects with   
8x8x(number of objects in the template) – 7x7  
This gives us numbers 575, 815, and 1807. The 7x7 is for removing edges 
of the contour and each it’s copy.  

Here we have the final version 
of a pattern using framed 
polygons only. This is important 
to notice that after creating a 
large design from the template 
using any type of polygons, we 
do not replicate anything that is 
not visible.  
Another important fact – a 
geometric pattern with a large 
number of elements copied into 
an MS Word document will slow 
it down. The best solution is to 
paste it into MS Word, ask MS 
Word to save it as a picture. We 
will get a bitmap – not vector 
graphics. Then replace the 
image in the MS Word 
document with the bitmap file. 
In the MS Word file and then in 
the PDF file, we will not see a 
difference between these two 
images.  

 

  

  

Size of graphic files 

GSP graphics are always in vector format. This means the size of graphics copied from the GSP screen is 
dependent on the number of elements used in the construction and their parameters. In designs with a 
lot of details, this can be a huge number. While saving an image from MS Word as a picture, we produce 
a bitmap image. The size of such an image depends on the number of pixels in it. The bitmap file can be 
much smaller than the original GSP vector file for the constructions with a vast number of elements and 
complex parameters.  
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For smaller designs, it can be much better to use images copied directly from the GSP notebook. They 
are smaller than their bitmap versions. 

GSP for Windows can save a construction in the EMF format. This is also a vector graphics file. Lines are 
very crisp, but they can be bulky for large designs.  

A bulky example of Persian origin 

In this example, we will show how one can create a very complex geometric pattern following the 
principles discussed in this paper.  

 

A decagonal pattern with two color schemes and a large number of elements 
The photo shows a typical Persian design using two different color schemes. We have dark greenish and 
yellow ceramic tiles and areas with black and very light blue slightly pinkish ceramic tiles.  

In western literature, design from the photo is described as a mysterious pattern with some symbolic 
features and as a self-similar fractal-like object. A person with some basic knowledge of fractals will 
notice that there is nothing fractal-like in it. In the next few pages, we will reconstruct this design using 
a new custom-made color palette. We will show that there is nothing mysterious in it, only pure 
decagonal geometry. Our main goal will be to produce an optimal design with possibly the lowest number 
of elements. Thus we will simplify everything possible. We will cut most of the unnecessary details.  

Pattern analysis 
By analyzing the colors used in this design, we can notice that we have four significant areas: kites (dark 
green and yellow parts), regular pentagons, halves of regular pentagons, and large stars (black and bluish 
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tiles). These figures form the so-called upper-level pattern. These figures are filled with Persian style 
patterns using elements that we created already in our earlier works (see, for example, [2] or [3] ). This 
is the lower-level pattern. Here are the following steps in this project: 

1. Create two distinct color palettes using contrasting colors.  

2. Construct the overall structure of the template – contour, tessellation, and upper-level pattern. 

3. Construct the lower-level pattern for each mentioned shape – kites, pentagons, etc. There are 
only four of them.  

4. Create a large top-level pattern and fill it with the lower-level pattern.  

Color palettes 

For this project, we will use two color palettes – one 
with a blue component with colors:  
[R:208, G:198, B:223],  
[R:79, G:84, B:142],  
[R:79, G:54, B:105],  
and another one with green component: 
[R:217, G:215, B:183],  
[R:137, G:163, B:143],  
[R:48, G:72, B:36]. 

Template for the upper-level pattern 

This part is easy. We did it already a few times on various occasions ([3] ). 

 

  

The presented here construction 
we made while developing the 
pattern Nodir Devon Madrasah 
style  
(see [3] ). 
In the last drawing, we should keep 
the points shown there. All other 
points and tessellation lines 
should be hidden.  
We have here only 4 different 
shapes numbered from 1 to 4.  

4

4

3

3

2

2

11

1 1

1

1

1
1
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Multilevel patterns in Persian art 

A particular feature of Persian art are designs with two or more patterns overlapping each other. In Iran, 
we often see designs where a large pattern forms a framework for another more detailed pattern. Usually, 
there are two levels. We will call them upper-level and lower-level. However, it is possible creating 
patterns with three levels. These designs will be dense-packed with a pattern that may be very difficult 
to render in any type of material.  

The example discussed in this text contains two levels. The upper-level pattern is shown in the above 
drawing. The lower level will be created on the next few pages.  

It is essential to notice that nodes of the upper-level pattern usually are centers of stars or rosettes of 
the lower-level pattern.  

Tools for this design 
In this paper, we will make intensive use of two kinds of GSP custom tools. There will be basic tools 
representing copies of elements of the lower-level pattern and tools for pattern filling large blocks of the 
upper-level pattern.  

A tool to draw tangent decagons 
This design will need a tool to draw parts of two tangent decagons provided that their centers are given.  

Start with line AB and create the midpoint C. Rotate 
the line 18 degrees up and down about point B. Create 
the line perpendicular through point C. This way, we 
will obtain points D and E. All other points in this 
drawing are rotations of the point D around A and B 
at an angle of 36 degrees.  
NOTE – usually, in similar situations, I construct two 
tangent decagons. I this example, we do not need 
complete decagons. We will need only parts of them. 
It is also essential to notice that, shown here, 
polygons are required only for a brief moment, and 
we can delete them. External points D’’’ and D’’ can be 
deleted (deleted, not hidden) if we do not need them.  

Hide or delete 

In Sketchpad and in any other geometry software, we are often tempted to delete unwanted objects. 
Sometimes after deleting an item, the whole construction is still not affected, but in some other cases 
deleting a single point or a segment may destroy the entire construction. All geometry programs use the 
parent-child model. Every element that was used to create a new object is a parent for this object. For 
example, a line B created as a parallel to a given line A and passing through the given point a is a child of 
A and a. These two objects are parents of line B.  

Elements that are parents of other objects cannot be deleted by deleting these objects. But we can always 
hide them, and this will not affect the rest of the construction.  

m∠DBD' = 36°m∠CBD = 18°

E

D'''

D''
D' D'''

D''
D'

D

CA B
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Angles and lengths 

The drawing presented below displays all necessary angles and lengths needed in further steps of this 
design. I assume that the reader knows how to construct the golden section of a segment.   

 

Tools for basic elements 

There are only two basic elements that we need for creating lower-level. These are the black shapes in 
the light areas and yellow kites in the yellow/green areas. Thus we have two shapes: a small kite and a 
flower vase-like shape. The first one is the fill for a long triangle tile or a tall trapezium. The second one 
is the fill for the long hexagon. All other elements can be considered as a background.  

In the table, we show steps in constructing each of them.  

Construction Framed shapes 
using multiple 
polygons 

Unframed 
shapes using 
single polygon 

  

 
 

The vase-like shape was created on a 
long hexagon with all edges equal and 
lines forming 54 degrees angle.  
We need two tools: a tool with four 
identical parts (middle). The symmetry 
lines separate them. Each polygon in this 
tool is framed, with thin frames, to avoid 
gaps between them; a tool with one 
unframed polygon (right).   

 

 

 

 

 

We create four tools for kites. Kites in 
the middle are split into two tangent 
framed triangles (thin lines) 
Kites in the right are created in the form 
of one unframed polygon.   

The shapes in the middle column have a slightly different color than those in the right column. This way, 
we can easier show where we use them. Later we can adjust their colors if we want this.  

m IJ

m JK
 = 1.61803

m∠BLM = 108°
m∠LMB = 54°
m∠IJK = 108°
m∠HIJ = 54°
m∠EDG = 108°
m∠EFC = 144°
m∠DEF = 72°
m∠CDE = 72°

K

L

F C J

M

G

DE I

B

H
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Now we can start developing patterns for the shapes in the upper-level design.  

A tool for the pattern inside the kite (number 1) 

Our first step is to produce a pattern for the quadrilateral ABCD and other identical shapes.  

Left – the upper-level pattern with angles for the kite ABCD. 
Below – construction of the kite and the pattern for it. 
Start with segment AB and rotate it about points A and B 
according to the angles shown here (a). Use twice the tool to 
draw tangent decagons (b) 
Fill the beige polygons with two versions of the small kite. 
These crossed by the kite’s edge should be made out of 
small kites with two framed polygons. These inside the large 
kite should be one-piece polygons unframed (c).  
The drawing (d) shows how to fill the gap in the wide corner 
of the large kite.  
All polygons outside the large kite should be deleted. Some 
but not all points outside can also be deleted.  

(a) 
(b) (c) 

(d) (e) 

Left – the final pattern for the 
large kite. This is important – 
along the kite symmetry line, we 
also have small kites created out 
of two tangent triangles. Why we 
did this?  
Select the two points below the 
pattern (e), and then all polygons 
and create a new tool ‘kite 
pattern.’  

The pattern for large kites is the simplest one. Now we can design the pattern for pentagons. This is a 
slightly more complex task.  

1

m∠DAB = 72°
m∠CBA = 72° m∠BCD = 144°

C

B

D

A

A B
A B A B

A B
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A tool for the pattern inside the large pentagon (number 2) 

 

Construction of pattern for the large pentagon 
Start from segment AB and by rotating it 108 degrees about its 
endpoints, create the pentagon. For each edge of the pentagon, use 
the tool to draw tangent decagons. This is what is shown in the first 
image. Then fill it with kites and vase-like shapes. Start filling the 
central white area by inserting the bottle shape (one framed 
polygon).  
Delete all polygons that are outside of the pentagon. Hide all points 
leaving only points AB. We need them to create the tool for filling 
with the pattern for the pentagon.  
Select the two points shown here and then select the pattern and 
create a new tool, ‘pentagon pattern.’ 

Next comes the pattern for shape in the top-left and bottom-right corners of the upper-level pattern – 
the figure with number 3.  

A tool for pattern filling corners (number 3) 

 

The corner polygon is half of a figure that can be easily 
obtained by cutting a regular pentagon. However, the 
lower-level pattern filling it will be different than for 
the pentagon.  
The drawing shows all necessary angles and the ratio 
of the two edges DE and EF. We can recognize here the 
golden ratio. Thus we have an easy way to construct 
the shape and the pattern for it.  
 

A B

3

3

m BA

m C'B
 = 1.61803

m∠ABC' = 108°m∠DAB = 54°
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B

A
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 (a) (b) (c) 

(d)     (e) (f) 

A brief description 
In the drawing (a), we start with the two points A and B. Point C is the point marking the golden section of AB.  
In (b) point Q’ is a mirror reflection of the point Q, and point Q” is a mirror reflection of Q’.  
Drawing (d) shows how to fill the space in the top-right corner.  
Drawing (e) shows the complete shape. We developed a pattern for only half of it. In the same way, we develop 
a pattern for the other half.  
Drawing (f) is the final pattern for the filling shape number 3 and its reflected part. All kites around the edge 
are framed. All other kites are single polygons, unframed.  
Select the two points shown here and then all polygons and create a new tool, ‘corner pattern’. 

   

C'

CA B

Q"
Q'

Q
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A tool for a pattern for the big star (shape number 4) 

The last part of this long example is constructing a pattern for the big star (shape number 4). This design 
can be developed in a few different ways. We can split the big star into 10 segments and create a pattern 
for one of them. We can also develop a complete design for a quarter of the star.  

 

Angles and properties of the big star 
If we split the star into 10 identical kites, we will get a 
polygon that can be easier to fill with a pattern. It can be 
convenient to start from segment AB and then obtain the 
remaining edges by rotations 36 and 108 degrees.  
There will be a few shapes cut along their symmetry lines. 
Thus we will have to use for them two or four framed 
polygons.  
Below – construction of the long kite and constructing a 
tessellation using twice the tool for creating tangent 
decagons.  

Above - left finishing tessellation, right the 
tessellation and the pattern. See how we created 
the pattern for the corners. 
Left – complete pattern for the long kite. Each of 
the light blue figures uses two or four framed 
polygons. Why? There are only two figures made 
out of a single unframed polygon.  
Select the two points with all polygons and create 
a new tool, ‘long kite pattern’. 

 

m∠DAB = 36° m∠BCD = 108°m∠ABC = 108°
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Assembling the complete design 
Assembling the complete design is the very last and the least complicated task. We start from a large 
template created out of four copies of the upper-level pattern template. This is our master template. 
Now we have to fill it with all the elements that we made.  

STEP 1 – complete the upper-level pattern 
We have here four copies of the upper-level pattern template created at the beginning of this project. 

 

STEP 2 – add fills for the big star 
We use the ‘long kite pattern tool’ to fill the center and all four corners. 
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STEP 3 – fill pentagons with the pattern 
Before filling kites with the pattern, create there the dark green background from the second color 
palette. Use unframed polygons. Now, use the ‘pentagon pattern’ tool to fill each pentagon shown on the 
drawing. Note how the pattern for pentagons was inserted. Its direction is different than in the original 
design. 

 

Step  4 – fill remaining shapes with the pattern, hide the upper-level pattern, hide all points 

 

The design we created contains 1784 elements. If we use all framed polygons, then this number will be at 
least 4 times higher. The most significant saving we get through unframed polygons and one global 
background for the whole design. The light blue color is one rectangle – not a few hundreds of pentagons, 
etc. Each small kite also has one background  (see step 3). 
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In this design, we use polygons on a few layers. The top layer contains small shapes. The middle layer 
form the dark green kites. The bottom layer is one large light blue rectangle.  

Final comments 
In this text, we discussed methods for optimizing large geometric patterns. The final result looks exactly 
like the pattern created without using the techniques presented here. However, it contains much fewer 
elements. The example discussed in this paper is relatively simple. The number of elements may grow to 
50 thousand or more elements – segments and polygons in more complex examples. Such a quantity of 
objects is still acceptable for Geometer’s Sketchpad. But it will slow down its work. However, if we copy 
a GSP design to any other vector graphics program, we may wait a long time to render our graphics.  

In this text, we did not discuss the differences between vector graphics files and bitmap files. Such a 
discussion can be found in any introductory textbook of graphics design or an appropriate Wikipedia 
page.  
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Abstract

We continue the investigations regarding the locus problems for certain curves and
quadric surfaces, which are discussed in [6] and [7] in 2D and 3D cases. We explore
the intersecting curves when the fixed point A is outside the surface and when A is at
an infinity. The discoveries from explorations with the help of technological tools in this
paper will assist learners to conduct further research in the area of projective geometry
and beyond.

1 Introduction

In [7], we considered the following:
Original problem: We are given a fixed point A and a generic point C on a specified

curve or surface Σ such that the line l passes through A and C and intersects a well-defined
D on Σ, we want to determine the locus curve or locus surface 4 generated by the point E,

lying on CD, which satisfies
−−→
ED = s

−−→
CD, where s is a real number parameter.

We remark that the original locus problem leads to many interesting projects thanks to
several parameters that need to be taken care of. The location of a fixed point A certainly
determines the locus once the original surface Σ is chosen. The parameter s determines size of
the locus surface 4. As we discussed in [7], the 3D surface Σ we consider in this paper is either
an ellipsoid or a hyperboloid with two sheets. In this paper, we discuss how the locus surface
4 will behave when point A is outside the specified surface Σ. Furthermore, since the location
of the fixed point A will determine the locus surface, we shall distinguish the case when A is
either at an infinity or not. We recall that we calculated the exact expression for the antipodal
point D corresponding to the point C in [7]. In Section 2, we remind readers how we apply the
Vieta formula to find the locus surface. In Section 3, we discuss the scenario, when A is outside
a specified surface Σ but not at an infinity, how we can find the intersecting curves between
Σ and its locus surface 4. It is interesting to note that once the fixed point A is chosen, the
intersecting points or curve stays fixed regardless of the parameter s. In Section 4, we explore
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the locus surfaces when A is at an infinity. In such case, the point Dinf can be viewed as the
“limit” of point D when A goes radially to infinity, or as the projection of C along the line l
through the point A “fixed at infinity”. The explorations lead to linear transformations involve
further discussions in [8].

2 Generic methodology to find locus surface

If Σ is the quadric surface F (x, y, z) = 0 we recall from [7] how we find the locus surface when
the fixed point A = (x0, y0, z0) does not go to infinity. We represent a generic point on Σ as

C =

 x̂
ŷ
ẑ

 (1)

In order to calculate the coordinates of point D = (x, y, z) (which is different from C), as
the intersection between the quadric Σ and the line l passing through A and C, we make use
of the parametric equation of line l as follows:

x− x0 = λ(x̂− x0),

y − y0 = λ(ŷ − y0),

z − z0 = λ(ẑ − z0).

Hence, we obtain

y − y0

x− x0

=
ŷ − y0

x̂− x0

, (2)

z − z0

x− x0

=
ẑ − z0

x̂− x0

. (3)

Then we define two auxiliary functions, namely

k
.
= k(x̂, ŷ) =

ŷ − y0

x̂− x0

(4)

m
.
= m(x̂, ŷ) =

ẑ − z0

x̂− x0

(5)

Since both intersection points, C and D, satisfy the implicit equation of Σ, we can use (4) and
( 5) to get the x–coordinate of D, say x1, by calculating the roots of the polynomial

p(x) = a2x
2 + a1x + a0,

It follows from p(x̂) = 0 and the Vieta’s formulas that

x1 = −a1

a2

− x̂.

It follows from (2) and (3) that

y1 = y0 + k(x1 − x0) and z1 = z0 + m(x1 − x0).
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For a given s, the locus surface generated by point E = sC + (1− s)D is defined as

∆(x0, y0, z0) =

 xe

ye

ze

 =

 sx̂ + (1− s)x1

sŷ + (1− s)y1

sẑ + (1− s)z1

 .

We remark that once the fixed point A is chosen, since A and C together determine the point
E, the locus surface is thus fixed too.

3 Motivations

In this section, we shall explore how various factors such as, the original surface Σ, the fixed
point A, and the scalar s will affect a locus surface ∆ (Σ, A, s). For example, we may investigate
the following scenarios:

1. How will the radius ρ of the fixed point A = (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0) affect
a locus surface?

2. How will the angle (u0, v0) of the fixed point A = (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0)
affect a locus surface?

3. How will the parameter s > 1 affect a locus surface?

We first use the following two dimensional ellipse to motivate our findings:

3.1 The ellipse case when the fixed point A is not at infinity

Consider the ellipse c
x2

a2
+

y2

b2
= 1 (6)

and let A = (x0, y0) be a fixed point “outside” c. In [6], the locus curve γ : [0, 2π] → R2 was
determined in parametric form as

γ(t) =

 s a cos(t) + (1− s)
a3y2

0 cos(t)−2a2b x0y0 sin(t)−a b2x2
0 cos(t)+2a2b2x0−a3b2 cos(t)

a2y2
0−2a2b y0 sin(t)+b2x2

0−2a b2x0 cos(t)+a2b2

s b sin(t) + (1− s)
a2b y2

0 sin(t)+(2a b2x0 cos(t)−2a2b2)y0−b3x2
0 sin(t)+a2b3 sin(t)

a2y2
0−2a2b y0 sin(t)+b2x2

0−2a b2x0 cos(t)+a2b2


The Figure 1 shows the locus curves (orange) and the original ellipse (blue) for a = 8, b = 6,
A = (10, 10) and s = 0.75, 1.5, and 2.0 respectively.
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Figure 1. Locus curves when s = 0.75, 1.5 and 2.0 respectively.

With the help of [1] we see that, for any s > 1, the corresponding locus curve intersects tan-
gentially the ellipse at the same points, say P1 and P2. Consider now the following experiment:
construct a point C on the ellipse and draw the corresponding tangent line, using for example
the command Tangent(Point,Conic). Turns out that the tangent lines to the ellipse at points
P1 and P2 will contain the point A (this is what is expected from the geometric construction of
the locus curve generated by point E = sC + (1− s)D, because when D = C, we see E = C.

The intersecting points does not depend on the parameter s; the idea is that intersecting
points are those that are equal to their “antipodal” points and are equal to the points of
tangency of the lines from A to the ellipse. The Figure 2 below shows the construction when
we drag C on P1.

Figure 2. Tangent line for the ellipse at intersecting point P1.
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Therefore, when the fixed point A is given, the problem of finding the tangency points of
the ellipse with any locus curve reduces to the simple problem to find the tangent lines passing
through point A. We describe the procedure as follows:

1. We set the Eq1 as the equation the ellipse c :

F (x, y) =
x2

a2
+

y2

b2
− 1 = 0 (7)

2. We calculate the gradient of F (x, y),

∇F (x, y) =

(
2x

a2
,
2y

b2

)
(8)

3. For generic point P (x, y), we consider the vector
−→
PA = (x− x0, y − y0).

4. The condition of ∇F (x, y)⊥
−→
PA yields to the following:

2x
x− x0

a2
+ 2y

y − y0

b2
= 0. (9)

5. We solve, using [1] (see [S1]), Eq1 and Eq2 for x and y to get the intersecting points,

P1 =

(
a2y0

√
a2y2

0 + b2x2
0 − a2b2 + a2b2x0

a2y2
0 + b2x2

0

,−b2x0

√
a2y2

0 + b2x2
0 − a2b2 − a2b2y0

a2y2
0 + b2x2

0

)
and

P2 =

(
−a2y0

√
a2y2

0 + b2x2
0 − a2b2 − a2b2x0

a2y2
0 + b2x2

0

,
b2x0

√
a2y2

0 + b2x2
0 − a2b2 + a2b2y0

a2y2
0 + b2x2

0

)

3.2 The ellipsoid case when fixed point A is not at infinity

We want to find the tangent plane T at a point P on the ellipsoid C =

 x̂
ŷ
ẑ

 such that

T is passing through the fixed point A = (x0, y0, z0) . If the ellipsoid is the level surface of

F (x, y, z) = x2

a2 + y2

b2
+ z2

c2
− 1 = 0. Then the gradient at a point of the ellipsoid is OF (x, y, z) =(

2x
a2 ,

2y
b2

, 2z
c2

)
, then we see the tangent plane as follows:

T (x, y, z) = OF (x, y, z) · (x− x0, y − y0, z − z0) = 0, (10)

We thus solve F (x, y, z) = 0 and T (x, y, z) = 0 for the variables x, y and with the help of [7],
we obtain the followings:

x = −

a2

RootOf

 (
a2y0 2 + b2x0 2

)
Z2 + a2c4 − 2 a2c2zz0

+a2z2z02 − c4x02 + c2x02z2

+ (−2 a2c2y0 + 2 a2y0 zz0 ) Z

 y0− c2 + zz0


c2x0

, (11)

y =

RootOf

 (
a2y0 2 + b2x0 2

)
Z 2 + a2c4 − 2 a2c2zz0

+a2z2z0 2 − c4x0 2 + c2x0 2z2

+ (−2 a2c2y0 + 2 a2y0 zz0 ) Z

 b2

c2
(12)
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Consequently, we have two branches for each of the respective variables x and y. We list them
accordingly below:

x1 =
a2

c2x0 (a2y0
2 + b2x0

2)

 −

√√√√√−c2x0
2

 ((a2y0
2 + b2x0

2) c2 + a2b2z0
2)

(cos (t))2 − 2 a2cz0 cos (t) b2

+c2 ((b2 − y0
2) a2 − b2x0

2)

y0

+b2cx0
2 (− cos (t) z0 + c)



x2 =
a2

c2x0 (a2y0
2 + b2x0

2)


√√√√√−c2x0

2

 ((a2y0
2 + b2x0

2) c2 + a2b2z0
2)

(cos (t))2 − 2 a2cz0 cos (t) b2

+c2 ((b2 − y0
2) a2 − b2x0

2)

y0

+b2cx0
2 (− cos (t) z0 + c)



y1 =
b2

(a2y0
2 + b2x0

2) c2


√√√√√−c2x0

2

 ((a2y0
2 + b2x0

2) c2 + a2b2z0
2)

(cos (t))2 − 2 a2cz0 cos (t) b2

+c2 ((b2 − y0
2) a2 − b2x0

2)


+a2cy0 (− cos (t) z0 + c)



y2 =
b2

(a2y0
2 + b2x0

2) c2

 −

√√√√√−c2x0
2

 ((a2y0
2 + b2x0

2) c2 + a2b2z0
2)

(cos (t))2 − 2 a2cz0 cos (t) b2

+c2 ((b2 − y0
2) a2 − b2x0

2)


+a2cy0 (− cos (t) z0 + c)


Accordingly, we have two branches of the space curves, which we describe them, respectively,
as follows:

1. r1(t) = (x∗1(t), y
∗
1(t), z

∗(t)) , where z∗(t) = c cos t, and x∗1(t), y
∗
1(t) are shown below respec-

tively. First, we let

δ =

√
−c2x0

2

(
( c2 (a2y0

2 + b2x0
2) + a2b2z0

2) (cos (t)) 2

−2 b2ca2 cos (t) z0 + c2 ((b2 − y0
2) a2 − b2x0

2)

)
(13)

x∗1(t) =
−a2

c2x0 (a2y0
2 + b2x0

2)

(
δy0 + b2cx0

2 (− cos (t) z0 + c)
)

, (14)

y∗1(t) =
b2

c2 (a2y0
2 + b2x0

2)

(
δ + a2cy0 (− cos (t) z0 + c)

)
. (15)

2. r2(t) = (x∗2(t), y
∗
2(t), z

∗(t)) , where z∗(t) = c cos t, and x∗2(t), y
∗
2(t) can be shown below

respectively:

x∗2(t) =
a2

c2x0 (a2y0
2 + b2x0

2)

(
δy0 + b2cx0

2 (− cos (t) z0 + c)
)
, (16)

y∗2(t) =
−b2

c2 (a2y0
2 + b2x0

2)

(
δ + a2cy0 (− cos (t) z0 + c)

)
. (17)
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We use a = 5, b = 4, c = 3, x0 = 7, y0 = 8, z0 = 9 and plot the intersecting curve together
with the ellipsoid and its locus surface when s = 3 in Figure 3. We remark that the intersecting
curve in red will not vary when s varies once the fixed point A = (x0, y0, z0) is fixed. We use
[S2] for exploration for this observation.

Figure 3. Intersecting curve between an ellipsoid and its locus surface.

3.3 Locus surface for a sphere

We let Σ be the sphere x2+y2+z2 = r2, and let the fixed point A = (ρ sin v0 cos u0, ρ sin v0 sin u0, ρ cos v0)
be on S1 : x2 + y2 + z2 = ρ2 with ρ 6= r and ρ < ∞. Because Σ is symmetric with respect to the
origin and in view of preceding exploration with the locus for ellipsoid, it is natural to expect
the shape of the locus for Σ stays unchanged and is coordinate free. Specifically, if we move
the fixed points A1, A2, ..., An ∈ S1 sequentially:

A1 → A2 → ... → An (18)

with An = A. Then ∆i, the locus surface of Σ with respect to Ai, for i = 1, 2, ...n, moves
sequentially

∆1 → ∆2 → ... → ∆n, (19)

and we would expect that ∆n = ∆. However, we shall explore that even if ∆n = ∆, these
two surfaces may be of different structures from differential geometry points of view. To begin
with, we remark that it is an easy exercise to note that the antipodal points D of C for quadric
surfaces by applying the Vieta’s formula discussed in [7] is a non-linear transformation
when ρ < ∞ and the fixed point A is not on the x, y or z axis. In the following, we describe
how we can establish a sequence of non-linear transformations from a sphere to its locus surface
∆∗ with the property of ∆ = ∆∗.

Theorem 1 For s > 0 given, let Σ be the sphere x2 + y2 + z2 = r2, A1 = (0, 0, ρ) and
A = (ρ sin v0 cos u0, ρ sin v0 sin u0, ρ cos v0). We denote ∆1 to be the locus surface of Σ with
respect to A1 and ∆ to be the locus surface of Σ with respect to A. If Ry (v0) represents the
rotation by v0 radians around y–axis, and Rz(u0) represents the rotation by u0 radians around
z–axis, then Rz (u0) ◦Ry (v0) (∆1) = ∆.
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Proof. Method 1. (Rz (u0) ◦Ry (v0) (∆1) is congruent to ∆.)
Let us consider the transformations T = Rz (u0) ◦ Ry (v0) and T−1 = Ry (−v0) ◦ Rz (−u0).

For arbitrary E ∈ Rz (u0) ◦Ry (v0) (∆1), there exists E1 ∈ ∆1 such that E = T (E1) where

E1 = sC1 + (1− s)D1 with C1, D1 ∈ Σ ∩
←→

A1C1.

A direct calculation shows that T (A1) = A and, since T is a rigid transformation, for C
.
=

T (C1) and D
.
= T (D1), we have that

E = sC + (1− s)D with C, D ∈ Σ ∩
←→
AC.

This shows that Rz (u0)◦Ry (v0) (∆1) ⊂ ∆. The contention of ∆ ⊂ Rz (u0)◦Ry (v0) (∆1) follows
from a similar argument by using T−1.

Method 2. (Expressing Rz (u0) ◦ Ry (v0) (∆1) via a non-linear transformation) We let ∆1

be the locus surface for Σ when u0 = v0 = 0, and let C1 =

 x̂
ŷ
ẑ

 ∈ Σ and D1 be the antipodal

point C1. By the definition of D1, we may write

D1 =

 x1
1

y1
1

z1
1

 =
1

ρ2 + r2 − 2ρr cos v

 ρ2 − r2 0 0
0 ρ2 − r2 0

0 0
−(ρ2+r2)+2r2ρ

cos v


 x̂

ŷ
ẑ

 . (20)

Consequently, we define T1 : Σ → ∆1 by

T1

 x̂
ŷ
ẑ

 = s

 x̂
ŷ
ẑ

+ (1− s)

 x1
1

y1
1

z1
1

 ,

= s

 x̂
ŷ
ẑ

+
1− s

ρ2 + r2 − 2ρr cos v

 ρ2 − r2 0 0
0 ρ2 − r2 0

0 0
−(ρ2+r2) cos v+2r2ρ

cos v


 x̂

ŷ
ẑ



=


s +

(ρ2−r2)(1−s)

ρ2+r2−2ρr cos v
0 0

0 s +
(ρ2−r2)(1−s)

ρ2+r2−2ρr cos v
0

0 0 s− (1−s)((ρ2+r2) cos v−2rρ)
(ρ2+r2−2ρr cos v) cos v


 x̂

ŷ
ẑ



=


sr cos (u) sin (v)− (1− s) cos (u) (r2 − ρ2) sin (v) r

−2 ρ cos (v) r + r2 + ρ2

sr sin (u) sin (v)− (1− s) r sin (u) sin (v) (r2 − ρ2)

−2 ρ cos (v) r + r2 + ρ2

sr cos (v)− (1− s) r ((r2 + ρ2) cos (v)− 2 rρ)

−2 ρ cos (v) r + r2 + ρ2


= ∆1 (21)
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We remark that matrix

M =


s +

(ρ2−r2)(1−s)

ρ2+r2−2ρr cos v
0 0

0 s +
(ρ2−r2)(1−s)

ρ2+r2−2ρr cos v
0

0 0 s− (1−s)((ρ2+r2) cos v−2rρ)
(ρ2+r2−2ρr cos v) cos v


is a non-linear transformation and ∆1 is an image of a non-linear transformation. If we let
Ry (v0) and Rz(u0) represent the rotation matrix around y and z axes respectively as follows:

Ry (v0) =

 cos v0 0 sin v0

0 1 0
− sin v0 0 cos v0

 , Rz (u0) =

 cos u0 − sin u0 0
sin u0 cos u0 0

0 0 1

 . (22)

We leave it to a CAS to prove that Rz (u0) ◦Ry (v0) (∆1) produces the same surface as ∆.
Remarks:

1. In the preceding theorem, Rz (u0) ◦ Ry (v0) (∆1) is congruent to ∆. However, these two
locus surfaces have different characteristics in differential geometry sense. For example,
the cross sections are different for Rz (u0)◦Ry (v0) (∆1) and ∆ respectively, when u or v is
being kept as constant, and yet they have different characteristics in differential geometry
sense. See the Example below.

2. In view of the preceding Theorem, if the fixed point A is on the x, y or z axis, the
transformation from Σ to the corresponding locus surface is a non-linear transformation.
The following result is trivial, which we omit the proof.

Corollary. If Σ is the sphere x2+y2+z2 = r2, and we let A = (ρ sin v0 cos u0, ρ sin v0 sin u0, ρ cos v0)
be on S1 : x2 + y2 + z2 = ρ2 with ρ 6= r, and A is not on the x, y or z axis. Then there exists
a transformation T ∗ on Σ such that T ∗(Σ) and ∆ are same surface but with different cross
sections, where ∆ is the locus surface of Σ with respect to the fixed point A.

We use the following Example to demonstrate the effect of the preceding theorem.

Example 2 Consider the sphere S0 of x2 + y2 + z2 = 25, and the fixed point of

A =
((

7 sin
π

4

)(
cos

π

4

)
,
(
7 sin

π

4

)(
sin

π

4

)
, 7 cos

π

4

)
. (23)

We shall show that to obtain the locus surface ∆ for A when s = 3. We may pursue in the
following ways. First, we pick u0 = v0 = 0 for the fixed point

A1 = ((7 sin 0) (cos 0) , (7 sin 0) (sin 0) , 7 cos 0) = (0, 0, 7), (24)

and let the locus surface ∆1 be the one with respect to A1. We first depict the surface ∆ for A
when s = 3 together with S0 in Figure 4 below.
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Figure 4. Locus surface ∆ together with S0.

We notice that ∆ is tangent to S0 at an intersecting curve as we have discussed in the
preceding section. Furthermore, we depict the locus ∆ in Figure 5(a). Next we compute Rz (u0)◦
Ry (v0) ◦∆1, with u0 = v0 = π

4
, and the plot can be seen as in Figure 5(b).

Figure 5(a). The locus for ∆. Figure 5(b). The locus surface
Rz (u0) ◦Ry (v0) ◦∆1.

The traces for ∆ and Rz (u0) ◦ Ry (v0) ◦∆1 when u = π
2

can be seen in Figures 5(c) and 5(d)
respectively.

Figure 5(c) The traces for ∆ when u = π
2
. Figure 5(d). The traces for

Rz (u0) ◦Ry (v0) ◦∆1 when u = π
2
.
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It is a good exercise, which we leave it to readers to explore with a CAS or DGS that
the the trace for ∆ when u = π

2
(Figure 5(c)) does not lie on the same plane but the trace

for Rz (u0) ◦ Ry (v0) ◦ ∆1 when u = π
2

does lie on the same plane (Figure 5(d)). See [S3] for
explorations.

In the next section, we show that when the fixed point A is at infinity, the mapping which
sends a quadric surface to its locus surface is a linear transformation.

4 When the fixed point is at an infinity

We first describe two approaches how we may obtain the locus surfaces when the fixed point
A, written in its spherical coordinate, (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0) , is at an infinity.
We remark that the following Method 2 is essentially identical to the Method 1 after letting
ρ →∞.

Method 1. We let the radius of spherical coordinate for A = (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0),
ρ, go to infinity

We describe the locus surface in the following steps:

1. If A = (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0) . Let us note that 4 and 5 become,

k =
ŷ − ρ sin u0 sin v0

x̂− ρ cos u0 sin v0

(25)

m =
ẑ − ρ cos v0

x̂− ρ cos u0 sin v0

(26)

2. We follow the usual procedure to find the intersection between the line AC and the
quadric surface at D = (x1, y1, z1) respectively by adopting the Vieta’s formula.

3. Next we let ρ →∞ to obtain the corresponding intersection point Dinf = (x1 inf , y1 inf , z1 inf)

4. The corresponding locus surface, is defined as Einf = (xe inf , ye inf , ze inf) where

xe inf = sx̂ + (1− s) (x1 inf)

ye inf = sŷ + (1− s) (y1 inf)

ze inf = sẑ + (1− s) (z1 inf) .

Method 2. We take k (4) and m (5) to be fixed angles after letting ρ →∞.

1. We fix the angles u0 ∈ (0, 2π) − {π
2
, 3π

2
} and v0 ∈ (0, π) , and let the point A going to

infinity in the direction (sin v0 cos u0, sin v0 sin u0, cos v0). Taking the limit of 25 and 26
when ρ →∞ we get,

k0
.
= k(u0, v0) =

sin v0 sin u0

sin v0 cos u0

= tan u0, (27)

and
m0

.
= m(u0, v0) =

cos v0

sin v0 cos u0

= cot v0 sec u0.. (28)
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2. By using the followings and substitute into the implicit equation of the quadric, F (x, y, z) =
0,

y = ŷ + k0(x− x̂),

z = ẑ + m0(x− x̂),

we follow the Vieta’s formula to find the x–coordinate of the the antipodal point D′inf ,
say x′1inf , by calculating the roots of the polynomial

p(x) = a2x
2 + a1x + a0.

3. For a given s, the locus surface generated by point E ′inf = sC + (1− s)D′inf is defined as

∆′inf(s, u0, v0) =

 x′e inf

y′e inf

z′e inf

 =

 sx̂ + (1− s)x′1 inf

sŷ + (1− s)y′1 inf

sẑ + (1− s)z′1 inf

 .

Calculations in Exploration [S4] shows that Dinf = D′inf , and therefore Einf = E ′inf , so
the locus surfaces ∆inf(s, u0, v0) and ∆′inf(s, u0, v0) produced by Method 1 and Method 2,
respectively, are identical.

We explore the locus surfaces for ellipsoids and hyperbolic with two sheets when A is at an
infinity in the following subsections.

4.1 Ellipsoid

Let Σ be the ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1. Following the methodology set out in the previous

section, we calculate the roots of the polynomial

p(x) = a2x
2 + a1x + a0,

where

a2 =
a2b2m2 + a2c2k2 + b2c2

a2b2c2
(29)

a1 =
2
(
z0b

2m + y0c
2k − x0(b

2m2 + c2k2)
)

b2c2
(30)

a0 =
x2

0

(
b2m2 + c2k2

)
− 2x0

(
z0b

2m + y0c
2k
)

+ y2
0c

2 + z2
0b

2 − b2c2

b2c2
. (31)

The explicit expressions for Dinf , Einf and ∆inf(s, u0, v0) are calculated in Exploration [S5].
See [S6] for dynamic explorations.

We depict the locus surface (blue) when s = 2, a = 5, b = 4, c = 3, with u0 = π
3
, v0 = π

4
and

ρ →∞ together with the original ellipsoid (yellow) in Figure 6.
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Figure 6. Locus ellipsoid when s = 2.

4.2 Hyperboloid with two sheets

Let Σ be the hyperboloid with two sheets x2

a2 + y2

b2
− z2

c2
= −1. Following the methodology set

out in the previous section, we calculate the roots of the polynomial

p(x) = a2x
2 + a1x + a0,

where

a2 =
a2c2k2 − a2b2m2 + b2c2

a2b2c2
(32)

a1 =
2y0c

2k − 2x0 (c2k2 − b2m2)− 2z0b
2m

b2c2
(33)

a0 =
2x0z0b

2m− 2x0y0c
2k − x2

0 (b2m2 − c2k2) + y2
0c

2 − z2
0b

2 + b2c2

b2c2
. (34)

The explicit expressions for Dinf , Einf and ∆inf(s, u0, v0) are calculated in Exploration [S7].
See [S8] for dynamic explorations.

We depict the locus surface (blue) when s = 0.8, a = 5, b = 4, c = 3, with u0 = π
6
, v0 = π

3

and ρ →∞ together with the original hyperboloid (yellow) in Figure 7.

Figure 7. Locus hyperboloid when s = 0.8
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5 Special Cases

We show that both methods coincide when the point A = (x0, y0z0) is at infinity on x −
axis, y−axis or z−axis respectively. In other words, when x0 → ±∞, y0 → ±∞ or z0 → ±∞
respectively, both methods produce the same locus surfaces.

1. If the fixed point A = (x0, y0z0) is on the x−axis and we let x0 → ±∞, D = (x1, y1, z1) =
(−x̂, ŷ, ẑ)) is simply a reflection of C along the x− axis. Consequently, the locus surfaces
is  sx̂ + (1− s)(−x̂)

sŷ + (1− s)ŷ
sẑ + (1− s)ẑ

 =

 (2s− 1)x̂
ŷ
ẑ

 . (35)

2. If the fixed point A = (x0, y0z0) is on the y−axis and we let y0 → ±∞, D = (x1, y1, z1) =
(x̂,−ŷ, ẑ) is simply a reflection of C along the y − axis. Consequently, the locus surfaces
is  sx̂ + (1− s)x̂

sŷ + (1− s)(−ŷ)
sẑ + (1− s)ẑ

 =

 x̂
(2s− 1)ŷ

ẑ

 . (36)

3. If the fixed point A = (x0, y0z0) is on the z − axis and we let z0 →∞, D = (x1, y1, z1) =
(x̂, ŷ,−ẑ) is simply a reflection of C along the z − axis. Consequently, the locus surfaces
is  sx̂ + (1− s)x̂

sŷ + (1− s)ŷ
sẑ + (1− s)(−ẑ)

 =

 x̂
ŷ

(2s− 1)ẑ

 . (37)

5.1 Remarks for the ellipsoid case

When the point A = (x0, y0, z0) is at infinity on x−axis, say x0 → +∞, the above calculations
show the followings:

1 The locus surface ∆inf(s, u0 = 0, v0 = π/2) is the image of Σ under the linear transforma-
tion given by the matrix

L =

 2s− 1 0 0
0 1 0
0 0 1


Let us note that this locus surface is an ellipsoid, say:

∆x inf
.
= ∆inf(s, u0 = 0, v0 = π/2) =

{
(x, z, z) ∈ R3 :

x2

((2s− 1)a)2
+

y2

b2
+

z2

c2
= 1

}
2 If s ∈ R+ \ {1} then Σ and ∆x inf intersect tangentially just at an elliptical curve, say:

γx=0 =

{
(x, y, z) ∈ R3 : x = 0,

y2

b2
+

z2

c2
= 1

}
.
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Proof. Clearly, γx=0 ⊆ Σ ∩∆x inf . Now, (x̄, ȳ, z̄) ∈ Σ ∩∆x inf implies that

1 =
x̄2

a2
+

ȳ2

b2
+

z̄2

c2
=

x̄2

((2s− 1)a)2
+

ȳ2

b2
+

z̄2

c2

so, (2s − 1)2 x̄2 = x̄2. Since s 6= 1, we conclude that x̄ = 0, that is, (x̄, ȳ, z̄) ∈ γx=0, and
therefore Σ ∩∆x inf ⊆ γx=0.

Remark 3 1 Let us denote by

Σ =

{
(x, y, z) ∈ R3 :

x2

a2
+

y2

b2
+

z2

c2
≤ 1

}
the solid ellipsoid which boundary is Σ. Then we see ∆x inf ( Σ for 0 < s < 1.

Proof.

Given (x, y, z) ∈ ∆x inf , choose (x̂, ŷ, ẑ) ∈ Σ such that x = (2s − 1)x̂, y = ŷ and z = ẑ.
Then

x2

a2
+

y2

b2
+

z2

c2
=

(2s− 1)2x̂2

a2
+

ŷ2

b2
+

ẑ2

c2
<

x̂2

a2
+

ŷ2

b2
+

ẑ2

c2
≤ 1.

2 Let us denote by

∆x,inf =

{
(x, y, z) ∈ R3 :

x2

((2s− 1)a)2
+

y2

b2
+

z2

c2
≤ 1

}
the solid ellipsoid which boundary is ∆x,inf . Then, s > 1 implies Σ ( ∆x,inf .

Proof.

The proof is similar to (1). Similar statements hold when x0 → −∞, y0 → ±∞ or
z0 → ±∞ respectively.

In view of 1, we prove the result for A being at an infinity as follows:

Theorem 4 For s > 0 given, let Σ be the sphere x2 + y2 + z2 = r2, A1 be at the infinity on the
z axis, and A = (ρ sin v0 cos u0, ρ sin v0 sin u0, ρ cos v0) when ρ → ∞. We denote ∆1 to be the
locus surface of Σ with respect to A1 and ∆ to be the locus surface of Σ with respect to A. If
Ry (v0) represents the rotation by v0 radians around y–axis, and Rz(u0) represents the rotation
by u0 radians around z–axis, then Rz (u0) ◦Ry (v0) (∆1) = ∆.

Proof. We let ρ → ∞ for A1 = (0, 0, ρ) , and compute the matrices in method 2 in 1.

It turns out, as expected, that the antipodal point D1 is

 r cos u sin v
r sin u sin v
−r cos v

 and the locus ∆1 is

 sr cos u sin v + (1− s)r cos u sin v
sr sin u sin v + (1− s)r sin u sin v

sr cos v − (1− s)r cos v

 . (38)

We proceed and compute Rz (u0)◦Ry (v0) (∆1) and let a CAS to verify that Rz (u0)◦Ry (v0) (∆1) =
∆.

Proceedings of the 26th Asian Technology Conference in Mathematics

59



5.2 Remarks for the hyperboloid with two sheets

When the point A = (x0, y0, z0) is at infinity on x−axis, say x0 → +∞, the above calculations
show the followings:

1 The locus surface ∆inf(s, u0 = 0, v0 = π/2) is the image of Σ under the linear transforma-
tion given by the matrix:

L =

 2s− 1 0 0
0 1 0
0 0 1


Let us note that this locus surface is an hyperboloid with two sheets, say:

∆x inf
.
= ∆inf(s, u0 = 0, v0 = π/2) =

{
(x, z, z) ∈ R3 :

x2

((2s− 1)a)2
+

y2

b2
− z2

c2
= −1

}
2 If s ∈ R+ \ {1} then Σ and ∆x inf intersect tangentially just at an hyperbolic curve, say:

γx=0 =
{

(x, y, z) ∈ R3 : x = 0, y2

b2
− z2

c2
= −1

}
.

Proof. Clearly, γx=0 ⊆ Σ ∩∆x inf . Now, (x̄, ȳ, z̄) ∈ Σ ∩∆x inf implies that,

−1 =
x̄2

a2
+

ȳ2

b2
− z̄2

c2
=

x̄2

((2s− 1)a)2
+

ȳ2

b2
− z̄2

c2

so, (2s−1)2 x̄2 = x̄2. Since s 6= 1, we conclude that x̄ = 0, that is, (x̄, ȳ, z̄) ∈ γx=0, and therefore
Σ ∩∆x inf ⊆ γx=0.

3 Let us denote by

Σ =

{
(x, y, z) ∈ R3 :

x2

a2
+

y2

b2
− z2

c2
≤ −1

}
the solid hyperboloid with two sheets whose boundary is Σ. Then we have ∆x inf ( Σ for
0 < s < 1.

Proof. Given (x, y, z) ∈ ∆x inf , choose (x̂, ŷ, ẑ) ∈ Σ such that x = (2s − 1)x̂, y = ŷ and
z = ẑ. Then,

x2

a2
+

y2

b2
− z2

c2
=

(2s− 1)2x̂2

a2
+

ŷ2

b2
− ẑ2

c2
<

x̂2

a2
+

ŷ2

b2
− ẑ2

c2
≤ −1.

4 Let us denote by

∆x,inf =

{
(x, y, z) ∈ R3 :

x2

((2s− 1)a)2
+

y2

b2
− z2

c2
≤ −1

}
the solid hyperboloid with two sheets whose boundary is ∆x,inf . Then we have Σ ( ∆x,inf

for s > 1.

Proof. The proof is similar to (3). Similar statements hold when x0 → −∞, y0 → ±∞ or
z0 → ±∞ respectively.
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6 Main results

This section is to say the locus problem is a linear transformation between the specified surface
Σ and the locus surface ∆ when A is at an infinity. However, due to the length requirement for
the paper, we simply state the following results and their respective proofs can be found in [8].

Theorem 5 Let Σ be a quadric surface, and let Ainf(u0, v0) be the fixed point at infinity in
the direction of (cos u0 sin v0, sin u0 sin v0, cos v0), C ∈ Σ and Dinf be the “antipodal” point of
C corresponding to Ainf(u0, v0) as described in previous sections. Then there exists an affine
transformation AD : R3 → R3 such that AD(C) = Dinf .

Corollary. Given s > 0, consider same hypothesis as in Theorem 5 and let Einf = sC +
(1− s)Dinf . Then the affine transformation

AE = sI + (1− s)AD

is such that AE(C) = Einf , where I is the identity mapping from R3 to R3.

Proposition 6 In Theorem 5, if Σ is the ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1, then there exists a matrix

Le
D =

[
leij
]
3×3

such that Le
D C = Dinf .

Corollary. Given s > 0, consider same hypothesis as in Proposition 6 and let Einf =
sC + (1− s)Dinf . Then the matrix

Le
E = sI + (1− s)Le

D

is such that Le
E C = Einf , and therefore, the locus surface ∆inf(s, u0, v0) is the image of Σ under

the linear transformation given by the matrix Le
E = [leij]3×3.

Proposition 7 For s ∈ R \ {1}, the ellipsoid Σ and locus ellipsoid ∆inf(s, u0, v0) intersect
themselves tangentially at an elliptical curve.

Exploration [S6] contains an animation to exemplify the previous result.

Proposition 8 For s ∈ R+ \ {1}, if the hyperboloid with two sheets Σ and corresponding locus
surface ∆inf(s, u0, v0) intersect themselves, they do it tangentially at an hyperbolical curve.

Finally, we can verify that the gradient of Σ and ∆inf(s, u0, v0) are colinear when evaluated
at any point on γ when Σ is a hyperboloids with two sheets, see Figure 8 and exploration [S8].

Figure 8. Intersection of the hyperboloid
∑

and its corresponding locus.
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In [8], we shall further discuss how the eigenvectors of a linear transformation on a quadric
surface, when the fixed point A is at an infinity, will affect the shapes of locus surfaces when s
gets larger and larger and when s →∞ respectively.

7 Conclusions

In this paper, we have explored the locus problems when the fixed point A is outside a specified
curve or surface. When A is not at an infinity, although the projection T : Σ → ∆ is not a
linear map, the result is interesting because the intersecting points in 2D or intersecting curve
in 3D remains fixed regardless of the parameter s. When the fixed point A is at an infinity, the
projection T : Σ → ∆ becomes a linear transformation. We shall further discuss this linear
transformation in [8]. It is delighted to see a simple college entrance exam problem originated
from China [6] has led to many interesting discoveries in projective geometry, differential geom-
etry (see [6]), and possibly other areas. The explorations, discussed all papers that are elated
to this locus problem, are very accessible to undergraduate or graduate students, we believe
that the concepts involved can be comprehended to future math teachers. Only when the math
contents are enriched for our math teachers, can we increase our success in teaching math for
our future generations.

It is clear that technological tools provide us with many crucial intuitions before we attempt
more rigorous analytical solutions, and lead to many unexpected discoveries. Here we have
gained geometric intuitions while using a DGS. In the meantime, we use a CAS for verifying
that our analytical solutions are consistent with our initial intuitions. Incorporating a DGS
and CAS into exploring a problem definitely has made mathematics fun and accessible on one
hand, but they also allow the exploration of more challenging and theoretical mathematics. We
hope that when mathematics is made more accessible to students, it is possible more students
will be inspired to investigate problems ranging from the simple to the more challenging. We
do not expect that exam-oriented curricula will change in many parts of the world. However,
encouraging a greater interest in mathematics for students, and in particular, providing them
with the technological tools to solve challenging and intricate problems beyond the reach of
pencil and paper, is an important step for cultivating creativity and innovation.

8 Supplementary Electronic Materials

[S1] GeoGebra worksheet for ellipse case in Section 3.1.

[S2] GeoGebra worksheet for ellipsoid case in Section 3.2.

[S3] Maple worksheet for Sections 3.2, 3.3 and Example 2.

[S4] wxMaxima worksheet for methods 1 and 2 in Section 4.1.

[S5] wxMaxima for ellipsoid case in Sections 4.1 and 6.

[S6] GeoGebra worksheet for ellipsoid case in Sections 4.1 and 6.

[S7] wxMaxima worksheet for hyperboloid case in Sections 4.2 and 6.
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https://atcm.mathandtech.org/EP2021/invited/21877/s1_Section3-1.ggb
https://atcm.mathandtech.org/EP2021/invited/21877/s2_Section3-2.ggb
https://atcm.mathandtech.org/EP2021/invited/21877/s3-Section3-2_3-3_Example2.mw
https://atcm.mathandtech.org/EP2021/invited/21877/s4_Section4.wxmx
https://atcm.mathandtech.org/EP2021/invited/21877/s5_Sections46.wxmx
https://atcm.mathandtech.org/EP2021/invited/21877/s6_Sections46.ggb
https://atcm.mathandtech.org/EP2021/invited/21877/s7_Sections46.wxmx


[S8] GeoGebra worksheet for hyperboloid case in Sections 4.2 and 6.
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INTRODUCTION 
In Graph Theory, the contact graph of a collection of spheres is a graph whose nodes are 
represented by the spheres, and each edge corresponds to two externally tangent spheres. In this 
work, we focus on the construction and the pattern design of models, each having a Platonic solid, 
an Archimedean solid, or a Catalan solid as the contact graph. The (monochrome) spheres in each 
model are then assigned with k colors obeying the rule that the spheres receiving two different 
colors are congruent in the Euclidean sense that there exists a Euclidean motion (a translation, a 
point reflection, a line reflection, a plane reflection, a rotation w.r.t. a line together with their 
compositions) taking all spheres of one color onto spheres of another. Whenever such a coloring of 
the model is possible, the pattern is said to have k-color symmetry. 
The models/patterns are organized according to the hierarchy: (1) The number of spheres. The 
possible numbers are 4, 6, 8,12, 14, 20, 24, 26, 32, 48, 60, 62, 120, as tabulated from the number of 
vertices in all the polyhedra of interest. (2) The contact graphs. Two models having the same 
number of spheres may have 1, 2, or 3 different contact graphs. (3) Color symmetry. Two k-color 
patterns are considered distinct if they have non-congruent parts. Distinct patterns are labeled 
pattern 1, pattern 2, etc. 
There is no preference for particular colors so long as the arrangement causes no mathematical 
ambiguity.  
The completed work of the construction and the design in the native *.cg3 and the screen output 
*.mov files produced by Cabri 3D can be downloaded for further examination. [7] 
This paper is meant to be a survey of a large number of possibilities in designing distinct patterns. 
We do not attempt (1) to explain in full the motivation for each design; (2) to automate the creative 
process of designing; (3) to make an encyclopedia of sphere model design. By way of illustration, 
we are to focus on the model having 120 spheres only. 

COMPUTING/GEOMETRIC CONSTRUCTION ENVIRONMENT 
All geometric constructions faithfully follow the tradition established by Euclid. This work is made 
possible under the Interactive Geometry environment created by the software Cabri 3D.  
This work is completed under the environment provided by Google Workspace for Education 
Fundamentals (formerly G Suite for Education). 
For the benefit of academic discussions, links to the *.cg3 files saved from Cabri 3D, the 
animations files  *.mov save from video capture of Cabi 3D, and the explanation notes *.pdf can be 
found at [7]. 
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APPLICATIONS 
Designing patterns on the sphere model may serve as a challenging exercise in Concrete Geometry 
[1,2,3,4,6]. The pre-production and the production of the models as video segments lead the Cabri 
3D users to appreciate the visual art of counting when the iPad is seen almost everywhere. At the 
same time, few people use it for mathematical thinking. Technical terms used for the polyhedra 
have their origin in the study of Mineralogy. Many models studied here are of current interest in 
Chemistry [5]. 

RESULTS 

CONSTRUCTION OF THE 120-SPHERE MODEL 
Only the Great Rhombicosidodecahedron [4] has 120 vertices among the Platonic, Archimedean, 
and Catalan solids. Therefore, this is the only possible contact graph for any 120-sphere models for 
a Platonic solid or an Archimedean-Catalan solid. Since all faces of the Great 
Rhombicosidodecahedron are regular polygons, all edges have the same length. One by one, the 
required spheres can be constructed by taking a vertex as the center and one-half length an edge as 
radius. In practice, it suffices to construct (Fig. 1) only one sphere and then construct the other 119 
by taking successive planar reflections, line reflections, and the point reflections compatible with 
the vast symmetries enjoyed by the polyhedron. 
 

 
Fig. 1 Construction of the 120-Sphere Model from the Great Rhombicosidodecahedron 
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PATTERNS ON THE 120-SPHERE MODEL 

2-COLOR SYMMETRY 

Pattern 1 - Each color consisting of six 10-cycles 
The design (Fig. 2) follows the dissection of a baseball into two parts marked by the stitches. The 
two parts are not symmetric with respect to the center. They are line-symmetric. The appearance 
suggests the name “The Yin-Yang Pattern.”  

   

Fig. 2 The Yin-Yang Pattern 

Pattern 2 - Each color consisting of 60 connected spheres formed by a single 10-cycle with 5 
arms attached 
Here is a pattern (Fig. 3, left) having 2-color symmetry, with each color consisting of five 
connected components formed by 12 spheres. By swapping colors for 10 spheres, we have created 
(Fig. 3, right) a pattern having 2-color symmetry with each color formed by a single 10-cycle with 5 
arms attached (Fig. 4). 

 

Fig. 3 Swapping colors to create monochrome 10-cycles 
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Fig. 4  Each color formed by a single 10-cycle with 5 arms attached 

Pattern 3 - Each color consisting of 60 connected spheres with no cycles 
Pattern 2 almost depicts a spider, except for the hole at the center. After a slight modification yields 
a pattern having 2-color symmetry that has no cycles. This pattern suggests the name “the Yin-Yang 
Spiders” (Fig. 5). 

 
Fig. 5 The Yin-Yang Spider 
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3-COLOR SYMMETRY 

Pattern 1-each color having only a single pair of antipodal 4-cycles 
The pattern is suggested by the configuration of the largest cube placed inside a wire-frame 
dodecahedron. 

Fig. 6  An octahedral symmetric pattern 
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Pattern 2- each color consisting of ten 4-cycles 
This pattern is a variation of Pattern 1. 

Fig. 7 Another octahedral symmetric pattern 
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Fig. 8  Each color consisting of four 10-cycles 
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4-COLOR SYMMETRY 

Pattern 1- Spheres of the same color have the graph structure of a tree 

Fig. 9  Each color containing no cycles 

Proceedings of the 26th Asian Technology Conference in Mathematics

71



Pattern 2- Each set of the same color has 3-fold rotational symmetry 

Fig. 10 One-Halves of 10-cycle distributed evenly 
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Pattern 3- Each set of the same color has no forks 
Among 30 spheres of the same color, each touches two others except the two at each end. The 
author proposes to call it an ATCM Snake. 

Fig 11  Four snakes covering all 
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5-COLOR SYMMETRY 

Pattern 1-each color formed by 24 connected spheres 

Fig. 12  4-cycles covering all 
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Pattern 2-each color consisting of an antipodal pair of 3 connected 4-cycles 

Fig. 13 Art of counting 4-cycles 
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Pattern 3-each color consisting of four 6-cycles 

Fig. 14  6-cycle of the same color are centered at vertices of a tetrahedron 5-compound 
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Pattern 4-each color consisting of six 4-cycles 

Fig. 15  4-cycles of the same color are centered at a vertex of an octahedron 5-compound 
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6-COLOR SYMMETRY 

Pattern 1- each color consisting of 10 connected couples 

Fig. 16  Ten pairs of kissing spheres near a great circle 
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Pattern 2 - each color consisting of a pair of connected 10-cycles 

Fig. 17 Asymmetric coloring of 6 pairs 
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Pattern 3 - each color consisting of two antipodal 10-cycles 

 
Fig. 18  Six antipodal pairs of 10-cycles 

Pattern 4 -120 spheres formed by 6 snakes 

 
Fig.19  120 spheres formed by 6 snakes 
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8-COLOR SYMMETRY 

Patent 1-coloring by Northants 
This appears to be the only interesting pattern, created by dividing 120 spheres into 8 Northants: 

Fig. 20  Same Northants, same color 

CONCLUSION 
G.H. Hardy once said: “A mathematician, like a painter or a poet, is a maker of patterns.” The 
reader is invited to download the cg3 file of the monochrome 120-Sphere model as a template to 
make many more interesting patterns under the Cabri 3D environment. 

REFERENCES 
[1]  Nathan Altshiller-Court, Modern Pure Solid Geometry, Macmillan, 1935. 
[2]  John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things, A K 

Peters-CRC Press, 2008. 
[3]  H.S.M. Coxeter, Introduction to Geometry, 1962. 
[4]  H. Martyn Cundy and A. P. Rollett, Mathematical Models, 2017 
[5]  Ryan L. Marson,  Erin G. Teich,  Julia Dshemuchadse, Sharon C. Glotzer, and Ronald G. 

Larson, Computational self-assembly of colloidal crystals from Platonic polyhedral sphere 
clusters, The Royal Society of Chemistry, Soft Matter,15, 6288--6299, 2019. 

[6]  David G. Wells, The Penguin Dictionary of Curious and Interesting Geometry, 1992. 
[7]  This work is completed under the environment provided by Google Workspace for 

Education Fundamentals (formerly G Suite for Education): 
https://drive.google.com/drive/folders/1z9C6IibpW8EvSNT024_Eu5WpKdMX76Gs?usp=s
haring 

Proceedings of the 26th Asian Technology Conference in Mathematics

81



Technologies and laboratorial activities for a robust 
understanding approach:  

from closed to open laboratories 
 

Daniela Ferrarello1, Maria Flavia Mammana2, Mario Pennisi2, Eugenia Taranto2 

daniela.ferrarello@unict.it, mariaflavia.mammana@unict.it, pennisi@dmi.unict.it, 
eugenia.taranto@unict.it 

1 Department of Agriculture, Food and Environment, University of Catania - Italy 
2 Department of Mathematics and Computer Science, University of Catania - Italy 

 

Abstract. The aim of this paper is to show the evolution of a meta-methodology adopted by the authors in some of the 
activities they proposed over the last 10 years to students and teachers. All the activities, called laboratories, involve the 
use of technology and are based on laboratorial methodology aiming to a robust understanding of mathematics. We 
describe, as example, five laboratories and provide a discussion on our meta-methodology as researchers on such 
laboratories finding a meta-methodological evolution. In particular, by analysing this evolution, we detect an initial 
attitude towards “closed” laboratories (rigidly structured, letting no freedom of choice for students and teachers) 
evolving into an attitude to “open” laboratories (letting freedom of choice to students and/or teachers). 
 
1. Introduction 

 
Mathematics learning in schools is subject to numerous national and international surveys 

(https://www.oecd.org/pisa/; https://timssandpirls.bc.edu/timss-landing.html) which often reveal 
difficulties encountered by students in this discipline. In order to deal with these problems, it is 
advisable to influence the attitude that students have towards mathematics, which consists of three 
interacting components: emotional disposition, vision of mathematics and sense of self-efficacy [8; 
9]. In particular: the emotional disposition is the set of emotions (fear, anxiety, frustration, anger, 
pride, satisfaction, excitement, joy, to name a few) that are awakened by an activity; the vision of 
mathematics is the set of beliefs the person holds about it; the sense of self-efficacy is people’s beliefs 
in their ability to organise and carry out the actions necessary to deal adequately with the situations 
one encounters in order to achieve the desired results. Beliefs of efficacy influence the way people 
think, feel, find personal motivation and act [3]. The stronger the sense of efficacy is, the more 
vigorous people are in dealing with problematic situations and the more successful they are in 
changing them. 

The improper or negative manifestation of the various components generates in the student a 
closure towards the discipline which cannot be removed [8; 9]. The teacher can influence this attitude 
by preparing specific activities aimed at achieving concrete objectives that respect the abilities of 
individual students and of the class. 

A methodology for fostering a positive attitude towards mathematics that has been developed by 
the mathematics education research community since the beginning of this century is the mathematics 
laboratory [1], which aims to increase students’ sense of self-efficacy by providing a correct view of 
the discipline and promoting positive emotions. 
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The mathematics laboratory is a stimulating and engaging environment for the students in which 
the role of the teacher is fundamental in conveying the activity. We will see in this paper the evolution 
of the mathematics laboratory in student/teacher training activities, promoted by the Mathematics 
Education Research Group (MERG) at the University of Catania. These activities are carried out in a 
STEM (acronym for Science, Technology, Engineering, Mathematics) approach because of a large 
use of Technology in view of Mathematical learning. In recent years, the activities are more oriented 
towards a STEAM approach. In the acronym STEAM, evolution of STEM [19; 16], the A stands for 
“Arts”, meaning not only arts themselves (paintings, literature, …) but also an artistic attitude: 
creativity, openness, observation of reality and self-observation, passion, attention to beauty, …. 

In this paper, we ask whether math education researchers can evolve from a STEM to a STEAM 
approach in designing laboratorial activities in mathematics for teachers and students. 

 In section 2, we illustrate the theoretical framework, composed of several theoretical lens that 
frame all the activities: Laboratory of Mathematics and Teaching for Robust Understanding as 
pedagogical methodology; the Technological, Pedagogical and Content Knowledge as a super-
structure which combines pedagogical and content knowledge with technological knowledge; and the 
Meta-Didactical Transposition, because of the joint and synergistic work of two communities, the 
researchers and the teachers, in implementing activities for students. In section 3, we describe five of 
the many activities carried out in the last 10 years, calling them laboratories. Many teaching 
experiments were done with students and teachers; we chose these laboratories to show the evolution 
of our methodology as researchers. In section 4 some discussions and conclusions on the laboratories 
described in section 3 and on their evolution are given. In particular, our considerations involve the 
methodology adopted by us, as researchers and designers of the laboratories, that we call meta-
methodology. It is the result of a reflection that we are able to deduce by considering all the activities 
that we have been designed over the years. Today, they have undergone a methodological 
transformation, moving from what we will call closed laboratories to what we call open laboratories. 

  
2. Theoretical framework 
 

The mathematics laboratory is a “phenomenological space to teach and learn mathematics 
developed by means of specific technological instruments and structured negotiation processes in 
which math knowledge is subjected to a new representative, operative and social order to become 
object of investigation again and be efficaciously taught and learnt” (translated from [6]). At national 
level, the Italian commission for the teaching of mathematics, back in 2003, suggested: A 
mathematics laboratory is a methodology, based on various and structured activities, aimed at the 
construction of meanings of mathematical objects. Such activities involve people (students and 
teachers), structures (classrooms, instruments, organisation and management), ideas (projects, 
didactical planning and experiments). We can imagine the laboratory as a learning environment in 
which students learn by doing, seeing, imitating, communicating with each other, in a word: 
practising, with the aid of instruments, and interactions between people working together in a 
collaborative/cooperative modality [1; 23]. 

In particular, elements (Table 2.1) that characterize an activity in a mathematics laboratory are 
[22]:  
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Table 2.1 Mathematics laboratory elements 

A Problem to solve 
(P) 

Instruments that can 
be used/manipulated 

(I) 

Working Method 
(relationship-

interaction) (WM) 

The role of the Teacher 
(T) 

The activity in the 
laboratory starts with a 
problem. In order to 
create an atmosphere 
of research and 
discovery, the 
situations proposed 
must be “new” to the 
students, they must 
involve problems that 
are neither too easy nor 
too difficult and their 
resolution must require 
knowledge they have 
already acquired. 

The activity has to 
foresee exploration 
instruments to be 
manipulated, which, by 
facilitating the 
development of 
thinking, allow to 
elaborate conjectures, 
to verify properties, to 
enhance argumentative 
and deductive skills, to 
suggest possible 
demonstration 
strategies. 
These instruments can 
be either old 
technology (pen and 
paper, ruler, compass 
...) or new technology 
(Dynamic Geometry 
Systems, Computer 
Algebra Systems, 
Electronic Sheets, 
Calculators...). 

In the laboratory, 
students compare 
ideas, intuitions, 
arguments, and 
collaborate/cooperat
e to achieve results 
using their critical 
skills: they explore, 
formulate 
conjectures, check 
their validity and 
then, eventually, 
demonstrate them. 

It is the teacher's role to 
guide students to 
achieve results: he/she 
validates correct 
proposals, questions 
proposals that still need 
to be improved, 
encourages students to 
pursue them, rewards 
students when they 
achieve a significant 
result. He/she also sets 
the pace, creates a 
positive setting and is 
attentive and ready to 
transform the frustration 
resulting from failure 
into a moment of re-
evaluation of the 
objectives set. 

 
In the mathematics laboratory students do not study mathematics, but rather do mathematics, i.e. 

they: 
Pose/Deal with a problem, Explore/manipulate, Conjecture, Verify, Prove, Apply. 

 
The mathematics laboratory is therefore suitable for promoting ambitious and robust teaching, 

aiming at a deep understanding [25; 26; 27]: in it, students work on a problem (Content), which must 
be neither too easy because they might get bored, nor too difficult because they might get discouraged 
(Cognitive Demand), comparing themselves with students from the whole class (Equal Access to 
Content) and with the teacher (Formative Assessment), affirming and discussing their choices 
(Agency, Ownership, and Identity). That is, the 5 dimensions of Teaching for Robust Understanding 
come into play [25; 26; 27], described in Table 2.2. 
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Table 2.2 The Five dimensions of the TRU Framework (https://truframework.org/) 
 

The Five Dimensions of Powerful Classrooms 

The Content (C) Cognitive Demand 

(CD) 

Equitable Access to 

Content (EA) 

Agency, 

Ownership, and 

Identity (AOI) 

Formative 

Assessment (FA) 

The extent to which 

classroom activity 

structures provide 

opportunities for 

students to become 

knowledgeable, flexible, 

and resourceful 

disciplinary thinkers. 

Discussions are focused 

and coherent, providing 

opportunities to learn 

disciplinary ideas, 

techniques, and 

perspectives, make 

connections, and 

develop productive 

disciplinary habits of 

mind. 

The extent to which 

students have 

opportunities to grapple 

with and make sense of 

important disciplinary 

ideas and their use. 

Students learn best 

when they are 

challenged in ways that 

provide room and 

support for growth, 

with task difficulty 

ranging from moderate 

to demanding. The 

level of challenge 

should be conductive to 

what has been called 

“productive struggle”. 

The extent to which 

classroom activity 

structures invite and 

support the active 

engagement of all of 

the students in the 

classroom with the core 

disciplinary content 

being addressed by the 

class. Classrooms in 

which a small number 

of students get most of 

the “air time” are not 

equitable, no matter 

how rich the content: 

all students need to be 

involved in meaningful 

ways. 

The extent to which 

students are provided 

opportunities to “walk 

the walk and talk the 

talk” – to contribute to 

conversations about 

disciplinary ideas, to 

build on others’ ideas 

and have others build 

on theirs – in ways that 

contribute to their 

development of agency 

(the willingness to 

engage), their 

ownership over the 

content, and the 

development of positive 

identities as thinkers 

and learners. 

The extent to which 

classroom activities 

elicit student thinking 

and subsequent 

interactions respond to 

those ideas, building on 

productive beginnings 

and addressing emerging 

misunderstandings. 

Powerful instruction 

“meets students where 

they are” and gives them 

opportunities to deepen 

their understandings. 

 
The activities we will present, that foster a Robust Understanding, use technological instruments 

to manipulate, according to the Laboratory of Mathematics. We strongly believe, in fact, that 
nowadays the Content and Pedagogical Knowledge have to be joined with a Technological 
Knowledge, as suggested by Koehler and Mishra [17; 18; 20]. In the Technological, Pedagogical, 
And Content Knowledge framework (TPACK) they highlight the complex interplay of the three 
primary forms of knowledge in the learning and teaching process (Figure 2.1). 
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Figure 2.1 TPACK image (from http://tpack.org/) 

Here we briefly report the description of the three primary components: 
− Content Knowledge: “Teachers’ knowledge about the subject matter to be learned or taught. 

The content to be covered in middle school science or history is different from the content to 
be covered in an undergraduate course on art appreciation or a graduate seminar on 
astrophysics… As Shulman (1986) noted, this knowledge would include knowledge of 
concepts, theories, ideas, organizational frameworks, knowledge of evidence and proof, as 
well as established practices and approaches toward developing such knowledge” [18, p. 63]. 

− Pedagogical Knowledge: “Teachers’ deep knowledge about the processes and practices or methods 
of teaching and learning. They encompass, among other things, overall educational purposes, values, 
and aims. This generic form of knowledge applies to understanding how students learn, general 
classroom management skills, lesson planning, and student assessment.” [18, p. 64]. 

− Technology Knowledge: Knowledge about certain ways of thinking about, and working with 
technology, tools and resources. This includes good understanding information technology 
broadly enough to apply it productively at work and in everyday life, being able to recognize 
when information technology can assist or impede the achievement of a certain goal, and 
being able continually adapt to changes in information technology [18].  

 
     The activities carried out within our research group involve a constant practice: we are used to 

working in synergy with teachers. Then, two communities emerge, that of researchers and that of 
teachers. A theoretical framework that describes and analyses the relationship and reciprocal 
influence between these two communities – involved in a course in mathematics education for 
professional development, with respect to their professional practices – is the Meta-Didactical 
Transposition (MDT), a theoretical model elaborated by Arzarello and colleagues [2], expanding on 
Chevallard’s concept of didactical transposition and praxeology [5]. 

In the MDT, the researchers have the objective of transposing a certain piece of knowledge, related 
to the teaching and learning of mathematics, to favour the professional development of the teachers, 
according to the reference institutions (national curricula, textbooks, ...). In this case, Arzarello and 
colleagues [2] introduce the notion of meta-didactical praxeologies: they consist exactly of the tasks, 
techniques, and justifying discourses that develop in teacher education processes. In fact, an 
educational course generally aims – with the engagement of researchers as trainers – at developing 
teachers’ existing praxeologies, transforming them into new ones, for example targeted to the 
introduction of new technologies, or teaching practices, or theoretical frames by research in 
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mathematics education, or new curricula, and so on, according to the aims of the programme. This 
evolution in the praxeologies, if happen, is therefore the result of an interaction between the 
community of researchers and that of teachers. The tangible result of the evolution of teachers’ 
praxeologies is their application in the classroom, with their students, who benefit from the 
professional development that their teachers have experienced. 
 
3. Mathematics laboratories at MERG  
 

In this section, we describe some of the laboratories that we, as researchers in mathematics 
education, have proposed over the last 10 years. We will describe 5 activities, one addressed to 
students (Laboratory 1) and the others also to teachers (Laboratories 2-5). 

The activities are framed in the TPACK as described in Table 3.1, differentiating in Content and 
Technology. 

 
Table 3.1 Laboratories in the TPACK framework 

 Technology 
Knowledge 

Pedagogical 
Knowledge 

Content  
Knowledge 

Laboratory 1 yEd, Icosien game 

Mathematics 
laboratory; 

TRU framework 

Elements of Graph Theory 

Laboratory 2 GeoGebra Surprising properties of 
centroids  

Laboratory 3 GeoGebra, Excel Brahmagupta theorem and 
consequences  

Laboratory 4 Moodle platform; 
MathCityMap Outdoor math trails 

Laboratory 5 GeoGebra classroom 
Irrational numbers and 
connection with 
philosophy 

 
3.1 Laboratory 1: Elements of Graph theory  
 

Laboratory 1 was part of the Percorsi per le Competenze Trasversali e l’Orientamento (PCTO) 
project, promoted by the Italian Ministry of Education and compulsory for all high-school students, 
which aims to bring students closer to the world of work. 

Several laboratories dealing with graph theory topics have been experimented, from primary 
school to secondary school [10]. Here we focus on a proposal carried out at secondary school that 
involved students of the first two years (4 meetings of 2.5 hours each). The course aimed, on the one 
hand, to introduce basic concepts of graph theory up to Eulerian graphs and Fleury's algorithm and, 
on the other hand, to develop skills in modelling problems through a graph; in expressing conjectures, 
arguing them, comparing one's own hypotheses with one's peers in order to reach shared results; in 
reflecting on the fact that mathematical objects are “hidden” in various situations and objects of 
everyday life. 

Concepts were always introduced by first dealing with a list of problems. For example, problems 
that can be schematised by means of a graph were initially proposed, before the students knew the 
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mathematical topic of graph (Problem 1), or Eulerian graphs were presented by first solving Problems 
as Problem 2.  
 

Problem 1. The coach in the ball 
Few weeks ago a football tournament between the following schools started: Archimedes, 

Descartes, Euclid, Fermat, Pythagoras, Thales. The rules of the tournament provide for a single 
round of matches, i.e. each team meets all the others only once. 

The following matches have been played so far: Archimedes-Thales, Euclid-Archimedes, 
Thales-Pythagoras, Thales-Cartesian. 

How can you summarise and clearly express the current situation of the tournament? 
Please express the situation at the end of the tournament succinctly and clearly. 

 
Problem 2.  The Pentagon's routes and… 
a) Can you draw a pentagon and all its diagonals without ever lifting the pencil from the paper 

or going over the same line twice? 
b) Can you draw a square and all its diagonals without ever lifting the pencil from the paper 

or going over the same line twice? 
 
At the end, students are guided to recognise the characteristics of Eulerian/Semieulerian graphs 

and to use Fleury's algorithm to solve problems. The activity ends with a real problem that deals with 
routes of airlines companies: Preamble: Air transport is a complex business. It involves major 
investments (aircraft and maintenance infrastructure), highly qualified staff (pilots and flight 
attendants) and precise information in real time (reservation systems, for example). The costs 
associated with “air traffic” are huge and waste must be avoided. For example, an aircraft on the 
ground does not provide any revenue, so the amount of time each aircraft is stationary must be 
reduced. To this end, some airlines identify routes and design circular routes for individual aircraft. 
A circular route is defined as one that covers all routes, once and only once. Problem: Can you help 
the Eurofly company to organise its routes? (and a table containing the covered routes was given).  

During the activity, students played an online game (Icosien), experiencing the difficulty of 
solving a problem (in this case finding Eulerian and semi-Eulerian paths) without having a 
mathematically founded strategy (up to date this game is no longer available). They also used the yEd 
software (https://www.yworks.com/products/yed), through which graphs can be drawn, manipulated 
and analysed. 
 
3.2 Laboratory 2: Magic of centroids 

 

Laboratory 2 was part of the Piano Nazionale Lauree Scientifiche (PNLS) project, promoted by 
the Italian Ministry of Education, which plays an important role in teachers training and students’ 
orientation and self-assessment in scientific subjects. The activities of the PNLS are laboratory 
activities [1], designed and carried out jointly by teachers and university researchers. This joint work 
of teachers and researchers is the element that characterises the PNLS and promotes the development 
and strengthening of relations between the school and university systems. 

During this Laboratory, some properties of centroids of geometric figures, such as triangles, 
quadrilaterals and tetrahedra are investigated. In particular, the properties are proved by means of 
geometric transformations and by introducing extensions of triangles and quadrilaterals, i.e. by adding 
one, two or three new vertices to the figure [13].  
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Laboratory 2 is structured in two steps: (1) design of laboratories and preparation of materials 
necessary for the construction of laboratories; (2) implementation of laboratories in class. Step 1 and 
2 were carried out both as mathematical laboratory type activities: the first one for teachers and the 
second one for students. So, a so-called double-laboratory was proposed [11]. This terminology 
comes from us of the MERG.  

Both steps were arranged so that teachers first and students then were just guided, in order to 
become independent in developing the activity.  

We underline that, in Step 1, teachers and researchers decided to structure the work on the use of 
GeoGebra and through worksheets allowing students to work independently. These worksheets were 
elaborated from a sample worksheet prepared by the researchers. Worksheet had a tabular layout with 
two columns: the left column indicated the action that was then made explicit in the right column 
[12]. Some of the actions that have been used in the worksheets are: Construction, Exploration, 
Definition, Observation, Control… Most of the actions are carried out on GeoGebra. Technology, 
and GeoGebra in particular, help teachers in implementing the “explore-discover-test-conjecture-
proof” model [12] at every level. The use of Dynamic Geometry Systems “has totally changed the 
way Euclidean geometry can be studied. With a minimal introduction, students may explore and 
discover dynamically relevant properties rather than being told about them” [21, p.1]. For example, 
we ask students to explore the following situation. Let ABCP and ABCQ be two pyramids with the 
same base ABC. Referring to the Figure 3.2.1, let P1P2P3 be the triangle with vertices the centroids 
of the faces of ABCP, and let Q1Q2Q3 be the triangle with vertices the centroids of the faces of ABCQ. 
Students are asked to explore and conjecture on the two triangles also referring to the medial triangle 
of ABC (Table 3.2.1). 

 

 
Figure 3.2.1 Centroids’ triangles 

 
Table 3.2.1 Exploring centroids’ triangles 
Exploration What relationships do you think there are between the sides of P1P2P3 and those of  

Q1Q2Q3? 
To check your assumption, use the appropriate tools in GeoGebra or the Algebra 
view. 
Move the points P and Q, the property still holds? 

Conjecture Let us call centroid triangle the triangle with vertices the centroids of the faces of 
a pyramid with triangular basis. 
The centroid triangles of two pyramids with the same triangular basis are ……… 
……………………………………………………………………………………..    
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Table 3.2.1 is only part of a longer activity where students are guided to construct the objects in 
Figure 3.2.1 and to explore them, in order to conjecture first and prove afterward that  

Given a pyramid with vertex P and base a triangle T, the medial triangle of T is the correspondent 
of the centroid triangle of the pyramid in the homothetic transformation with centre P and ratio 3/2.  

 
3.3 Laboratory 3: Brahmagupta theorem and consequences  
 

Also this laboratory, as Laboratory 2, is a double-laboratory carried out within the PNLS project: 
teachers are first called to work together with researchers in writing the worksheets, and then students 
work in class. The laboratory activity is aimed at students in their second year of high school and is 
based on a geometric problem already posed in 600 AD: Brahmagupta’s theorem [7]. It aimed to 
cover the topic in modern terms through the use of GeoGebra, in order to renew students' interest in 
the study of geometry through an innovative experience. 

In the first laboratory, teachers and researchers design and create digital worksheets, implemented 
in Excel, at various levels of difficulty: Helps and Enhancements are provided on the worksheet and 
can be viewed by the student if necessary (Figure 3.3.1a). In this way, each student can customise 
his/her own learning path, proportionate to his/her skills and abilities. These sheets allow a formative 
evaluation to be carried out, since the teacher can trace the path taken by each student. The student 
can also carry out a self-assessment of the course he/she has completed (Figure 3.3.1b).1 

 

  
Figure 3.3.1a The help button Figure 3.3.1b Assessment 

 
 
3.4 Laboratory 4: A MOOC for mathematics teacher education 
 

The Laboratory 4 is part of the European project, MaSCE3: “Math Trails in School, Curriculum 
and Educational Environments of Europe” (http://masce.eu/). The project promotes the adoption of 
math trails, a collection of tasks, located with walking distance, that are useful to discover and solve 
mathematical problems on real objects [28]. Math trails can be used in the school contexts to offer a 
real life experience besides textbooks [24]. Nevertheless, they require teachers’ preparation and a 
solid post-processing in the classroom. MathCityMap (MCM, https://mathcitymap.eu/en/), a math 
trail management system, facilitates this process by the benefits of technology: on MCM users can 
create tasks and trails and share them among themselves or with the public [15]. In fact, it is already 

1 The oval in Figure 3.3.contains the picture of the Help button. The rectangular box in Figure 
3.3.1b specifies the number of the worksheet (1-2 in this case) and the Helps that have been used (1 
and 6 in this case). 
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possible for teachers to create trails in a web portal and for students to run them on a smartphone app. 
Studies show that MCM math trails have a positive effect on student motivation and learning when 
run regularly [4]. However, math trails are still used sporadically by teachers and not systematically 
within learning curricula. Within the MaSCE3 project, in order to make teachers autonomous in the 
use and creation of math trails with their own students, a 12 weeks MOOC was delivered online, in 
English, via the DI.MA. platform (http://dimamooc.unict.it/) managed by the University of Catania.  

During the MOOC, the enrolled teachers, by means of specific digital resources (videos, tutorials, 
...) received indications on how to design math trail tasks on MCM. In particular, in addition to the 
types of format of a math task (for more details see: https://mathcitymap.eu/en/the-mathcitymap-task-
formats-2/), specific design criteria were provided that had to be respected to produce a suitable MCM 
task. The criteria indicated to the teachers were as follows [14]: 

− Clarity: For each task, a picture must be created that allows the clear identification of the 
situation or the object the task is about. 

− Presence: The task can only be solved on site, i.e. the task data must be collected on site. This 
also means that the picture or the task description must not be sufficient to successfully solve 
the task. 

− Activity: The person who solves the task must be active and do something (e.g. measuring or 
counting). 

− Multiple solutions: The task should be solvable in different ways. 
− Reality: The task should be application-oriented, realistic and not too contrived. 
− Graduated hints: At least two hints should be added to each task. 
− School mathematics and “tags”: The task should have a clear relation to school mathematics: 

Use the prepared tags or add new terms. The task should also be assigned to a class level. 
− Solution formats: The solution of the task should be presentable as a solution interval (good 

and medium interval), as an exact number, as multiple choice or as a GPS task. 
− Tools: No special tools should be required to solve the task. 
− Sample solution: One should offer a solution and hints (only visible in the portal) for teachers. 

 
The design of the tasks took place on the MCM web portal, filling in a template structured in the 

light of the design criteria. For the final homework, teachers had to run their own math trail with their 
students and report back on this experience.  
 
3.5 Laboratory 5: Order and Disorder. 
 

Laboratory 5 is part of the Liceo Matematico project. This project aims to enhance mathematical 
skills in high-school students, through laboratorial activities, pointing mathematics as a glue among 
different subjects.  In particular, here we refer to a module entitled “Order and Disorder”, aiming to 
underline connections between mathematics and philosophy.  The laboratory we present here is again 
a double-laboratory. The teachers’ laboratory (4 meetings of 2 hours each) was held by the researchers 
at distance on an online collaboration app, because of the COVID-19 pandemic situation. The 
mathematical content was irrational numbers, and aimed to make students owners of reductio ad 
absurdum proof.  The students’ laboratory started with a philosophical text, orienting students to the 
questions “Who am I? Am I ordered or disordered?” and “When can we define that a number is 
disordered?”. The laboratorial methodology in class was used not only for the mathematical part, but 
also for the philosophical one, because classes were set as research communities on the Socratic 
model, typical of the ancient mathematical and philosophical Greek schools. There was not a telling 
of history of philosophy, but rather students philosophized themselves on the topic of Order and 
Disorder, and thought about irrational numbers, originally seen (by Pythagoras) as disordered 
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numbers. The initial task of searching a “definition” of Disorder was faced by analysing several 
situations, from paintings (Velàzquez’ and Picasso’s “Las Meninas”) and geometry in Arabian 
ceramic (a mosaic in Samarcanda, where many irregular polygons are arranged for a final regular 
structure), to nature (irrational numbers useful in plants to guarantee light to all the leaves). Then, the 
attention was focused on the geometric construction of the square root of two, by using GeoGebra to 
manipulate the diagonal of a square, in phase of conjecturing that the number √2 has an infinite 
number of digits without a repeating sequence. Students worked at distance in the GeoGebra 
classroom platform (implemented by the GeoGebra developers during the spring 2020 in view of 
distance teaching). Thanks to this environment the teacher can see in sync how students are working. 
While working with GeoGebra, students had ideas exchanges with classmates and the teacher. Then 
teachers and students read an excerpt of Plato’s  “Menone”, in which a maieutic process is used by 
Socrates to prove that everyone (even the slave of the famous dialogue) can learn something originally 
unknown (the irrationality of √2, this time). Finally, students were guided to the famous proof of 
irrationality of √2, made by reductio ad absurdum, again in the GeoGebra classroom platform. 
During the activity, students were invited to express their own thoughts and feelings on the theme of 
Order and Disorder with poems, drawings or whatever they wanted. We note that teachers gave the 
possibility to use both technological and classical tools, but students preferred to use paper. In Figure 
3.5.1 and Figure 3.5.2 two of their works. 

 

 
 

 

Figure 3.5.1  My Order and Disorder Figure 3.5.1  My Order and Disorder 
 

The whole materials (considerations about paintings, mosaic, irrationality in nature, reads, 
GeoGebra classroom’s activities) were prepared by the researchers. But teachers (both mathematics’ 
teachers and philosophy’s teachers), who attended the first laboratory of the double-laboratory were 
free to adapt the contents to their classes, given only the indication to use laboratorial methodology. 
During the first laboratory, teachers were open and interactive, and proposed some changes and 
improvements of the second laboratory. 
 
4. Discussion and conclusions 

 
The proposed activities, when experimented in the classroom, from a methodological point of 

view, are based on the mathematics laboratory: Students work together (WM in Table 2.1) on 
problems (P in Table 2.1), discover concepts by themselves, experiment and manipulate instruments 
(I in Table 2.1), guided by the teacher (T in Table 2.1). All laboratories are oriented to a robust 
teaching: the Contents (C in Table 2.2) are rich because either the mathematical topic is not trivial 
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(as in Laboratories 1, 2 and 3), or it is standard but connected with reality (Laboratory 4) or to other 
disciplines (Laboratory 5). Moreover, all the contents are chosen to develop productive disciplinary 
habits of mind, such as modelling (Laboratories 1 and 4), exploring, conjecturing and proving 
(Laboratories 2, 3 and 5). The activities have task difficulty ranging from moderate to demanding in 
such a way the Cognitive Demand (CD in Table 2.2) is challenging. Anyway, thanks to the support 
of the teacher and the classmates, given the working together modality, no student is left behind, 
guaranteeing an Equitable Access to Content (EA in table 2.2). With the laboratorial methodology, 
by seeing mathematics in real-life objects (as in Laboratory 4) and/or thanks to the use of 
technological tools (yEd, GeoGebra, MathCityMap), able to make students “see” and “manipulate” 
mathematical objects, students feel themselves within the mathematical environment, perceiving 
graphs, geometric figures and numbers as “alive” objects next to them. This causes engagement, 
Agency, Ownership over the content and the development of a positive Identity (AOI, in table 2.2) as 
thinkers and learners. Teachers do not evaluate students, but rather help them to adjust or refine their 
reasoning, when they are wrong. In such a way, a Formative Assessment (FA in table 2.2) takes place. 
Mistakes are not judged, but rather taken as a pretext to discuss and argue, helping the comprehension 
of the content.  

Moreover, we observe how, even in a totally online context (such as Laboratory 4), the two 
communities are present in most of the proposals illustrated: the community of the researchers and 
that of the teachers. As we have already pointed out, working in synergy with teachers is a strength 
for us at MERG. In each of the workshops (except Laboratory 1 that is directly intended for students), 
the researchers were engaged in transposing meta-didactical praxeologies to teachers. These 
praxeologies concerned new mathematical contents that were not strictly curricular (properties of 
centroids, Brahmagupta’s theorem, ...), new teaching methodologies (e.g. conscious use of laboratory 
methodology, outdoor mathematics, connection with other disciplines ...) and new technological tools 
that teachers may use in their own teaching (e.g. yEd, GeoGebra, Excel, MathCityMap, ...). The 
teachers who took part in the laboratories worked in an active way: they not only followed the training 
sessions, but then implemented these proposals in class with their students. Sometimes they faithfully 
reproduced the activities (e.g. Laboratory 2, 3), sometimes they also customised the activities in terms 
of the choice of contents to be proposed (e.g. Laboratory 4) or the way in which they were proposed 
in class (e.g. Laboratory 5). These are, therefore, testimonies of evolution in the teachers’ didactical 
praxeologies, as they have benefited from training and modified their usual teaching practices. 

As said, all activities share the mathematical laboratory approach aimed at a Robust Understanding 
of mathematics, but they differ in the way of proposing the laboratory. In Laboratory 1 students work 
solving a series of problems in order to introduce concepts and apply acquired knowledge. In 
Laboratory 2 students start using a two columns worksheet, where they are invited to explore, 
observe, manipulate, conjecture. Worksheets are quite guided and they are the same for all students. 
In Laboratory 3 the 2 columns worksheets become “flexible”: students can personalise it, freely 
deciding whether to use helps or not. A new opening appears in Laboratory 4, the MOOC. In fact, on 
the MCM web portal, on the one hand, the teachers had to follow the “rigid” structure of the template, 
but on the other hand, they had a lot of freedom in the choice of contents to be inserted. In fact, 
although a precise typology of the task had to be respected, the choice of the mathematical object to 
be considered and the related mathematical problem to be associated with it, together with hints and 
solution strategy, were freely chosen by the teacher. If we wanted to draw a parallel with the 
worksheets adopted in the laboratories described above, we could say that here the worksheet (i.e. the 
MCM template) is a container and there is openness towards teachers, while there the openness is 
towards students. In Laboratory 5, in the end, there is an opening towards both, students and teachers: 
the laboratory is open for teachers, because in the first laboratory the researchers introduced the 
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contents and teachers not only proposed changes valid for the whole activity, but also could decide 
how to guide their own classrooms’ activities. The only materials equal for all the involved students 
were the GeoGebra classroom activities, agreed with all the teachers. The laboratory is open for 
students because the questions were related to students’ lives (Are you ordered?) and their points of 
view (What is order?), rather on fixed topics, in such a way the classroom discussion was free to flow, 
and no classroom had the same discussion of another one.  Moreover there is openness for students 
because they were free to produce their thoughts and feelings toward the theme with every way they 
preferred (discussion, draw, poems, …). 

Then, the flow of the evolution of our approach over the years, as researchers, that we call meta-
methodology, is summarized in the following table: 

 
 
Table 4.1 From closed to open mathematics laboratories 

Activity Meta-Methodology 

Laboratory 1: Elements of Graph Theory, addressed to 
students. 
Worksheets: list of problems. 

Closed 

Laboratory 2:  Magic of centroids, double laboratory 
addressed to teachers and students. 
Worksheets: tabular two columns layout. 

Closed for students; 
Open for teachers (that work on the 
construction of the worksheets). 

Laboratory 3: Brahmagupta’s theorem and 
consequences, double laboratory addressed to teachers 
and students. 
Worksheets: tabular two columns layout, with help 
options. 

Flexible for students (because of the help 
options in the two columns worksheets); 
Open for teachers (that work on the 
construction of the worksheets). 

Laboratory 4: MOOC on Math Trails, laboratory 
addressed to teachers. 
Worksheets: MCM container. 

Open for teachers (that can choose 
contents and problems). 

Laboratory 5: Order and disorder, double laboratory 
addressed to teachers and students 
Worksheets: GeoGebra Classroom Activities 

Open for students (that were free to 
express themselves); 
Open for teachers (that decide how to 
bring the content in class). 

 
We are working in the direction of what we can call open Labs: the path taken by the students and 

by the teachers is not fixed, students can take different paths and teachers are free on how to present 
the topics. In the introduction of the activities, many hints are shown and the students choose which 
aspect to take care of. This is the direction of a laboratory proposed last year on Mathematics and 
reality (mathematical content: The golden ratio). Awareness of the strong link between mathematics 
and real life is unfortunately often lacking in students. The activity intends to make the connection 
between mathematics and reality more evident. In particular, the ideas offered are aimed at promoting 
a more lively and attractive view of mathematics, directed at meaningful learning of mathematics 
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which helps students to develop skills adapted to the demands of society. The activity consisted of a 
double laboratory: teaching materials on “Mathematics and reality” with particular reference to the 
golden ratio and its countless applications were prepared and presented, together with some 
worksheets, at the first laboratory with teachers. Teachers and researchers elaborated together the 
final version of the material to be presented in class for starting the activity. Digital worksheets, 
implemented in Excel with the possibility of asking for helps, were used so that each student could 
customise their use, thus working at various levels of difficulty. Subsequently, taking their cue from 
the initial presentation, the students were free to deepen or integrate certain aspects of it, freely 
choosing their own learning path to follow. Changing the curricular teaching approach to more 
engaging paths and methodologies linked to the use and integration of digital technologies also means 
taking into account the important role that emotions and motivation play in learning, to develop a 
positive attitude towards mathematics. 

Then, a STEM approach is slowly evolving mutating to a STEAM approach, where the A, as said 
in the introduction, is not just arts, but it is meant in a broad sense of creativity: on the one hand, 
teachers are “granted” freedom to customise and re-adapt the content or materials offered by 
researchers, on the other hand, students are encouraged to be systematic and experimental, as well as 
to use their imagination and make new connections among ideas. Students can play with concepts of 
aesthetics and with sensory and emotional engagement, in the context of critical thinking, logical 
inquiry, or creative production about the world around them. 
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Abstract

This paper argues that algorithm design in the sense of computational thinking (CT)
does not involve only routinized procedural applications void of deep conceptual understand-
ing of mathematics. By using the programming language Flowgroithm, we demonstrate
how classroom tasks centred around algorithm design may be used to activate creatively
founded mathematical reasoning (CMR) in mathematics students.

1 Introduction

1.1 Mathematical competencies and abilities

The mathematics teacher’s primary role is to help students develop their mathematics com-
petencies, i.e., abilities to “understand, judge, do, and use mathematics in a variety of intra-
and extra-mathematical contexts and situations in which mathematics plays or could play a
role” [12, pp. 6-7]. In particular, [10] expanded mathematics competencies into six abilities : (1)
problem solving ability, (2) reasoning ability, (3) applying procedures ability, (4) representation
ability, (5) connection ability and (6) communication ability.

*This work is supported by funding OER 10/18 LCK for the project “How to bring Computational Thinking
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Worldwide, classroom tasks are thus designed to develop these six abilities. This paper
proposes the use of algorithm as nexus connecting the abilities of problem-solving (how to solve
tasks without knowing a solution method in advance), reasoning (the ability to justify choices
and conclusions) and applying procedures (the ability to execute known procedures that are
learnt by heart).

Applying procedures is familiar to mathematics teachers. In mathematics and mathematics
education, such procedures are called algorithms. An algorithm is a set of rules to be followed
in calculations or other problem-solving operations, be it by a machine or a human being. In
mathematics education, this definition is broadened below:

Definition 1 (Algorithm) An algorithm is a set of finite sequences of executable instructions
enabling one to solve a given set of tasks ([3]).

Common algorithms encountered by Singapore secondary school students (aged from 13 to
16 1) in the Singapore Mathematics syllabuses ([11]) include, but are not limited to, multiplica-
tion and long division (involving integers and/or polynomials), prime factorisation, obtaining
highest common factors and least common multiples of natural numbers, quadratic formula,
mensuration formulae, Pythagoras Theorem, plotting graphs, using formulae in coordinate
geometry (e.g., gradient of line segment, length of a line segment, area of a triangle the ver-
tices of which have given coordinates), partial fractions decomposition, finding derivatives and
antiderivatives of special functions, etc. In short, the ability of applying algorithms in math-
ematics is tied on to routinized procedures. Imagine a continuum where a mathematical task
is placed based on the availability of known mathematical procedures to the student engaged
in that task. Then a task which merely requires the student to invoke a known algorithm (i.e.,
to mimic the teacher’s demonstration of the same algorithm) will be placed on one end of this
spectrum.

Thus, problem-solving tasks are placed on the other end of this spectrum. By a problem,
we mean a task in which a student who is engaged in solving it does not have a readily
available method or procedure to solve it. According to [8, p. 50], successful problem solving
involves coordinating previous experiences, knowledge, familiar representations and patterns
of inference, and intuition in an effort to generate new representations and related patterns of
inference that resolve some tension or ambiguity (i.e., lack of meaningful representations and
supporting inferential moves) that prompted the original problem-solving activity. A problem
solver inevitably engages in the Pólyan cycle of understanding the problem (UP), devising a
plan (DP), carrying out the plan (CP) and checking and/or extending the solution (CE) ([13]).

1.2 Concerns about extensive use of algorithm

Several studies ([2, 4]) have revealed that the majority of the class-time had been spent on
learning and rehearsing algorithms which, when mastered, are intended to ensure students’
efficiency and accuracy in solving mathematics problems and tasks that they tackle at some
later stage. Algorithms form an essential body of knowledge for mathematics students because
they are meant to yield quick and reliable answers to those tasks that can be solved by fol-
lowing a ‘fixed’ solution path. Because situations where a certain algorithm can be employed
are completely deterministic and predictable, tasks that involve merely repeated usage of the

1Typically, Secondary One students are aged 13, Two 14, Three 15 and so on.
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algorithm then provide students plenty opportunity to practise. In themselves, there is nothing
innately wrong about tasks that involve students’ practice on applying algorithms but it is
the extensive use of such tasks, that some studies, suggest may be counterproductive [4]. The
danger here occurs when a classroom situation is typified by (a) a teacher providing students a
set of mathematical tasks that have a common solution template, and (b) students repeatedly
applying the same algorithm in solving this set of tasks. Then the students would have no
opportunity to reflect on their use of the algorithm. It is this unreflective use of the algorithm
which detaches the meaning of the algorithm from its application ([3]).

In summary, if there is an unchecked and extensive use of algorithmic learning that does
not invoke the learner’s reflection about the meaning of the algorithm then there is concern
whether or not the learner’s mathematical reasoning abilities will hampered.

1.3 Proposed approach

The problem lies not with algorithmic learning but instead the way classroom tasks are de-
signed (and implemented). In this paper, we suggest various ways whereby algorithms can
in fact be exploited to create opportunities for deep conceptual learning of mathematics and
active engagement in problem solving. This approach gives a counter-argument against the
usual acceptance that algorithmic learning deprives student of creatively founded mathemati-
cal reasoning.

2 Algorithm design in Computational Thinking

2.1 Algorithmic and creatively mathematically founded reasonings

Two types of reasoning are specifically mentioned in [10, 9]: algorithmic reasoning (AR) and
creative mathematically founded reasoning (CMR). The notion of AR, first coined by [10], refers
to the state in which a problem solver employs repetitive numerical task-solving method – such
a method must make use of an algorithm that can be employed to solve the problem (and
one which is provided together with the task). As for CMR, [9] defines it to embody all of
the following attributes: (a) creativity – a reasoning sequence new to the reasoner is created,
or a forgotten one is re-created; (b) plausibility – arguments supporting both the strategy
choice and implementation must be there to provide plausible or correct reasons to reach the
conclusion(s); and (c) anchoring – placing arguments at the intrinsic mathematical properties
of the components that are involved in the reasoning required to solve the problem.

Regarding AR and CMR, two significant findings reported in a recent work ([7]) by B. Jons-
son and his team motivate our current approach: (1) AR leads to better students’ performance
during practice sessions when compared to CMR, as a function of the algorithmic support
that was provided in the task (i.e., solution method and/or template is available to the stu-
dents when given the task). (2) CMR outperforms AR whenever a task involves (i) conceptual
understanding, (ii) memory retrieval and/or (iii) (re)construction of solution methods.

From the above finding (1), we gather that AR leads to positive learning outcomes during the
initial stage of student’s familiarization with key definitions, methods, calculations, algorithms
and solution templates through practice. However, finding (2) informs us that the learner
must move on from this initial stage of drill-and-practice to engage with (cognitively) more
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demanding tasks that require genuine conceptual understanding, retrieval of useful information
and/or (re)construction of solution methods.

2.2 Algorithm design

In an earlier work [6] presented at the 24th ACTM, the authors gave domain-specific inter-
pretation for the four components of Computational Thinking (CT), namely, Decomposition,
Pattern Recognition, Abstraction and Algorithm Design. Additionally, they argued for the use
of task design principles grounded in Computational Thinking (CT) to construct meaningful
tasks which exploit CT in mathematics learning.

The specific component of Computational Thinking we are focusing in this paper is Algo-
rithm Design, which according to that same paper,

“involves the planning and development of a set of precise and step-by-step instruc-
tions for solving the problem.”

Such a finite sequence of instructions is termed as a program which can either be carried out by a
computer or a human being in an ‘insightless’ manner. Notice here that running the algorithm
or program requires no insight and hence unlikely to result in meaningful learning. Indeed,
a proficient use of algorithms can at best reduce both the cognitive demands of complicated
calculations ([5]) and the cognitive load on the learner’s working memory ([15]). But planning
and development of such an algorithm requires not only insight but a lot of creativity and deep
conceptual understanding of the mathematics that learners are engaging with.

Clearly, it is the way tasks are designed to train learners in planning and developing al-
gorithms with the intention of activating students’ reasoning that really matters. In fact this
view is not new as already [9] reported that the reasoning that students activate as a result
of active planning and developing (in relation to specific tasks) is one key variable in learning
mathematics through task solving.

2.3 The role of algorithm design

This is where the element of Algorithm Design lend itself to transit the learner smoothly
from the initial stage of applying the algorithm or solution template to the more cognitively
demanding engagement with the higher-order thinking processes. To operationalize this transi-
tion, there are two distinctive task labels associated to the task we design around the element of
Algorithm Design. (1) Implementing a procedure: Present the key algorithm/solution template
in a standard format that can be communicated by the teacher, and can be understood by the
student. (2) Problem solving: Construct (or co-construct) a novel algorithm which is used to
solve a problem embedded in the mathematical task.

In order that a standard format be established to allow communication between the teacher
and the student, we have chosen a free programming language called Flowgorithm. This
software requires little overhead in programming knowledge. It allows its user to construct a
program in the form of a flowchart and – the best part – to run the program.

Typically, in an ‘implementing a procedure’ task the teacher will display a flowchart program
(that implements some mathematical procedures) for students to read. This is in line with the
pedagogical approach called PRIMM ([14]), that is, (P) Predict: look at a short program and
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try to guess what it will do; (R) Run: run the codes of the program, observe the outcome and
check whether the prediction made earlier is correct; (I) Investigate: carry out investigations
about the different part of the codes, e.g., tracing the program flow, making annotations,
etc.; (M) Modify: changing the code to effect desired changes; (M) Make: make a brand new
program by making use bits of the codes from the original program to solve a new problem.
We shall explain the details of how the transition takes place from ‘implementing a procedure’
to ‘problem solving’ in the next section.

3 Flowgorithm as passage from AR to CMR

3.1 Flowchart and Flowgorithm

When a student first learns a text-based programming language, it is not uncommon that he or
she be required to enter several lines of syntax (i.e., commands) before something simple can be
achieved, e.g., to print “Hello, world!”. One advantage of the using flowchart is to take away the
cognitive load of familiarizing with the nuances of the text-based programming language, and let
the learner focus on the visual flow of information, and thereby acquire a quick understanding
of the underlying programming concepts. To print out “Hello, world!”, the important point
here is appreciate that “Hello, world” is a string (i.e., literally a string of characters that can
be input through the keyboard) to be output. Figure 1 depicts the Flowgorithm program
(on the left) to print in the chat bubble “Hello, world!” (on the right).

Figure 1: Flowgorithm program helloworld.fprg

On the official website http://www.flowgorithm.org/download/index.htm, one can find
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the installation instructions for Flowgorithm, together with an introduction to how Flow-
gorithm programs are written.

3.2 Looking for the right topics

To illustrate how the aforementioned transit can be made from AR to CMR in an authentic
classroom situation, we invoke a running example through this section. The first point to be
made here is that it is important to identify the topics in which algorithms already reside.

The running example we have chosen sits in the topic of quadratic equations and expressions,
which in the mathematics syllabus usually taught to Secondary Three (Express) students. We
give some background of this topic below.

When students first encounter quadratic equations in Secondary Two, they will be taught
how to recognize one, i.e., the students would check that a quadratic equation has only one
variable, say x, and is of the form ax2 + bx+ c = 0, where a, b and c are constants and crucially
a 6= 0. Usually these coefficients are given as integers, though not necessarily so.

Students are expected to be able to apply their prior knowledge in algebraic manipulation
to reduce equations to a quadratic one, e.g., to be able to prove that the equation 10

x
− 10

x+2
= 1

5

can be reduced to x2 + 2x− 200 = 0.
At Secondary Two, students would be taught how to factorize a quadratic expression into

its linear factors (over the polynomial ring Z[x]) using trial-and-error. The method is known as
the ‘cross-method’. For instance, to factorize 2x2 + x− 3 into its linear factors, a student tries
all possible integer factorization of the constant term “−3” (e.g., 3×−1 and −3× 1). Figure 2
shows a typical working carried out by a student when employing the “cross-method”. Notice
that cross-multiplying x-terms with the factors yield +3x and −2x in the add-column on the
right, where the sum of +3x and −2x is checked to be +x, as desired.

Figure 2: “Cross-method” for factorization

At Secondary Two level, students would realize that not all quadratic expressions can be
factorized into linear factors with integer coefficients by solely applying the “cross-method”.
They are not expected to know the necessary and sufficient conditions for a quadratic equation
with integer coefficients to be factorized into two linear factors with integer coefficients. At
that level, the nature of roots, i.e., real or complex roots, is also not in the syllabus. According
to the Secondary Mathematics Syllabus ([11]), students at Secondary Three are expected to
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apply the quadratic formula

x =
−b±

√
b2 − 4ac

2a
(1)

to obtain the roots of the quadratic equation ax2 + bx + c = 0, assuming the real roots ex-
ist. Though the formula is available in the formula booklet, it is often advised that students
memorized the formula and apply it at will. In a typical lesson based on the AR approach, the
teacher will demonstrate the solution of a quadratic equation using a solution template typified
in Figure 3.

In the equation x2 + 2x− 200 = 0, the coefficients are a = 1, b = 2, c = −200.
Applying the quadratic formula,

x =
−b±

√
b2 − 4ac

2a

=
−2±

√
22 − 4(1)(−200)

2(1)

= −11.06 and 9.06,

correcting the answers to two decimal places.

Figure 3: Solution template for using the quadratic formula

3.3 Starting with flowchart

The teacher can set a few AR-tasks for the student to drill-and-practice and familiarize with the
above solution template. With the goal of transiting to the use of CMR approach in teaching
and learning, we do not stop here. We suggest that the teacher introduces what an algorithm
is in the sense of Definition 1. This can be done by inviting students to examine the structure
of the solution template in Figure 3, using the following prompt:

Teacher: In the solution template that we have been using to solve those quadratic
equations,

1. identify those key input data you must use to calculate the roots of the given
equation ax2 + bx + c = 0;

2. write down a step-by-step set of instructions using those data to output the required
roots.

In the ensuing conversation between the teacher and the students, the discussion will likely
culminate with the following points:

� Input(s): The key input data identified are the values of a, b and c – but not x.
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� Process(es): Although the mathematical syntax employs a single variable x to denote the
two possible roots, the roots are actually calculated using the input data and two separate
formulae:

−b−
√
b2 − 4ac

2a
and

−b +
√
b2 − 4ac

2a
.

� Output(s): The first root can be stored as x1, and the second as x2.

The students’ realization that there are in fact two outputs x1 and x2 deepens his or her
understanding of the quadratic formula, where, in particular, the sign ‘±’ really denotes two
different operations (plus and minus) performed separately. Apart from this realization, one of
the end-goals of the above task is to heighten the student’s awareness to the ‘Input-Process-
Output’ sequence in an algorithm, i.e., given some inputs (declared by the programmer, and
later supplied by the user), some processes are then invoked to act on the supplied inputs,
and these will finally yield some outputs. This observation then lends itself naturally into a
flowchart – the paradigm of information-flow from the input source, through the processes (i.e.,
computations), to the output target.

At this point of the discussion, a flowchart that enacts the algorithm of calculating the two
roots of a quadratic equation is displayed (see Figure 4).

Figure 4: Flowchart for calculating the roots x1 and x2

The follow-up activity that makes use of the flowchart in Figure 4 would involve the students
to predict what the flowchart does (given that they do not know some of the syntax in the
flowchart) and communicate the intention of the key inputs, processes and outputs appearing
in the flow of information from Main (input) to End (output). This activity is identified with
the ‘Predict’ phase of the PRIMM framework.

The purpose of this segment is for the teacher to use the diagrammatic nature of the
flowchart to explain what the flowchart does, and simultaneously introduce the fundamental
computing concepts of variables as placeholders for storing values, e.g., a b and c have been
set as variables taking on integer values, for example; and x1 and x2 are variables taking on
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real number values. Additionally and concurrently, the programming concept of data and date
types can be introduced to the students within the disciplinarity of mathematics.

3.4 Using Flowgorithm to build flowcharts

The next teaching move would be to show how Flowgorithm can be employed to build
the flowchart shown in Figure 4. This demonstration will in addition introduce the following
essential concepts: (1) String data type, e.g., the words appearing within the double inverted
commas, and the concatenation operator “&”. (2) Assign a value to a variable, e.g., defining
D, x1 and x2 using formulae. (3) Re-use codes or variables in the program to avoid redundant
repeated computations, e.g., calling up the variable D and using it later in x1 and x2.

Each of these teaching points will involve different actions (e.g., Input, Declare, Assign,
Output) which are distinguished by the different shapes. The directed arrows reinforce the
concept of information-flow.

3.5 Running the flowchart in Flowgorithm

The role of the machine enters the scene when the teacher demonstrates that the constructed
flowchart in Figure 4 is in fact executable, i.e., it can in fact be operated as a computing machine!
Pressing the play button sets the program running, i.e., (i) the program interacts with the user
by asking for inputs to a, b and c, and (ii) the program returns with the output embedded in
the sentence “The roots of the quadratic equations are ... (first root x1) and ... (second root
x2)”. Figure 5 (the console on the right) shows an instance of running the flowchart in Figure 4
with the inputs a = 1, b = 2 and c = −100 as in the quadratic formula.

Figure 5: Running the flowgorithm program quadform1.fprg

The teacher may now invite the students to use their flowchart as a quadratic formula
calculator to check that the answers obtained in the AR-tasks completed a priori are indeed
correct. The end-goal of writing a Flowgorithm program in this lesson is to culminate with
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a useful product, i.e., a calculator that can calculate the roots of a quadratic equation. Thus,
this task is aligned with Papert’s original conception of what Computational Thinking should
achieve, i.e., the learner acquires knowledge by constructing a useful product (see [16, 6]).

We classify the above task as an “Implementing a procedure”-task because the main ob-
jective of this type of task is to get the students to appreciate that the solution template
associated with solving a quadratic equation can in fact be implemented as an algorithm (in
this case using Flowgorithm as the programming language). Additionally as the teacher
walks the students through the flowchart (in Figure 4), the students are given another chance
to internalize the quadratic formula on top of the drill-and-practice tasks completed prior to
this flowchart activity. Also, a pleasant side-effect of this approach is that students acquire
the necessary programming concepts through the use of Flowgorithm in the context of solv-
ing quadratic equations without being burdened by the syntax of a text-based programming
language.

3.6 Moving on to problem solving

We recall from our earlier discussion in Section 3.2 that Secondary Three students “are not
expected to know the necessary and sufficient conditions for a quadratic equation with integer
coefficients to be factorized into two linear factors with integer coefficients.” This now can be
turned into an opportunity for the students to engage in authentic problem solving.

Moving forward, the teacher can craft the problem-solving task as follows:

Problem. Given a quadratic equation ax2 + bx+ c = 0, with integer coefficients, i.e., a,
b and c are all integers, devise a test involving a, b and c that would help us determine
whether this equation can be solved by using the ‘cross-method’ (i.e., guess-and-check in
the sense illustrated in Figure 2) involving integer coefficients for the linear factors.

Although the problem stated is not unfamiliar to students at this level, they do not have
a ready solution to it. The teacher can guide the students through the flowchart and ask
them to identify which part of the program is instrumental in calculating the roots of the
equation. In other words, we are engaging the students in the ‘Investigate’ phase in the PRIMM
framework. Suitable scaffolding can be designed to lead the students to examine the different
sub-expressions or terms appearing in the quadratic formula.

The students can employ the Flowgorithm program (i.e., quadform1.fprg) shown in
Figure 5 on several sets of integral values of a, b and c to explore the outcomes. A closer
examination then reveals that the discriminant D :=

√
b2 − 4ac must be a perfect square in

order that
√
D =

√
b2 − 4ac is an integer so that the final expression −b±

√
D

2a
is rational.

For the ‘Modify’ or ‘Make’ phase, the teacher can continue to challenge the students to devise
a Flowgorithm program to determine whether a given quadratic equation has rational roots.

4 Task design schema

In the preceding Section (i.e., 3.2–3.6), the sample tasks sequence is built around a selected
mathematics topic, and algorithm design is embedded into the different tasks that help students
transit from Algorithmic Reasoning (AR) to Creatively Mathematically Founded Reasoning
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(CMR). We now abstract the details of this tasks sequence in the form of a task schema. Recall
that schemas are categories of information stored in long-term memory ([1]). In other words,
a schema contains groups of linked memories, concepts or words. The purpose of having a
task design schema, in our case, is to create a cognitive shortcut for the task designer so that
the specific task design we recommend here can be stored and retrieved from one’s long-term
memory much more quickly and efficiently. Because the classroom task is designed for teaching
and learning of Mathematics via Computational Thinking, we employ the four task design
principles proposed in [6]. For the reader’s convenience, we briefly recall what these four design
principles are, and then apply them as we describe the task schema proposed herein.

4.1 Four task design principles

The original intention of bringing in this set of task design principle is to address teacher’s
concern about instructional design centred around crafting Mathematics lesson that activate
Computational Thinking. Because Computational Thinking comprises four key components,
i.e., decomposition, pattern recognition, abstraction and algorithm design, the four design prin-
ciples have bee targeted to address each of these components in the form of questions to which
the task designer must answer. Below, we quote these questions verbatim from [6, pp. 5-6].

Complexity Principle. “Does the mathematical concept give rise to sufficiently complex
problem?” The problem should involve the use of the identified concept, and be complex enough
so that decomposition of this main problem into sub-problems is a needful step. If the problem
or task is routine or too simple, e.g., there exists a ready-made solution or method, then
decomposition is uncalled for.

Data Principle. “Can the mathematical concept occur in various forms so that it is possible
to collect data for its occurrence?” The topic should involves observable and quantifiable data
that can be collected, created, analyzed, and shared.

Mathematics Principle. “Can the problem associated to the mathematical concept be
mathematized?” Mathematization is the formulation of the problem using mathematical terms.
It turns a problem in real world context in an abstract and precise manner to a mathematics
problem. We do not restrict mathematics to mean only numbers, algebra, geometry, and so on.
Rather, mathematics can have a more inclusive meaning of encompassing abstract concepts and
structures which are definable, representable, and can be reasoned about within some logical
framework.

Computability Principle. “Does there exists an effectively calculable solution to the math-
ematized problem?” By ‘effective calculable’ we use it in the sense of Recursion (or Computabil-
ity) Theory, that is, there exists a a computer program that can calculate a solution to the
problem through a finite procedure via a physical agent (e.g., machine, human being).

It is however to be noted that there is no need for the above principles to be applied in any
prescribed order.
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4.2 Task schema proposed and validated

From the preceding section, we see that there are four key stages involved, and these are
presented in the form of a schema shown in Figure 6.

Figure 6: Task design schema for transiting from AR to CMR

Looking for the right topics. Since we are advocating the situating of algorithms as the
connecting piece between AR and CMR, the task designer should naturally browse through
the potential topic and look out for all the existing procedures, solution templates to standard
questions, standard calculations involved, etc.

We now apply the Computability Principle at this juncture to check if those identified proce-
dures or solution templates can be implemented as an algorithm. Even when these procedures
are programmable, there is the question of whether the programming concepts or techniques
are too difficult for the students at that level. In the present proposal, we recommend the use
of Flowgorithm as a simple programming language with a low overhead of programming
syntax. The question here is whether the algorithm when implemented in this language is
simple enough for students of that level to understand.

Starting with a flowchart. At this stage, the student would be engaged in understanding
what a flowchart involves, e.g., the key variables and their associated data types. In other
words, the student becomes cognizant of the different components of the problem or algorithm
at hand. This step of starting with a flowchart helps the student stay focused on the different
inputs, the various decision-making and the calculations together with all the variables. As the
student moves on from AR to CMR, he or she would be expected to be more independent in
deciding which are the variables to be defined, and what data types they belong. All these are
possible if the task designer factors in the process of Decomposition, i.e., breaking down the
complex task into smaller sub-tasks which are more tractable. Thus, the Complexity Principle
validates this part of the task schema in that this task engages the students in identifying the
various parts of the flowchart – the students are moved towards appreciating this part-whole
relationship between the individual parts of the algorithm (e.g., variables, sub-processes) and
the whole algorithm itself. In addition, Data Principle can be applied here to ask for evidence
of students’ working out which input data are used and how these are transformed by the
subsequent information-flow directed by the flowchart.

Building and running flowcharts in Flowgorithm. This is closely tied to the component
of Algorithm Design in Computational Thinking, and we are thus invoking the Computability
Principle again. At this stage, we check whether the task requires that the algorithm can be ef-
fectively implemented in the chosen language. In this part of the task schema, the students must
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construct the given flowchart using Flowgorithm. Like any other programming language,
students at this stage are bound to make mistakes and hence we expect them to be debugging
their programs. While training them to pay attention to each of the constituent parts of the
entire algorithm, we are indirectly helping the engaged students to internalize the algorithm.
The authors are in the view that algorithmic learning implemented through this approach is
far more meaningful than a mere memorization of formulae or routinized procedures.

Moving on to problem solving. Remembering that Computational Thinking is evidence-
based because there are clear deliverables and observables tied to it – meaningful learning
yields useful products. At the end of the AR-focused segment of the lesson, a useful product is
obtained – the resulting Flowgorithm. Now the transit from AR to CMR crucially hinges on
how the task requires the student to make use of the program that he or she has just constructed.
In order that CMR be invoked, the activities at this stage must involve the learner to think
in a deeper manner through the mathematical concepts involved. In our running example, the
Flowgorithm program that implements the quadratic formula serves as an object of study
in itself: which part of the formula determines the rationality of the roots of the equation given
that all the coefficients are integers? The Flowgorithm program has the advantage that it
can be run on input data so as to create visible patterns for students to engage in Pattern
Recognition and hence to formulate relevant conjectures towards solving the problem at hand.
Hence we see that the task is centrally rooted in a mathematized problem – the Mathematical
Principle thus validates this last but critical part of the task schema. Indeed without this part,
the transition from AR to CMR can never take place. This is where the students’ mathematical
creativity emerges out of the situationally induced need to reasoning out for themselves what
was going on in the heart of the algorithm.

5 Discussion

Having presented the task design schema that is targeted to transit the learner from AR to
CMR, it is time to reflect on our proposed approach. Let us begin with some limitations.

5.1 Limitations

Flowcharts, even in the present form written in Flowgorithm, are hard to modify. Although
the flow structure appears easy to understand, a working program is often completed all at once
– one can hardly modularize by making the small parts work first. Of course, Flowgorithm
allows one to call up functions (which can be coded separately from the main program) but it
becomes intractable once the program involves too many function calls. Additionally, debugging
can be challenging because one just cannot take apart the flowchart and reassemble the parts
again. Our proposed approach relies heavily on the choice of the right topics. Even when there
are fixed procedures, e.g., finding shortest distance of a point from a line requires one to identify
the foot of perpendicular from the point to the line, sometimes there is such a great variety of
situations (in which the same procedure is to be applied) that it is simply not possible to code
the procedure as a computer program. This is especially the difficulty encountered when one
is dealing with geometry problems.
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5.2 Implications

Although the task design schema looks largely plausible to apply, it is far from being clear
how the mathematics teacher can use it to generate specific lesson tasks on specifically selected
topics. For example, can one incorporate this proposed approach systematically into a profes-
sional development program for mathematics teachers? At the moment of writing this paper,
the first author is in the process of introducing the proposed approach of using algorithms to
mathematics teachers at an in-service training program that is intended to equip them with
basic programming skills. In this course, one special feature of Flowgorithm is frequently
emphasized and exploited, i.e., all programs written in Flowgorithm can be exploited as
programs written in a variety of different programming languages (e.g., C++, Fortran, Python,
Javascript, etc.). From a practitioner’s point of view, what one needs is a rich collection of
exemplars, be they flowcharts of all the commonly encountered algorithms that are associated
to implementing a procedure or those used to encourage problem solving or making conjec-
tures. The first author, together with some beginning teachers, is building up a library of
Flowgorithm (as well as others) programs for the purpose of teaching mathematics at the
secondary level.

6 Conclusion

In this paper, we have argued that Algorithm Design – one of the key components of Compu-
tational Thinking – is not the same as Algorithmic Reasoning . In particular, we proposed a
type of task schema that is crafted around the essential entity of algorithms and demonstrated
how such a task schema can be uniformly applied to give rise to a sequence of tasks that brings
the learner through the journey of Algorithmic Reasoning to advance to Creatively Founded
Mathematical Reasoning. Crucially, this proposed task schema has been rigorously checked
against the four CT+Math task design principles put forth in an earlier ATCM conference.
Our present work can be seen as a further application of this set of design principles, thus
demonstrating its versatility in the domain of task design that is specific to Computational
Thinking used in Mathematics teaching and learning. The constraint of space in this paper
has not allowed us the luxury of explaining how the activities described above can be carried
out in an authentic classroom situation, what methodology we employ and how the desired
positive results may be achieved with the students. Thus, one important future work would be
to actualize what has been proposed in this paper.
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Abstract: Advanced scientific calculators, developed in recent years, include more sophisticated capabilities than 
original models, including some of direct relevance to elementary calculus. In this paper, some relevant calculator 
capabilities are described and their potential use for students and teachers of elementary calculus are illustrated and 
evaluated, against the framework of a model for learning mathematics with calculators. Despite the name of such devices, 
calculators derive their educational value from processes other than mere calculation. Key ideas of continuity, 
convergence, limits, differentiation and integration can be both represented and gainfully explored on an advanced 
scientific calculator, supporting student learning in powerful ways not otherwise available to many students in Asian 
countries. 
 
1. Introduction 
It is now around forty years since the use of scientific calculators has become routinely accepted in 
secondary school mathematics education in many countries, including Australia, the USA and many 
European countries. The use of calculators in those countries was originally focused on computational 
use – since the devices afforded ready access to otherwise troublesome computations – but recently 
attention has shifted to educationally more important aspects. Over that time, other forms of 
technology – most noticeably computers and the Internet – have been developed and achieved some 
popularity, leading to the suggestion in [1] that the scientific calculator has appeared to have become 
a ‘forgotten technology’. 

In many affluent countries, the scientific calculator seems indeed to have almost become 
forgotten, as mathematics students routinely use graphics calculators and even graphics calculators 
with computer algebra system (CAS) capabilities over the last quarter of a century, both in classrooms 
and in high stakes external examinations. Experience in Asian contexts, however, has been different 
to date, most likely for economic reasons, and it seems still to be the case that the scientific calculator 
continues to be the most appropriate tool for many classrooms, as suggested in [2]. Recent 
developments in scientific calculators have increased their significance for learning, as functionality 
has increased to match the school curriculum and usability has been improved. Modern advanced 
scientific calculators like the CASIO fx-991EX calculator (ClassWiz) have many capabilities shared 
with graphics calculators – without the graphing capabilities and limited by smaller screens – and 
thus have significant potential for school and early undergraduate mathematics education.  

In this paper, we focus on the productive use of such calculators for the particular context of 
calculus, drawing in part on earlier work highlighting their educational significance [3]. Although 
other calculators might be used, for convenience we illustrate the arguments with the ClassWiz. 

 
2. Learning calculus with calculators 
In part to place calculation in context, [4] proposed a model for the educational use of calculators, 
identifying four kinds of activity: representation, computation, exploration and affirmation. While 
many productive uses of calculators in school involve several of these components simultaneously, 
those that involve only calculation are usually of very limited importance. Many activities include 
computation in some way – in precisely the same way that computer software such as that for 
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spreadsheets, word processing, or dynamic geometry or access to the Internet via web browsers 
always involve computation in some way, although the computation is not the key feature for 
learning, and indeed is often hidden from the direct view of the user. 

To illustrate this model, consider the command on ClassWiz for determining the numerical value 
of a derivative of a function at a point. As the command is actually written on the keyboard, and thus 
always visible to a user, it provides unmistakeable evidence that the calculator has links to the 
calculus. Figure 1 shows an example of this command in use. This screen reflects, potentially, all four 
of the educational uses of the calculator, as described below. 

 

   
 

Figure 1:  Using the numerical derivative command on ClassWiz 
 

Representation: Like many modern calculators, the ClassWiz represents mathematical ideas 
using conventional mathematical syntax, so that the ideas are familiar to users. In this case, the 
representation of d/dx is shown as a fraction; the function (of x) involved is represented 
conventionally using an expression in which indices are raised, smaller, numbers and variables are 
shown in italics; the point at which the derivative is evaluated is shown using the conventional 
notation of a vertical line; the resulting derivative is shown as an exact number, in this case the integer 
7. In short, the calculator represents the result in a way that is perfectly acceptable in everyday 
conventional representation, and thus immediately recognisable. 

Computation: The ClassWiz has computed the value of the numerical derivative, saving the 
labour involved for the user of finding a (symbolic) general term for the derivative and then 
substituting the particular value of x = 3. It is not clear at all how the calculator has done this, but the 
result is immediate and the calculation is correct, both of which are helpful for students. 

Exploration: As suggested later in this paper, a screen like that shown in Figure 1 might have 
arisen in several contexts, only one of which is the determination of a derivative of this function at 
this particular point. Student users of the calculator can use this numerical derivative function to 
determine related derivatives and use these to discover, or confirm, some properties of derivatives. 
For example, the above screen might have arisen following earlier numerical derivatives, such as 
those shown in Figure 2, as part of different sorts of student explorations: 

 

     
 

Figure 2:  Related derivatives to that shown in Figure 1 
 

Affirmation: By its nature a scientific calculator is a responsive device, driven by the user. So it 
has the potential to affirm (or to contradict) student preconceptions about an outcome, both of which 
are very helpful to learners. In this sense, it can be regarded as a form of personal hypothesis-testing 
device, of considerable value to a student thinking about the mathematics involved. To illustrate this 
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aspect, consider the situation before a student taps the equals key to evaluate the numerical derivative 
in Figure 1, as depicted below in Figure 3. 

 

 
 

Figure 3:  ClassWiz screen immediately prior to executing the command 
 

Students’ preconceptions and expectations will depend on the context and on the student 
concerned. But to illustrate, a student who has just determined that the derivative of f(x) = x2 + x is 7 
when x = 3 (as in the middle screen of Figure 2) might naively expect that the result in Figure 3 to be 
7 + 1 = 8, and find their thinking contradicted by the calculator; a fellow student might expect that 
the result will be the same as that in Figure 2, and find their thinking affirmed by the calculator. In 
either case, the calculator can contribute to student’s learning, provided it is used thoughtfully. 

In summary, to consider the relevance of the calculator to a student learning calculus, we need 
to pay attention to the context of the learner, not simply to the technical capabilities of the device. 

 
3. Closer and closer 
A major conceptual jump for mathematicians since antiquity and thus for students learning the 
calculus today is the need to deal with infinite processes, as brilliantly revealed in a remarkable recent 
book [5]. By definition, we need to think in approximations to infinite processes, and many teachers 
will be familiar with trying to help students to understand the idea of getting ‘closer and closer’ to 
something – without ever reaching it. While technologies can appear to overcome this hurdle (for 
example, as computer algebra systems generate symbolic results of infinite processes, such as those 
involved with differentiation or integration), there are several ways in which calculators can help 
students to see for themselves what is happening behind the symbolism. In this section, we explore 
briefly some of these connections. 
 
3.1 Continuity and discontinuity 
Introductory calculus deals mostly with continuous functions; one way of thinking of these is that 
small changes in the variable lead to small changes in the function itself. Figure 4 shows an example 
of this for the continuous function f(x) = x3 + x2 near x = 1. Examining functions in this way is made 
possible by a tabulate facility available on advanced scientific calculators like ClassWiz; such 
facilities were not typically available on earlier scientific calculator models. 

 

   
 

Figure 4:  Exploring the continuity of f(x) = x3 + x2 near x = 1 
 

These screens suggest that the function is continuous at x = 1. Although the screen is small (and 
thus the table size small), students can see for themselves that choosing still smaller intervals for x 
(i.e. those for which the values of x get closer and closer to 1) results in a similar phenomenon for 
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f(x), which is the essential idea of continuity. The calculator is facilitating an exploration of this kind 
by permitting fast and efficient calculation – much more so than would be possible without the aid of 
the technology. 

In contrast, when a function is discontinuous, function values can change dramatically with only 
small changes in the value of the variable. This is illustrated by setting up a table of values as shown 
in Figure 5.  

  
 

Figure 5:  Setting up ClassWiz to explore a discontinuous function 
 

The resulting screens in Figure 6 show a different kind of pattern than that seen in Figure 4. As 
x gets closer and closer to 3, the function values change dramatically, and the function is not defined 
when x = 3, as indicated by the error message on the screen. 

 

   
 

Figure 6:  Exploring the continuity of 𝑓𝑓(𝑥𝑥) = 7
𝑥𝑥−3

 near x = 3 
 

The flexibility of the calculator makes it relatively easy for students to explore jump 
discontinuities like this, and to compare their behaviour with that of continuous functions. Getting 
‘closer and closer’ involves merely changing the interval values for the variable of interest. 
Elementary functions can be discontinuous in other ways of course, such as the concept of a 
removable discontinuity, for which a function is continuous everywhere except for one point. A 
typical example, often studied by beginning calculus students is shown in Figure 7. 

 

   
 

Figure 7:  Preparing ClassWiz to explore the removable discontinuity of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−1
𝑥𝑥−1

  
 

Figure 8 shows the function values as x gets closer and closer to 1: 
 

   
 

Figure 8:  Understanding a removable discontinuity 
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Introductory calculus students can see that, while the value of the function is undefined at x = 1, 

it seems to behave elsewhere as if it were the continuous function, f(x) = x + 1. They can scroll tables 
like these, and adjust them to get closer and closer to x = 1 (by adjusting the interval appropriately) 
and see for themselves what is happening: that the value of the function is f(x) = x + 1 almost 
everywhere, except at the point x = 1; getting closer and closer doesn’t affect this result. Students will 
of course usually be given more formal treatments of continuity and discontinuity, but the calculator 
might serve a useful role to build invaluable insight into these formal treatments; it is not suggested 
that they should replace these, but rather that they should supplement them. 

 
3.2 Limits at a point 
The idea of a limit at a point is a critical one, commonly emphasised in introductory calculus courses 
(although not formally treated by Newton or Leibnitz in their early development of the calculus). 
Although treatments are often very formal (including proofs with ε − δ definitions), an intuitive 
understanding is important also and a calculator is a useful tool for developing this. Figure 9 suggests 
how the calculator might be used for this purpose, by constructing a table of values for a function, 
with an increasingly small interval for the variable x. As x gets closer and closer to 0 – from either 
side – the tables suggest that the ratio gets closer and closer to 1, and that it is not defined for x = 0. 
 

   
 

Figure 9:  Using ClassWiz to explore lim
𝑥𝑥→0

sin𝑥𝑥
𝑥𝑥

  
 

Calculators like ClassWiz are limited in their display capabilities, with narrow columns, but 
Figure 9 shows that more precision is available by highlighting a given value.  

 

   
 

Figure 10: Getting closer and closer with smaller intervals 
 

As students explore limits of this kind, with x getting ‘closer and closer’ to 0, eventually the 
calculator gives the impression that the result is 1, as shown in Figure 10 – a good opportunity for a 
discussion regarding the numerical processes involved and the limitations of a finite display of infinite 
decimals; although the result is technically incorrect, it is shown by the calculator as the result is 
rounded to the limitations of the calculator. However, such conversations are an important part of 
dealing with the many ideas of the infinite that are involved with the calculus. 

 
3.3 Gradient at a point 
A major motivation for studying limits in introductory calculus is to deal with the idea of a gradient 
at a point and thus of the derivative function. The derivative is typically defined as a limit and 
sometimes interpreted as a gradient of a secant or a tangent: 
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𝑓𝑓′(𝑥𝑥) = lim
ℎ→0

𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥)
ℎ

 
 

Advanced calculators like ClassWiz allow students to explore suitable gradient functions to see 
informally the limiting processes involved. An example is shown in Figure 11, to see the gradient of 
a secant to the curve of f(x) = x2, at various values for x and as x gets closer to x = 2 (when h gets 
closer and closer to 0.) 
 

   
 

Figure 11:  Evaluating gradient functions for h = 0.01 and h = 0.001 
 

In Figure 11, the first screen shows that the ratio has been evaluated for h = 0.01, as shown in the 
middle screen. A smaller value of h = 0.001 is used to generate the third screen. In this way, students 
can see that the gradient gets closer and closer to 4 as h gets closer and closer to 0. The calculator is 
used to quickly perform the necessary calculations, allowing students to interpret the results. The first 
screen in Figure 12 shows the case for a very small positive value of h = 0.000001. 
 

   
 

Figure 12:  Exploring the gradient function as h approaches zero 
 

Figure 12 also shows the results for a value of h that is close to zero, but is negative rather than 
positive, to show that the limit approaches the same value (of 4) from both above and below. The 
middle screen shows the case of h = -0.000001 and the third screen shows the resulting table. Using 
and continuing these kinds of explorations, students can get a strong sense of the idea that the limiting 
value is 4 in this case, suggesting that the derivative is f’(2) = 4.  
 
3.4 Infinite limits 
Limits to infinity are involved when a variable increases without bound. In such situations, ‘closer 
and closer’ usually means in effect ‘larger and larger’, so can be explored by comparing results as the 
value of a variable increases. An example is shown in Figure 13, to evaluate 

lim
𝑥𝑥→∞

5𝑥𝑥 − 1
2𝑥𝑥 + 7

 
 

   
 

Figure 13:  Exploring an infinite limit as x gets larger and larger 
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Although this sort of process can be explored on any scientific calculator, efficient explorations 
are facilitated by modern calculators like ClassWiz; the screens in Figure 13 evaluate the expression 
for successively larger values of x: respectively 1 million, 100 million and 1 billion, using a calculator 
command for easy substitution of values. Again, the calculator rounds results to its level of precision, 
so that eventually what might seem to be an incorrect result is provided, as shown in Figure 14. While 
this result makes clear that the limiting value seems to be 2.5, as suggested by the succession of 
screens in Figure 13, it is of course only a (very good) numerical approximation to the value of the 
expression for x = 100 billion. 
 

 
 

Figure 14:  The limiting value of an expression suggested for x = 100 billion 
 
3.4 Convergence of a series 
Some infinite series can also be explored fruitfully on advanced scientific calculators, using special 
commands. A good example involves the infinite series for the exponential function, e: 
 

𝑒𝑒 =
1
0!

+
1
1!

+
1
2!

+
1
3!

+ ⋯ 
 

As more terms of the series are included, the series can be seen to converge (in this case, very 
quickly) to a good numerical approximation to e, rather than the exact value. 
 

   
 

Figure 15:  Exploring the limit of an infinite converging series for e 
 

The ClassWiz environment makes it easy for students to edit the parameters of the (finite) series 
to see the effects of taking more and more terms, so that attention is readily focused on the output. 
Figure 15 shows a typical progression of series values as the number of terms increases, showing a 
rapid convergence of the result to the well-known value of the transcendental number e.  
 
4. Using numerical calculus commands 
One of the distinguishing features of advanced scientific calculators like ClassWiz is the presence of 
numerical calculus commands for differentiation and integration. While these are numerical in nature 
– and thus do not permit the user to determine either a derivative function or an indefinite integral, 
unlike computer algebra system (CAS) calculators – they can be used to support student learning, in 
addition to the computational task of determining numerical answers. There are a number of ways in 
which this can be done, some of which are illustrated below. 
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4.1 Patterns for differentiation 
When a calculator is used to determine a derivative at many points, not just a single point, the 
underlying patterns can be seen by students, and help them to understand the idea of a derivative 
function. An example is shown in Figure 16, where the derivative of f(x) = x2 + 3x is tabulated and 
shown at a succession of points. (To do this, note that the tabulated function determines the derivative 
at each of the chosen table points, using the symbol x = x, rather than just a single point). 

 

   
 

Figure 16:  Exploring numerical derivatives at a point to generate a derivative function 
 

For an exploration of this kind, students generating the table of derivatives shown in the middle 
screen of Figure 16 can be encouraged to look for a pattern in the results. Most students studying 
introductory calculus will readily see the linear function f(x) = 2x + 3, and can be further encouraged 
to predict the next terms (as the table shows only the first four values). So, an activity of this kind 
offers an opportunity for affirmation of the result, readily checked by scrolling down the table, as the 
third screen in Figure 16 shows. The transition from the idea of the derivative at a particular point to 
the derivative at all points (i.e., a derivative function) is a critical one, and the calculator offers 
students a way to understand the concepts involved. Of course, it is an easy matter for students to 
explore other functions in a similar way. 
 
4.2 Patterns for integration 
In a similar way, the numerical integral commands can be used to generate a pattern of results to 
understand integration better. While a singular numerical integral allows a student to determine the 
area under a curve between two points, a succession of integrals allows for a powerful pattern to be 
seen. An elementary example is shown in Figure 17, using the numerical integral command to 
generate a table of values. 

 

   
 

Figure 17:  Exploring numerical integrals 
 

Again, the pattern of results from this exploration will be familiar to most students studying 
elementary calculus: it seems (from the middle screen in Figure 17) as if the integral is well 
represented by the function F(x) = x2. Again, the calculator environment offers an easy way to confirm 
this hypothesis by scrolling down a little further, as the third screen in Figure 17 shows. While this is 
not of course sufficient, and it is assumed that students will encounter the Fundamental Theorem of 
the Calculus in other ways as well, the calculator provides an opportunity to see important connections 
in a fresh way. Students can, of course, explore further by considering other functions to integrate, 
and to strengthen their sense of the important relationships involved. 
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4.3 Properties of derivatives 
When ready access to numerical derivatives is available, an advanced calculator allows for derivatives 
to be compared and for some properties of derivatives to be highlighted. This is relatively easy for 
learners to do when a calculator like ClassWiz allows a pair of tables to be produced, rather than just 
a single table. To illustrate this, Figure 18 shows how the tables can be used to compare derivatives 
of one function, f(x) with those of another function g(x) = 5f(x)). 
 

 

   
 

Figure 18:  Comparing derivatives to illustrate a multiplicative property 
 

In this case, users will be able to see that multiplying a function by a constant will result in a 
derivative that has been similarly multiplied. The calculator environment makes it easy for students 
to check this relationship with other constants or even other functions. Of course, such work does not 
mathematically establish a result, but helps students to appreciate it by considering some examples 
of their own choosing. 
 
4.4 Special derivatives 
While access to numerical derivatives can provide both practical results as well as opportunities for 
insight for any functions, students can use calculators to explore two special functions with surprising 
derivatives – at least surprising to novice students. One of these is the exponential function f(x) = ex, 
for which the derivative at a point is the same as the value of the function at the same point. Figure 19 
shows that this unexpected result is easily verified on the calculator. 

 

   
 

Figure 19:  Affirming a special property of the exponential function 
 

Again, a capacity to tabulate a pair of functions is key to this kind of exploration. Students can 
readily see for themselves that similar results do not hold for powers of numbers other than e, by 
tabulating them for themselves. As an illustration, Figure 20 shows that the derivatives of f(x) = 2.7x 
are generally lower than the corresponding values of the function, helping to make clear how special 
is the transcendental number e. 
 

   
 

Figure 20:  Exploring another exponential function to reveal a special property of f(x) = ex 
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Another surprising result, readily affirmed with numerical derivatives, concerns the derivative of 
the natural logarithmic function. Again, students can use a suitable table of values to see for 
themselves that the derivative of the function is merely the inverse of the associated number.  
 

   
 

Figure 21:  Demonstrating a special property of the natural logarithmic function 
 

At this level of study, students would hopefully recognise the reciprocals in their decimal forms, 
but they could of course include them as a second column to the table if necessary. 
 
5. Conclusions 
The paper demonstrates that it is too limiting to regard calculators as merely devices for computation. 
The proposed model [4] for an educational role of calculators suggests that representation, exploration 
and affirmation are also important processes for student learning. Some examples of these processes 
are provided for the case of calculus, indicating two important consequences of advanced scientific 
calculator capabilities, using the CASIO ClassWiz as an example. 

Firstly, they permit the exploration of the idea of ‘closer and closer’, regularly used by 
mathematics teachers as a helpful idea for both teaching and learning calculus. Consequently, they 
offer opportunities to attain further insight into the infinite processes involved than would otherwise 
be possible, as generations of teachers can attest. 

Secondly, the availability of commands for numerical differentiation and integration offer some 
opportunities for the exploration of important calculus ideas, unburdened by the requirement for by-
hand computation. The calculator provides a way for students to explore for themselves some 
properties and relationships associated with differentiation and integration. 

In most introductory calculus courses, students will be expected to learn more formal and more 
symbolic aspects of the subject. The paper does not suggest that these are to be replaced by numerical 
opportunities provided by advanced scientific calculators; rather it is suggested that the calculator 
offers fresh opportunities to develop insight into the ideas involved with an affordable and available 
technology, well-suited to many classrooms across the region served by ATCM. 
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Abstract

The authors have been using a largely algebraic form of “computational discovery” in 
various undergraduate classes at their respective institutions for some decades now to teach 
pure mathematics, applied mathematics, and computational mathematics. This paper 
describes what we mean by “computational discovery,” what good it does for the students, 
and some specific techniques that we used.

1 Setting the stage

“The imparting of factual knowledge is for us a secondary consideration. Above all
we aim to promote in the reader a correct attitude, a certain discipline of thought,
which would appear to be of even more essential importance in mathematics than
in other scientific disciplines.” Pólya & Szegő vol I. [28, p. VII]

The preface quoted above from the classic book cited, which is nearly a hundred years
old now, opens with an epigraph which we further paraphrase, as follows: “What is good
education? Giving students systematic opportunities to discover things for themselves.” Indeed,
Computational Discovery, also called “Experimental Mathematics,” is also very familiar to the
research mathematician, not just mathematics educators: nearly everyone uses it (even if they
say that they don’t, or don’t say that they do). There can be no shame in it, if the likes of
Gauss and Euler used the technique [6, 7]. See also the excellent book [14]. The most basic idea
is, after all, very simple: one computes a few cases, tries to guess a pattern, and if successful,
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tries to prove it1. However, there is the all-too-common attitude that says “Once one has a
proof, who really cares how the theorem was discovered?”

Quite a few people care, actually. First, it’s much easier to get students to succeed in learning
mathematics if we teach them this powerful method, which many mathematicians actually use.
Second, the world of mathematics is larger than the human mind can normally conceive of:
computational experiments can genuinely surprise even experienced mathematicians. Third,
mathematics is changing and has changed with the introduction of new powerful computational
tools (for instance, the ordinary differential equation solvers in Julia are extremely impressive:
see [29]). We have a duty to train our students in the tools used to explore that larger world.
We also have a duty to try to keep up with the changes in these tools: see for instance that
aforementioned paper on the new solvers in Julia, but this has been known for a long while [1].

Speaking of Julia, the phrase “computational thinking” has been given new life by an MIT
course of that name, using Julia, offered by David Sanders, James Schloss, and Alan Edelman,
and given away for free on YouTube. Julia is sometimes referred to as a “Python killer,” because
it is very nearly as easy to use as Python but also offers very nearly the same performance as
C or Fortran. Fortran, by the way, is very much still alive in the HPC world, for example in
weather prediction. Python is by no means dead yet either, and has several advantages for use
in mathematics instruction. Chief among these advantages is its very large user base amongst
computational scientists: students are motivated to learn Python because it is directly used
by computational neuroscientists, financial mathematicians (who may also use C), for machine
learning, and many other buzzword-compliant research areas. The Open Educational Resource
(OER) called “Computational Discovery on Jupyter” is intended to take advantage of these
technologies [10].

One user interface for Python, namely the Jupyter Notebook, seems to be dominating at
present. This allows access to Python, to Julia, to Matlab, and to SAGE Math, which offers
an interface to many computer algebra systems. A Jupyter Notebook allows combined use of
text, formulas (through a flavour of “Markdown” which is kind of a blend of HTML and LATEX
that is lighter weight than either), figures, data, and programs. Those people who are used to
Maple Documents (or Worksheets or Workbooks) will be able to see the similarity, and indeed
Python is rather structurally similar to Maple as well.

An experienced experimental mathematician or instructor will know that the platform for
teaching has some impact, both good and bad, on the quality of teaching. One does not want
the platform to interfere with the teaching. One does not want to spend too much time in
class explaining the platform, instead of using that valuable time explaining the concepts one
is trying to get across. At the same time, one wants to use the “shiny” technology to help
motivate the students (and, to be honest, the instructor). By using current software, and using
tools that the student can be confident will be used elsewhere, the expense of time needed in
explaining the platform can be amortized. However, some classic tools, such as Maple, can still
be very much worth the effort, as we will demonstrate by examples.

This represents both an opportunity and a challenge for the instructor. There are enough
new features in Maple that are useful in instruction that for many of us, some upgrading of

1In the hands of Pólya, of course, this most basic idea was refined and extended almost beyond recognition.
Similarly, Bill Bauldry advocates in [3] a variation of this idea, which he terms the Action–Consequence–
Reflection Principle; this is very similar to the advanced ideas that Pólya advocates in [26]. Still, it is astonishing
how powerful this idea is, even at its simplest, given modern computational tools.
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our training (or even retraining!) is necessary. One might question the effort needed, especially
given the rise of Python, and the rise of Julia; but we think it is very worthwhile.

What about Mathematica? We have heard that it, too, has added significant and interesting
new features; but we work in an institution with a Maple site license, and in an institution
that uses SAGE Math; we will let our comments on Maple stand for (what we believe will be)
similar comments for Mathematica.

A bigger question is what about GeoGebra (or Desmos, or Maple Learn). Our approach
has largely been algebraic, or programmatic, and not explicitly visual, although we do use
visualization of algebraic and functional concepts. We do not weigh here the comparative merits
of this approach versus the more visual approach of the geometrically-flavoured teaching tools
just mentioned; for the sake of argument, we ask the reader to accept (if only temporarily) that
an algebraic and programmatic approach can be useful. We acknowledge that the geometric
approach can also be useful, of course: see for example [8] or [32].

So: the basic point of view of this paper—which is shared by a great many other papers,
including many at this ATCM and at previous ones—is that instructors can, and should, use
current technology to help teach mathematics. In particular, we advocate using computational
discovery with the help of the technology to strengthen students’ knowledge of both mathe-
matics and of computational technology. We’ll now give specific (algebraic or programmatic)
examples of how to do this, and discuss our experiences in the classroom and out.

The literature on using technology for teaching is very, very large. We will try to put our
efforts in perspective in that literature in the final section of this paper, “Concluding remarks
and Further Reading.” We will include technical references in each specific section.

2 Specific goals

2.1 Course objectives for the students

1. To acquire facility in using the computer as a tool for solving and exploring mathematical
problems.

2. To learn the fundamental concepts and techniques of procedural and object-oriented pro-
gramming. These include: flow control, modular construction, elementary data struc-
tures, recursion, and graphics

3. To develop problem-solving and communication skills by solving programming projects.

4. To learn to ask new questions, and to be a bit more comfortable with not being able to
find out a definitive answer.

5. To become familiar with other computational resources for mathematics, in particular,
but not limited to: LATEX, the Online Encyclopedia of Integer Sequences (OEIS), and the
Inverse Symbolic Calculator (“identify” in Maple).

2.2 Learning Outcomes

On completing this course, the student will be expected to be able to:

1. Take a mathematical question and write it as a computational question.

2. Give examples of student-generated questions, including “what if?” questions

3. Give a pseudo-code version of an algorithm to solve the computational question
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4. Convert pseudo-code into Sage or Maple or Python code

5. Comment code cleanly and effectively

6. Obtain and interpret output from their code

7. Give visualization and other methods of viewing output effectively.

8. Write up lab reports in LATEX or Markdown on their investigations

2.3 Assessment

The course that depends on the resources we describe here is largely project based: there
typically are small projects (especially at the beginning of the course) to ensure that everyone
is coming up to speed with coding. Then there can be several more substantial projects, taking
a mathematical question, and learning how to explore it in an experimental fashion. We make
no assumptions about level of computer experience: if the student has written code before that
will help, but if they haven’t we will get them up to speed quickly.

Their projects are assessed using the following criteria:

• Does the project contain new2 questions, new thoughts, or new answers?

• Do they have code that runs?

• Does the code produce output?

• Is the output correct?

• Is the output complete?

• Is the code clean? Are the variables suitably named? Are functions, control structures,
data types, etc used appropriately?

• Is the code documented?

• Is the project written up as a lab report?

If the project passes all these criteria, it will get a good grade!
In some situations (e.g. for oral presentations) peer-assessment may be used: that is, part

of your grade will be determined by fellow students. Each student will be expected to supply
assessments of their fellow students in turn3.

3 The first example

Consider the sequence

1,
3

2
,
17

12
,
577

408
,
665857

470832
, . . . . (1)

Plunked down in front of the students without explanation, it is pretty mysterious. Explicitly
telling them to square each entry generates a more intelligible sequence, namely

1,
9

4
= 2

1

4
= 2

1

22
,

289

144
= 2

1

122
,

332929

166464
= 2

1

4082
,

443365544449

221682772224
= 2

1

4708322
, . . . . (2)

2By this we mean new to the student, ideally questions that they came up with themselves. If they are
genuinely open questions, or genuinely novel questions not in the literature, so much the better; but this is not
required.

3Telling the students that the peer-assessed marks will be blended with the instructors’ assessment, because
students are sometimes harsh on each other, tends to improve things. We also ask students to justify their
assessments.
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Although more intelligible, this sequence is still mysterious. At this early point in the course,
students are reluctant to ask questions (not just for fear of looking foolish in the eyes of their
peers, but also for fear of being wrong [19]), but the urge to ask is, for many, irresistible here.
We get questions like, “where did this sequence come from?” and “is the sequence of squares
really going to 2?” and, if we are lucky, “does this mean that the original sequence tends to√

2?” When we ask the Online Encyclopedia of Integer Sequences (OEIS) about the sequence of
(say) denominators of the original sequence, we get [25, A051009], the “Reduced denominators
of Newton’s method for sqrt(2),” and at that point we can explain that the rule we were using
to generate the sequence was

xn+1 =
1

2

(
xn +

2

xn

)
; (3)

that is, we start with an initial estimate (x0 = 1), and then we average it with what we get
when we divide it into 2. If our initial estimate of the square root had been correct, then we
would stay the same; if our estimate was too small, then dividing it into 2 would give a larger
number and averaging is plausibly a way to generate a better answer. It’s still mysterious to
the students, but they are beginning to get interested.

It gets better: we then expand into continued fractions. For space reasons we use a compact
notation here. The original sequence is 1, 1 + [2], 1 + [2, 2, 2], 1 + [2, 2, 2, 2, 2, 2, 2], and so on;
the students are astonished, perhaps a little appalled. We do the first few by hand, and then
the rest by using Maple’s “convert” facility (to “confrac”).

We can then digress to the other continued fractions 1 + [2, 2, . . . , 2] where the number of
2’s is not one of 1, 3, 7, 15, and so on. This is already a very fruitful line of investigation.

Indeed most students are stunned to discover that the square root of 2 has a perfectly
predictable infinite continued fraction. Getting them to make the claim that

√
2 = 1 + [2, 2, 2, . . .] , (4)

even given the numerical evidence above, takes encouragement from the instructor. The stu-
dents are afraid, at this point, of a trap, of guessing wrong, especially when they “know” (i.e.,
have been taught) that the decimal expansion of the square root of two has no pattern. This
naturally leads to a discussion what it means to perform an infinite number of operations. The
OEIS proves useful here, as well; perhaps simply by letting the students in on the infinitely
wonderful world of sequences.

From here, we can go to true Newton’s method, in general, and not just for square roots.

4 Visualizing Newton’s Method

The chaotic dynamics of Newton’s method are very well-studied: see for instance [33], [31], [12],
[21], [11], or indeed [23]. They prove perennially popular with students, in part because they
produce such pretty pictures. See Figure 1, which shows the basins of attraction for Newton’s
method on the polynomial

z8 + 3z7 + 5z6 + 5z5 + 4z4 + 2z3 + z2 + z . (5)

We want the students to learn to produce their own such pictures, and to begin to understand
what they mean. To this end, we use both built-in procedures and hand-crafted procedures.
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(a) Maple version (b) Python version

Figure 1: Basins of attraction for Newton’s method on a certain degree 8 polynomial, displayed
in equation (5), as produced by the Fractals:-Newton command in Maple (left) and in by a
custom Python program (right). The view in the complex plane is from −1.8 ≤ x ≤ 1.0 and
−1.4 ≤ y ≤ 1.4.

The best ones of all are the ones the students learn to write for themselves, but we have to
work up to this.

4.1 Summary of what we teach in this section

We teach the students

1. The special Newton iteration zn+1 = (zn + a/zn)/2 for finding square roots.

2. The general Newton iteration formula zn+1 = zn−f(zn)/f ′(zn); we usually give a graphical
demonstration similar to the usual one sketched in a first calculus class.

3. What happens when you apply Newton iteration to f(z) = z2 − 2, using exact rational
arithmetic and z0 = 1, and its connection to continued fractions (as previously discussed).

4. A game, which we call “pass the parcel,” which cements the idea of iteration: the students
must take turns evaluating the Newton iteration and then pass their answer on to the
next group to compute the next iterate.

5. The importance of the initial estimate z0 (more on this, below, but we try to get the
students to realize this without us telling them; this actually happens, especially after
playing “pass the parcel,” and the students do ask how to choose the initial estimate).

6. That zn exactly solves the nearby equation f(z) − f(zn) = 0 and show that f(zn) gets
very small very rapidly if the initial estimate is good. We interpret this as a change in
the question: e.g. 17/12 is not just an approximation to the square root of two, it is the
exact square root of 2 1/144; that is, it is the exact square root of an approximation of two,
and we can compute this residual error even if we don’t know the true value of the square
root of two.
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7. The very beginnings of floating-point arithmetic and its peculiarities. This is actually very
hard to teach at this level, but we believe it is necessary. We also teach the beginnings
of complexity theory, by showing that exact arithmetic is costly; floating-point is vastly
faster, because its memory usage is predictable.

8. How to use the Online Encyclopedia of Integer Sequences (OEIS) at http://oeis.org/.

9. What happens when you apply Newton iteration with a real initial guess to f(z) = z2+1;
see [31] and [21].

10. How to use the Maple Fractals package to make fractals of their own.

11. Variations on Newton iteration including the secant method, Halley’s method, House-
holder iteration, and Schröder iteration; and that all of these (apart from the secant
method) can be considered as Newton iterations of some function (although the proof of
that requires calculus).

4.2 Behind the curtain: why we teach what we do, and what the
students get out of it

The main pedagogical purpose of this section is to reinforce the notion of a function. Students
usually have been taught functions and even differentiation rules in high school, but frequently
they differentiate only by rote and their notion of a function is weak: they typically only think
of functions as expressions. By getting them to play “pass the parcel” (with the support of a
Maple operator or procedure for the function) we emphasize the active nature of a function.
This also is an easy way to break the “inactivity barrier” because they have to interact with
their fellow students.

We use scaffolding : we supply the functions f(z) = 0 to solve and the initial estimates z0,
at first; but then we give some functions without initial estimates. The students quite rightly
find it difficult to construct their own (although some ingenuity is often displayed) and are
naturally led to ask the crucial question of what is the influence of the initial estimate. This
leads directly to the Newton fractal pictures.

The secondary pedagogical purpose is a gentle introduction to the software tools. We also
use Python for this section, but in that case there is more programming involved4, up to and
including automatic differentiation (as opposed to symbolic differentiation, or as opposed to
differentiation by hand, or as opposed to numerical differentiation by finite differences or other
numerical techniques).

A third pedagogical point is to introduce the beginnings of complexity theory—computation
with exact rationals is expensive and the growth of the length of the exact rational answers is
remarkable; students are quickly converted to the worth and utility of floating-point arithmetic.
Newton’s method is relatively benign for use in floating-point, usually; this is a help. We only
introduce as much numerical analysis of floating-point numbers as we are forced to do.

There are many directions to take this unit: we make connections to number theory via
the theory of continued fractions, for instance. We choose to do this in part because continued
fractions are not part of (most) students’ curricular choices, and therefore we are not “stealing

4What the students gain from this increase in programming effort includes greater control: for instance, the
picture in Figure 1b includes more intelligible detail, in that different colours correspond to different limits in the
iteration, whereas the colours in the Maple fractal were chosen generically by the developer (David W. Linder
at Maplesoft) to indicate iteration count only.
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the thunder” from subsequent courses5. The main reason, though, is that the results are
surprising and beautiful.

Using the OEIS, for instance, the students can be guided to discover that the nth iterate of
Newton’s method for f(z) = z2 −m, starting at the rational initial estimate z0 = a/b, is

zn =
√
m

(
1 + r2

n

1− r2n
)

(6)

where r = (a − b
√
m)/(a + b

√
m). Since 0 < r < 1 if a, b and m are positive, this shows

the quadratic convergence of Newton’s method very well6. There are other number-theoretic
directions to go, as well: one can use this as a springboard to study Pell’s equation. There are
higher-dimensional versions, and indeed the matrix square root is a subject of much research—
see for example [17] and [18].

We try to avoid using the word “convergence,” however, and satisfy ourselves by comput-
ing the exact square roots of numbers near to 2 (for instance). This is a surprisingly useful
intermediate step.

4.3 Suggestions for Assessment

It is straightforward to ask the students to compute Newton iterations for other quadratic
irrationals, and for other algebraic numbers. It is also straightforward to get them to use
Maple’s built-in Newton fractal package to find basins of attraction for functions of their own
choice. Our most successful exercise here so far, however, has been to hold a contest to see
who could find a function that produced the “best” picture (by choosing their own functions
and regions). Unsurprisingly, the students overwhelmingly produce excellent pictures, and we
have sometimes settled on making a collage of them all. The students are then asked to make a
similar collage of the basins of attraction of Halley’s method7 on the same functions; by asking
Maple to do Newton iteration on f(x)/

√
f ′(x) one is actually asking for Halley iteration8.

The resulting pair of collages is quite instructive in that one can understand some differences
between Newton iteration and Halley iteration intuitively thereby.

5 Bohemian Matrices

The section of the course on Bohemian Matrices is popular, in part because there are so
many interesting pictures already, but mostly because there is so much unknown. Many of the
pictures in the gallery at www.bohemianmatrices.com were actually produced by students in
the course, and never seen by anyone before those students made them. In Figure 2 you can

5This curious English expression means, in this context, to use the highlights; “stealing thunder” would
make this particular course more exciting, but would make subsequent courses more boring, which is unfair to
the downstream teacher.

6This purely algebraic formula is equivalent to the cotangent formula of [31] and [21].
7In some classes we covered quite a few iterative methods: see [21] for a case where a student solved a

problem (in class!) that was believed to be open.
8This fact is in the literature, as is the more general fact previously mentioned that every iteration can be

cast as a Newton iteration for some function.
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Figure 2: Eigenvalue density plot of all 217 = 131072 ten by ten Bohemian skew-pentadiagonal
matrices with population {1, i}, plotted on −3.25 ≤ <(λ) ≤ 3.25 and −3.25 ≤ =(λ) ≤ 3.25 in
the complex λ-plane. Hotter colours have higher density. At this time of writing we have no
explanation whatever for the distribution pattern visible here.

see a new picture made specifically for this paper9, and likewise never seen before by anyone
(there are infinitely many such; welcome to the party).

5.1 Summary of what we teach

We don’t wish to steal the thunder of linear algebra classes, so we teach eigenvalues from a
determinantal point of view. We begin with the single linear equation t1x1 = 1 in the single
unknown x1 where t1 is known to be drawn from our finite population (say, t1 must be a member
of P = {−1, 0, 1}). Then, unless t1 = 0, we can solve this system of equations; that is, whether
t1 = 0 or not determines whether or not this equation can be solved for x1. We then move on
to a related two-by-two system of equations in the two unknowns x1 and x2:

t1x1 + t2x2 = 1

−x1 + t1x2 = 0 (7)

9This uses skew-symmetric pentadiagonal matrices; the five by five case with generic entries is
0 t1 t5 0 0
−t1 0 t2 t6 0
−t5 −t2 0 t3 t7
0 −t6 −t3 0 t4
0 0 −t7 −t4 0

 .

Each ti must be chosen from the finite population; all possible choices make up the Bohemian family. Here if
P = {1, i} there are 27 = 128 possible matrices in this family with this dimension.
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Only one new member of the population, t2, is involved. By multiplying the second equation
by t1 and adding the first equation, we get (t21 + t2)x2 = 1, and now t21 + t2 determines whether
or not we can solve the equations for x1 and x2.

The three-by-three case is analogous:

t1x1 + t2x2 + t3x3 = 1

−x1 + t1x2 + t2x3 = 0

−x2 + t1x3 = 0 (8)

and the students are easily guided to discovering that the determinant of this (Toeplitz) system
is t31 + 2t1t2 + t3. The determinant of the 4 by 4 version is t41 + 3t21t2 + 2t1t3 + t22 + t4, and the 5
by 5 version has determinant t51 + 4t31t2 + 3t21t3 + 3t1t

2
2 + 2t1t4 + 2t2t3 + t5. The students have

an interesting time trying to guess the pattern here, and even experts can be stumped: but we
will leave it as an exercise.

Replacing t1 with t1−λ is straightforward; one then has a collection of polynomials to solve,
which the students are happy to leave to the machine. One can then show them an “eigenvalue”
solver without shocking them too much, or doing too much violence to the later curriculum.

5.2 Why we teach it

Eigenvalues are often given short shrift in a first linear algebra course, and the students need
more practice with them. We can also use the occasion to show the students different matrix
structures including symmetric matrices, skew-symmetric matrices, and others. The structure
of the introductory example is a special case of a Toeplitz matrix structure. We even get the
students to invent their own: the “checkerboard” matrix picture at www.bohemianmatrices.com
is an example of a student-generated matrix structure, which we’ve never seen elsewhere and
seems unlikely to have any application, but we like it anyway.

But the biggest reason to have this as part of the course is that the research area is so
new that even many easy questions are as yet unanswered, and the students have quite a good
chance to contribute something new. Frankly, since there are many open problems here, and
we are just scratching the surface of this new field, we can use the students’ creativity, too.

5.3 Suggestions for Assessment

Asking students to count quantities of interest and to try to find patterns can be quite accessible,
for some matrix structures. For instance, one can ask how many m by m Toeplitz matrices
of the form used above there are, with population P = {−1, 0, 1} (this is easy); one can
ask how many distinct characteristic polynomials there are at dimension m; one can ask how
many different eigenvalues there are at dimension m (this is quite a bit harder, because some
eigenvalues may be shared between more than one matrix in the Bohemian family); one can ask
how many multiple eigenvalues there are, or how many matrices are singular, and so on. One
can ask programming questions: how quickly can you generate all 3m matrices, for instance.

Our favourite assessment here, however, came in the form of a contest: who could produce
the most interesting pictures? As a “filtering” mechanism, this failed utterly: the students all
loved each others’ pictures, and refused, quite rightly, to rank them. We were quite happy to
give everyone full marks for this exercise.
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Figure 3: Zeros of z11(c), a polynomial of degree 1024. Each of these zeros is a value of c which
leads to a periodic orbit of period 11, namely 0, z1(c) = c, z2(c), . . ., z10(c), 0. Such points
are also called hyperbolic centers in the Mandelbrot set and are actually quite sparse in the
Mandelbrot set.

6 The Mandelbrot Polynomials

For general material on the Mandelbrot set, the Wikipedia page on the subject provides a
good starting point to learn more. Indeed many students are familiar with the definition of the
Mandelbrot set, but few of them have seen the Mandelbrot polynomials, defined by zn+1 = z2n+c
where z0 = 0 and c is a symbol or variable representing an as yet unknown complex number.
The first few of these polynomials are listed in [9]: 0, c, c2 + c, c4 + 2c3 + c2 + c, and so on.

By studying the zeros of these polynomials we are studying the periodic points of the
Mandelbrot iteration. This turns out to be surprisingly fruitful, in that there is a connection
to eigenvalue problems, as detailed in the aforementioned paper and its references, as well as a
connection to the modern theory of dynamical systems.

6.1 Summary of what we teach

We use this example to teach that computing roots of polynomials can be numerically difficult:
the condition number Bn(c) =

∑dn
k=0 |ak||c|k of the Mandelbrot polynomials zn(c) =

∑dn
k=0 akc

k

grows doubly exponentially with n (singly exponentially with the degree dn = 2n−1) which
means that the number of decimal digits needed to compute the zeros grows linearly with n. In
contrast, the matrix eigenvalue problem is well-conditioned, and can be used in ordinary double
precision floating-point arithmetic for remarkably large dimension of the matrix and degree of
the polynomial.
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6.2 Why we teach it

The Mandelbrot polynomials give a good excuse for studying nonlinear iterations in general;
it is a very great surprise that, for c not in the Mandelbrot set, this recurrence relation can be
“solved” exactly (well, by a convergent series); see [9] and [20]. We did not know this ourselves
when we were teaching from this material, and we now wonder just how much of this we can
include in a first course. But Peter Taylor of Queen’s University10 has been able to successfully
use a similar iteration and its asymptotics to study a bacterial growth model in a first-year
context, and so we hope to be able to do so as well.

6.3 Suggestions for Assessment

Students enjoy writing fast programs to draw the Mandelbrot set; getting them to carefully
draw pictures of the periodic points in the Mandelbrot set is not difficult.

There are 21 “facts” listed in [9, Sec. 2], some of which make good questions for students
to attempt; in the following section there are seven conjectures, open as we write this. The last
two, asking if Mandelbrot polynomials are unimodal11, seem as if they ought to be accessible.
However, we don’t know how to prove either, and one of us tried quite hard. Perhaps a student
could do it. If so, they would get a paper out of it.

Getting them to come up with their own questions, however, is one of the goals of the
course. By this time in the course, we hope that the students are doing so: perhaps wondering
what happens if the constant c is replaced by a pre-specified sequence, or a random sequence;
or what happens if c is not a scalar but a matrix; or if the iteration is zn+1 = zαn + c for some
noninteger α, possibly even complex α. Some of these questions are sterile, as will be some of
the questions the students come up with; but some might not be, and the adventure begins.

7 Concluding Remarks and Further Reading

Our aim is to try to teach an experimental approach to mathematics, without either stealing the
thunder of courses already in the standard curriculum, or requiring significant prerequisites.
Mathematics is vast and the standard undergraduate curriculum only scratches its surface.
Nonetheless, those scratches are somehow fractal and it is difficult to avoid them while remain-
ing relevant and interesting. As presented here, this material comes right up to and touches
on several fundamental notions of the standard mathematics curriculum: for example, we want
the students to experience convergence, which motivates the theory of limits. We also touch
on existence and uniqueness of solutions of equations, and the meaning of proof. We believe
that this extra motivation for standard material is to the good.

The use of advanced mathematics to teach early undergraduate students was advocated by
Mandelbrot himself. See for instance [22], [15], and [23].

We are not trying to get the students to a destination: we want them to experience the
journey. It is less like using a GPS, and more like an extended Sunday exploration, perhaps
with a paper map.

10This is from a talk he gave at the Summer Canadian Math Society Meeting 2021.
11A polynomial is unimodal if its nonzero monomial basis coefficients are all positive integers, and those

coefficients increase towards a unique maximum and then decrease [34].
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When introducing students to the ideas of experimental mathematics, learning how to ask
questions is not just a part of the process, it is the process.

Therefore, we concentrate much more heavily on things not in the standard curriculum: such
as actual mathematically-oriented computer programming, which strengthens the notion of a
function. This kind of programming also both motivates, and partially replaces, the notion of
proof, for this course. A working program helps you check that you have an effective definition.

Other authors have tried active non-standard approaches before, of course. One that comes
to mind is Z. A. Melzak’s Companion to Concrete Mathematics [24], which is a rich source
of nonstandard tricks and the problems they apply to. The most venerable of such works,
however, is the magnificent two-volume set by Pólya and Szegő [27, 28].

Why use active learning at all? The evidence for its effectiveness now is so strong—see, for
example, [16]—that it is unethical not to use it, if you can. It is as simple (and as difficult)
as that. The mathematics education literature is very nearly as vast as the mathematics
literature12, but there are few ideas so well-supported in that literature as the now-established
fact that it is better for students to do mathematics than it is for them to listen or watch it
and then regurgitate it on an exam. Indeed, quoting from [35], “Creativity does not come from
drills.”

There are principles that help the teacher design good exercises to increase the activity of
the student: a good exercise should be connected to great currents of mathematical thought
(so as not to waste the student’s time); it should be engaging, perhaps by having an element
of surprise about it; it should be accessible at the student’s level of education; it should be rich
and allow open-ended exploration. Those two last criteria are sometimes termed “low floor,
high ceiling,” meaning the exercise should be easy to start, but have many further levels. We
hope that you agree that the examples presented here fit these criteria.

Where the literature diverges, however, is on how best to actually get the students to be
active. For example, the cumulative online proceedings of this conference since at least 1997
show a very wide variety of approaches, and it is quite possible that they all work, perhaps to
varying degrees. What we are recommending here, like many others before us, such as [2], is
to enrich the content [13]; as in [5] and [4] we are describing courses specifically designed to
encourage active learning of mathematics. Given that many curricula are already overfull, the
question of where this will fit in the student’s timetable is a difficult one, but it seems clear
that to make room for this course, some other less-useful course will need to be pushed aside.
We, innocently, will look the other way, whistling, as you decide just which.
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Abstract

The paper deals with the locus of points related to chords of conic sections. Firstly the
locus is explored using dynamic geometry software, particularly for displaying it, secondly,
using elimination in computer algebra software, the locus equation is derived. However this
elimination leads to the zero elimination ideal. It is shown how to compute the searched
equation in such a case. Further the locus is applied in the proof of the theorem which
is related to the Frgier point. Finally, connection between the original formulation of the
locus and the formulation by an envelope is demonstrated.
By solving the problem we mainly use dynamic geometry software GeoGebra and computer
algebra program CoCoA and Singular.

1 Introduction

In the paper we investigate the locus of points related to chords of conic sections. Firstly, the
locus is explored using dynamic geometry program GeoGebra [3], particularly for displaying it,
secondly, using elimination in computer algebra program CoCoA [1] and Singular [6], the locus
equation is derived, see Theorem 1. However this elimination leads to the zero elimination
ideal. It is shown how to compute the searched locus equation in such a case.

Next, we will show a connection of the Theorem 1 to the theorem on Frégier point [7].
Finally a correspondence between the original formulation of the locus and a formulation by
an envelope is discussed, see Theorem 2.
Let us start with a few examples of the locus in various types of conics.

Figure 1: Determine the locus of P when U moves along the line k
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Consider two lines k, l, a point U in k and an arbitrary point O. Construct the point V in l
such that OV ⊥ OU . Determine the locus of the foot P of the perpendicular from O to the
chord UV when U moves along the line k.

To display the locus we use GeoGebra command Locus, which works on numerical basis. It
seems that the point P lies in a circle, Fig. 1.

Similarly, let us show another example:

Given a hyperbola centred at its centre O and a point U in it. Construct the point V in the
hyperbola such that OV ⊥ OU . Determine the locus of the foot P of the perpendicular from O
to the chord UV when U moves along the hyperbola.

Using the command Locus it seems that the point P lies in a circle as well, see Fig. 2.

Figure 2: Determine the locus of P when U moves along the hyperbola

The construction is also valid when the point O is not at the centre of a conic. It may happen

Figure 3: The locus of P is a circle
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that sometimes we get only a part of the circle. To get the whole circle, realize that there are
two points V, V ′ in the conic such that OU ⊥ OV and OU ⊥ OV ′. This leads to two points
P, P ′ that together trace the circle, see Fig. 3 in the case of a parabola. This enables us to use
this construction for all conics.

In all examples above we get the same locus. In the next section we will formulate the related
theorem and prove it.

2 Chord of conics

In accordance with the previous constructions we formulate the theorem:

Theorem 1: Given a conic κ, a point U in κ and an arbitrary point O. Let V be a point in
κ such that OV ⊥ OU. Then the foot P of the perpendicular from O to the line UV when U
moves along the conic lies on:

a) a circle if κ is not an equilateral hyperbola or a pair of mutually orthogonal lines,

b) a line if κ is an equilateral hyperbola or a pair of mutually orthogonal lines.

Proof: We will find the locus equation. Consider a conic

κ : ax2 + cy2 + dx+ ey + f = 0. (1)

Adopt a rectangular system such that O = [r, s], U = [u1, u2], V = [v1, v2] and P = [p, q],

Figure 4: Determine the locus of P when U moves along the conic κ

Fig. 4. Then:

U ∈ κ⇔ h1 := au21 + cu22 + du1 + eu2 + f = 0,

V ∈ κ⇔ h2 := av21 + cv22 + dv1 + ev2 + f = 0,

OV ⊥ OU ⇔ h3 := (u1 − r)(v1 − r) + (u2 − s)(v2 − s) = 0,

OP ⊥ UV ⇔ h4 := (p− r)(u1 − v1) + (q − s)(u2 − v2) = 0,

P ∈ UV ⇔ h5 := pu2 + u1v2 + qv1 − u2v1 − pv2 − qu1 = 0.
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Elimination of u1, u2, v1, v2 in the system h1 = 0, h2 = 0, . . . h5 = 0 yields

Use R::=Q[a,c,d,e,f,p,q,r,s,u[1..2],v[1..2]];

I:=Ideal(au[1]^2+cu[2]^2+du[1]+eu[2]+f,av[1]^2+cv[2]^2+dv[1]+ev[2]+f,

(u[1]-r)(v[1]-r)+(u[2]-s)(v[2]-s),(p-r)(u[1]-v[1])+(q-s)(u[2]-v[2]),

pu[2]+u[1]v[2]+qv[1]-u[2]v[1]-pv[2]-qu[1]);

Elim(u[1]..v[2],I);

Ideal(0);

the zero elimination ideal, see [2]. This could be a problem. I am not sure whether a general
solution of this problem (in the case of zero elimination ideal) is known. We could tackle the
problem in the following way.

First compute the Hilbert dimension of I (cardinality of the maximal independent set of vari-
ables for I) in CoCoA. We get

Dim(R/I)=9;

But in standard cases we would expect that Dim(R/I)=8 since we have 13 variables and 5
equations. Then there must be a component of dimension 9 that is degenerate.
Further we will proceed by a heuristic approach. Let us suppose, that U 6= O, i.e. ((u1− r)2 +
(u2 − s)2)t − 1 = 0, where t is a slack variable. Realize that if U = O then the line OU is
not defined. We add this condition to the ideal I and eliminate variables u1, u2, v1, v2, t. One
obtains

(a+ c)(p2 + q2) + (d− 2cr)p+ (e− 2as)q + cr2 + as2 + f = 0 (2)

which is a desired locus equation. In (2) we distinguish two cases:

a) If a+ c 6= 0 then the locus is a circle.

b) If c = −a, i.e. if κ is an equilateral hyperbola or two orthogonal lines, the locus equation

(d− 2cr)p+ (e− 2as)q + cr2 + as2 + f = 0,

represents a line, Fig. 5. �

Figure 5: For equilateral hyperbola or two orthogonal lines the locus of the point P is a line

Remark: 1) We could also compute the characteristic series of the system of equations I [5]
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using the command char series in Singular [6].

2) One can easily check using the command NF(I) (normal form of I) in CoCoA that the
product

((a+ c)(p2 + q2) + (d− 2cr)p+ (e− 2as)q + cr2 + as2 + f)((u1 − r)2 + (u2 − s)2)
really belongs to the ideal I, whereas the polynomial in (2) not.

3) The case of two orthogonal lines can also be proved classically. Applying the Simson–Wallace
theorem on the triangle QUV and O in its circumcircle, the points P, S,R are collinear (the
Simson line), Fig. 5 right.

2.1 Connection to the Frégier’s theorem

About in 1815 M. Frégier published the following theorem [7], [9]:

Given a conic κ and a point O on κ, then the hypotenuses of right-angled triangles inscribed
to κ and having common right-angle vertex O intersect at one point F, the Frégier point to O
with respect to κ.

We will prove the theorem using the Theorem 1 when the point O lies in the conic, Fig. 6. The
hypotenuse UV of the right triangle UOV intersects the locus circle c at the points P and F .

Figure 6: The point F is fixed for all positions of U

To show that the point F is fixed for all positions of U, realize that P lies in the circle c and
hence the segment OF must be its diameter. Since O and c are fixed the Frégier theorem
follows.

3 Formulation of the locus by an envelope

In this section we arrive at the locus above using envelopes [8]. Let us briefly describe what is
the envelope and how to obtain it [4].
The envelope of a one parameter family of curves F (x, y, t) = 0, is a curve which is tangent to
every curve of the family.
The equation of the family may be given in an implicit form as F (x, y, t) = 0, where t is
a parameter. To find the equation of the envelope, it is necessary to eliminate the param-
eter t both from the equation of the family and its partial derivative with respect to the
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parameter ∂F (x, y, t)/∂t = 0. This is guaranteed for those points for which (∂F (x, y, t)/∂x)2 +
(∂F (x, y, t)/∂y)2 6= 0. If both ∂F (x, y, t)/∂x and ∂F (x, y, t)/∂y are zero, then the envelope can
have a singular point here.

We show a connection between the above formulation of the locus and its formulation by en-
velopes in the following Theorem 2, where a conic is for simplicity presented by two lines.

Figure 7: The envelope of lines p when U moves along the line k is a conic

Theorem 2: Given two lines k, l containing a point U in k and an arbitrary point O. Let V
be such a point in l that the lines OV and OU are orthogonal. For U moving along the line k
the envelope of the family of lines p = UV is a conic.

Proof: Choose a rectangular coordinate system such that k := y = 0, l := ax + by = 0,
O = [r, s], U = [u, 0], V = [v1, v2], Fig. 7. Then:

V ∈ l⇔ h1 := av1 + bv2 = 0,

OV ⊥ OU ⇔ h2 := (r − v1, s− v2) · (r − u, s) = 0,

X ∈ UV ⇔ h3 := xv2 + uy − uv2 − yv1 = 0.

Elimination of variables v1, v2 in the system h1 = 0, h2 = 0 and h3 = 0 gives

Use R::=Q[a,b,r,s,x,y,u,v[1..2]];

J:=Ideal(av[1]+bv[2],(r-v[1])(r-u)+s(s-v[2]),xv[2+uy-uv[2]-yv[1]);

Elim(v[1..2],J);

a one parameter family of lines p(x, y, u) with the parameter u

p(u) := arxu− ar2x− as2x+ 2bryu− asyu− br2y − bs2y + ar2u+ as2u− aru2 − byu2 = 0.

Partial derivative of p(x, y, u) with respect to the parameter u yields
∂p
∂u

:= ar2 + as2 + arx+ 2bry − asy − 2aru− 2byu = 0.

Finally, eliminating u in the system p = 0, ∂p/∂u = 0 we get the equation of the envelope of
the family of lines p(x, y, u)

a2r2x2−2as(ar+2bs)xy+s(a2s−4abr−4b2s)y2−2a2r(r2+s2)x−2a2s(r2+s2)y+a2(r2+s2)2 = 0

which is a conic, see Fig. 7. Note that the point O is the focus of the conic, as we can compute
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Figure 8: The locus of points P is the director circle of the conic

from the equation above. �

To display the envelope of the family of lines p we can use GeoGebra command Envelope,
Fig. 7.

Now it is easy to arrive at the circle. It is well-known that feet of perpendiculars from the focus
of a conic to all its tangents form the director circle of the conic, see Fig. 8.

In the case when the lines k and l are mutually orthogonal, the envelope is a parabola, with the
focus at O. Then the feet of perpendiculars from the focal point O to tangents of the parabola

Figure 9: If k ⊥ l then the envelope of the family of lines p is a parabola

form the directrix line, see Fig. 9.

Similarly, the director circle appears in the case of hyperbola.

4 Conclusions

In the paper locus of points related to chords of conic sections and its properties are described.
The locus is explored using both dynamic geometry and computer algebra software. It is
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shown how to compute the locus equation in the case when we obtain the zero elimination
ideal. Finally, connection of the locus to the envelope of a parametric family of lines and its
relation to the Frgier point is given.
There are some questions for a future work. The first one is relating to generalization of the
locus construction for an arbitrary angle. The second one relates to the 3D version of the
construction.
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Abstract: Quick Response (QR) codes are two-dimensional bar codes that have become a common medium for easily

accessing information such as URLs, phone numbers, and small amounts of text. The creation of QR codes requires

placing data in a prescribed format so that it can be displayed on a surface and then detected by common QR code

scanner software. Like other physical means of storing data, QR codes are prone to errors when their data is interpreted

in a digital format. Reed-Solomon codes provide a mechanism for ensuring that QR code scanners can reliably process

information when errors occur. This involves sending information in the form of polynomial coefficients using finite field

arithmetic. Utilizing Reed-Solomon codes allows logos and emblems to be embedded within QR codes to advertise their

purpose. In this paper we will present how QR codes are constructed, and how Reed-Solomon codes are incorporated

into them to provide error correction. To assist in demonstrating this, technology involving Maplets will be used.

1 Introduction

Since their 1994 invention by the DENSO Corporation in Japan, QR codes have provided a widely

used method for quickly accessing information. Originally, QR codes were used for parts manufac-

turing inventory tracking, but they can now be found on advertisements, web pages, business cards,

any many other mediums. QR codes are notable for their long-term stability and higher capacity for

storage than other bar codes. However, like other physical means of storing data, QR codes are prone

to errors. Reed-Solomon codes provide a mechanism for ensuring that QR code scanners can reliably

process information when errors occur.

In this paper we will give an overview of how QR codes are created, and how data is integrated

into their construction. As part of this, we will describe the basics of how Reed-Solomon codes work,

and how Reed-Solomon codes are incorporated into QR codes to increase the likelihood that they

are able to transmit data reliably. This information provides a means for demonstrating a hands-on

method for the use of mathematics in a practical real-life application.
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2 Data Representation and Finite Fields

QR codes encode text represented as binary numbers. The QR code standard allows for text strings to

be created using four encoding modes: numeric, alphanumeric, byte, and kanji. In this paper we will

describe the byte mode. Descriptions of the other three modes can be found in [5].

The byte mode of encoding text for QR codes utilizes the ASCII character set. A list of the

ASCII character set and the correspondences between characters and decimal numbers in ASCII for

the printable characters on a modern keyboard is shown in Table 1.

Char Num Char Num Char Num Char Num Char Num

(space) 32 3 51 F 70 Y 89 l 108

! 33 4 52 G 71 Z 90 m 109

" 34 5 53 H 72 [ 91 n 110

# 35 6 54 I 73 \ 92 o 111

$ 36 7 55 J 74 ] 93 p 112

% 37 8 56 K 75 ^ 94 q 113

& 38 9 57 L 76 _ 95 r 114

’ 39 : 58 M 77 ‘ 96 s 115

( 40 ; 59 N 78 a 97 t 116

) 41 < 60 O 79 b 98 u 117

* 42 = 61 P 80 c 99 v 118

+ 43 > 62 Q 81 d 100 w 119

, 44 ? 63 R 82 e 101 x 120

- 45 @ 64 S 83 f 102 y 121

. 46 A 65 T 84 g 103 z 122

/ 47 B 66 U 85 h 104 { 123

0 48 C 67 V 86 i 105 | 124

1 49 D 68 W 87 j 106 } 125

2 50 E 69 X 88 k 107 ~ 126

Table 1: Correspondences between characters and decimal numbers in ASCII.

Each character in ASCII corresponds to a decimal number, which can then be expressed as a string

of eight binary digits, or a byte. For example, the character M corresponds to the decimal number 77,

which can be expressed in binary as 1001101, or the byte 01001101. This byte can then be represented

as a polynomial, by using these digits in reverse order as coefficients on powers of the variable a, with

terms of increasing degree. For example, the byte 01001101 can be represented as the polynomial

1+0a+1a2 +1a3 +0a4 +0a5 +1a6 +0a7 = 1+a2 +a3 +a6. Similarly, every character in ASCII

can be expressed as a byte, and as a polynomial in a of maximum degree 7. Since all characters can

be expressed as binary numbers, all computations that follow will be done using modulo 2 arithmetic.

This means that all numerical computations will result in a 0 or 1. Specifically, if a result gives a

number that is divisible by 2, it can be reduced to 0, and if it gives a number that is not divisible by

2, it can be reduced to 1. For example, the number 6 with modulo 2 arithmetic reduces to 0; that is,

6 mod 2 = 0 . The number 7 with modulo 2 arithmetic though reduces to 1; that is, 7 mod 2 = 1.

This can also work with coefficients of polynomials. For example, with modulo 2 arithmetic, the

polynomial 7a3 +4a2 −a+2 reduces to (7a3 +4a2 −a+2) mod 2 = 1a3 +0a2 +1a+0 = a3 +a.
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A particular finite field provides the method with QR codes for performing operations on poly-

nomials that represent information. The finite field used with QR codes contains 28 = 256 elements,

and uses the polynomial p(x) = x8+x4+x3+x2+1 to generate the 255 of these field elements which

are nonzero. These 255 nonzero field elements can be expressed as all nonzero polynomials in the

variable a of maximum degree seven and with coefficients that are all either 0 or 1, which can be gen-

erated as follows. Let x = a be a root of p(x), called a primitive element in the field. To generate all of

the nonzero elements in the field, we can raise a to consecutive integer powers, from the first through

the 255th. That is, the 255 nonzero field elements are {a,a2, . . . ,a254,a255}, the last of which will

equal 1 (an explanation for which can be found in [3]). The finite field is then completed by including

0 with this set. To represent the 255 nonzero field elements as polynomials in a of maximum degree

seven and with coefficients that are all either 0 or 1, we can use the fact that a is a root of p(x). As

such, after the first seven nonzero field elements have been formed (which are simply a,a2, . . . ,a7)

and a8 is reached, since a is a root of p(x), then p(a) = a8+a4 +a3 +a2 +1 = 0. Solving for a8 and

reducing the coefficients with modulo 2 arithmetic gives a8 = −a4 −a3 −a2 −1 = a4 +a3 +a2 +1.

That is, a4 +a3 +a2 +1 is the polynomial of maximum degree seven that can be used to represent a8

in the field. Subsequent nonzero field elements can be generated similarly.

a9 = aa8 = a5 +a4 +a3 +a

a10 = aa9 = a6 +a5 +a4 +a2

a11 = aa10 = a7 +a6 +a5 +a3

a12 = aa11 = a8 +a7 +a6 +a4 = a4 +a3 +a2 +1+a7 +a6 +a4 = a7 +a6 +a3 +a2 +1
...

This process could be continued until the last nonzero element, a255 = 1, were reached. Since doing

this would generate all 255 nonzero polynomials in the variable a of maximum degree seven and with

coefficients that are all either 0 or 1, then p(x) is also characterized as a primitive polynomial.

We will now demonstrate a Maplet1 written by the authors that can be used to generate the el-

ements in this finite field, with the nonzero elements expressed as polynomials in a of maximum

degree seven and with coefficients that are all either 0 or 1. Specifically, Figure 1 shows how the

Maplet FiniteFieldGenerator can be used for this purpose.

Figure 1: Finite field elements for primitive polynomial p(x) = x8 + x4 + x3 + x2 +1.

1A Maplet is like an applet, but uses (and requires) the engine of the computer algebra system Maple, and is written

using Maple functions and syntax.
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A QR code formats a message with specifications, and places the result on a two-dimensional

grid made up of pixels. QR codes can have grid sizes ranging from the smallest for version 1 at size

21×21, to the largest (as of this writing) for version 40 at size 177×177. Each new QR code version

after the first uses a grid size with 4 more rows and 4 more columns than the grid size used in the

previous version. The size of the grid for a particular message depends on the number of characters in

the message and the error correction level specified for the code. Error correction is included to help

ensure that messages can still be read correctly even if part of them are unreadable. Reed-Solomon

codes, as described in section 3, are used for this purpose.

To demonstrate how the characters in a message can be formatted for a QR code, consider a QR

code that when scanned, portrays the message https://atcm.mathandtech.org/. To begin, an

error correction level is selected. There are four possible error correction levels with QR codes: L,

which allows the information to be accessible if up to 7% is unreadable; M, which provides up to

15% error correction; Q, which provides up to 25% error correction; and H, which provides up to

30% error correction. For our example, we will use error correction level H.

The next step is to determine the smallest possible grid size that can be used to encode the message

with the specified error correction level. Table 2 shows the character capacities for each QR code

version in byte mode and with error correction level H. A table showing the character capacities for

each QR code version in all modes and with all error correction levels can be found in [5].

Version Char Cap Version Char Cap Version Char Cap Version Char Cap

1 7 11 137 21 403 31 790

2 14 12 155 22 439 32 842

3 24 13 177 23 461 33 898

4 34 14 194 24 511 34 958

5 44 15 220 25 535 35 983

6 58 16 250 26 593 36 1051

7 64 17 280 27 625 37 1093

8 84 18 310 28 658 38 1139

9 98 19 338 29 698 39 1219

10 118 20 382 30 742 40 1273

Table 2: QR code character capacities in byte mode and with error correction level H.

Since https://atcm.mathandtech.org/ contains 29 characters, the lowest QR code version that

could use to encode it in byte mode and with error correction level H is version 4, with a 33×33 grid.

Next, information that will be encoded into the grid is represented by a string of binary digits.

The first four digits are the mode indicator, which for byte mode are 0100. The four mode indicator

digits for all mode types can be found in [5]. A character count indicator is then included, which

gives the number of characters in the message. Since https://atcm.mathandtech.org/ contains

29 characters, and the decimal number 29 is 11101 in binary, these digits are included next, although

padded with three 0s at the start to have full length 8, as is required for the character count indicator

for all QR code versions 1–9. That is, the character count indicator for our message would actu-

ally be included as 00011101. QR code versions 10–40 also require character count indicators of a

specified length, although this required length is 16 bits rather than 8. Next, the characters in the ac-

tual message are converted into their ASCII code decimal representations, which are then converted

into binary and themselves each padded with 0s at the start to have full length 8. These bytes are

Proceedings of the 26th Asian Technology Conference in Mathematics

148



then included in order after the character count indicator. Using Table 1, we see the characters in

https://atcm.mathandtech.org/ correspond to the following ASCII decimal representations.

104 116 116 112 115 58 47 47 97 116 99 109 46 109 97

116 104 97 110 100 116 101 99 104 46 111 114 103 47

These decimal representations can then be converted to binary and padded to give the following bytes.

01101000 01110100 01110100 01110000 01110011 00111010 00101111

00101111 01100001 01110100 01100011 01101101 00101110 01101101

01100001 01110100 01101000 01100001 01101110 01100100 01110100

01100101 01100011 01101000 00101110 01101111 01110010 01100111

00101111

For each version and error correction level, QR codes require that binary strings completely fill

the total capacity of the code. For codes of version 4 and with error correction level H, the total

capacity is 288 bits. As such, after obtaining the bits for a mode indicator, character count indicator,

and message, it is almost always necessary to add bits, in particular, some 0s and some padding bytes.

First, a terminator would be included at the end of the binary string. If the string were four or more

bits shorter than the total capacity, then the terminator would consist of exactly four 0s. If the bit

string were fewer than four bits shorter than the total capacity, then the terminator would consist of

only the number of 0s needed to reach the total capacity. Since in our example, the mode indicator,

character count indicator, and message give a total of 244 bits, the terminator 0000 would be included,

raising the total length of the binary string to 248 bits.

If the length of a string with the terminator is not a multiple of 8, then additional 0s would be

included to bring the length up to a multiple of 8. In our example, since 248 is a multiple of 8,

additional 0s are not required. Since 248 is short of the 288-bit total capacity of a code of version 4 and

with error correction level H though, the string must still be padded to reach 288 bits. For this, bytes

alternating between 11101100 and 00010001, representing 236 and 17 in decimal, respectively, are

included until the total capacity is reached. For our example, since we need 40 additional bits to extend

our 248-bit string to the required 288 bits, we include 11101100 00010001 11101100 00010001

11101100 to complete the data. A final list of the 288 bits for our example is shown in Table 3.

Mode Char Count Message Terminator Pad Bytes

01101000 01110100 01110100

01110000 01110011 00111010

00101111 00101111 01100001

01110100 01100011 01101101 11101100 00010001

0100 00011101 00101110 01101101 01100001 0000 11101100 00010001

01110100 01101000 01100001 11101100

01101110 01100100 01110100

01100101 01100011 01101000

00101110 01101111 01110010

01100111 00101111

Table 3: QR code example for the message https://atcm.mathandtech.org/.
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Regrouping these 288 bits into blocks of 8 bits each gives the following full data binary string for our

example.

01000001 11010110 10000111 01000111 01000111 00000111 00110011

10100010 11110010 11110110 00010111 01000110 00110110 11010010

11100110 11010110 00010111 01000110 10000110 00010110 11100110

01000111 01000110 01010110 00110110 10000010 11100110 11110111

00100110 01110010 11110000 11101100 00010001 11101100 00010001

11101100

To work with this sequence of bytes mathematically, we convert each byte into its representation

as a polynomial and then as a power of a in the finite field used with QR codes. For example, the byte

11010110 has polynomial representation a7 +a6 +a4 +a2 +a, which turns out to be a85.

We will now demonstrate a Maplet written by the authors that can be used to convert bytes into

their corresponding powers of a in the finite field used with QR codes. Specifically, Figure 2 shows

how the Maplet FFConversion can be used for this purpose.

Figure 2: Primitive element power representation of data.

Summarizing this result, the full data binary string for our example can represented as the following

string of powers of a.

a191 a85 a13 a253 a253 a198 a125 a209 a213 a173 a129 a48 a249

a59 a160 a85 a129 a48 a99 a239 a160 a253 a48 a219 a249 a192

a160 a232 a15 a155 a79 a122 a100 a122 a100 a122

(1)

Next we will consider error correction in QR codes.

3 Reed-Solomon Codes

Since their description in a 1960 paper by Irving Reed and Gustave Solomon, Reed-Solomon codes

have been widely used to ensure reliable transmission of data. In addition to their utility in QR codes,
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Reed-Solomon codes have been used extensively to correct data transmission errors in mobile phones,

compact discs, satellites, space probes, and numerous other examples.

The objects in which Reed-Solomon codes can actually correct errors are finite field elements,

in a field containing 2m elements for some positive integer m, generated by a primitive polynomial

p(x) of degree m, with primitive element we will again denote by a. To create a Reed-Solomon

code, the desired maximum number of position (i.e., polynomial coefficient) errors guaranteed to be

correctable upon the arrival of information at its destination must first be chosen, and specified. Let

t be this desired maximum number of position errors guaranteed to be correctable, which can be any

positive integer t with 2t < n, where n = 2m −1 is the number of nonzero elements in the field.

With any error correcting code, transmitted messages are called codewords. Reed-Solomon code-

words are polynomials consisting of a prefix and a suffix.2 The prefix of a codeword is constructed

starting with a polynomial of the form

m(x) = bk−1xk−1 + · · ·+b1x+b0,

whose coefficients are understood to contain the information actually needing to be sent. As such, we

will call m(x) the message polynomial. To form the prefix, we use the polynomial

g(x) = (x−1)(x−a) · · ·(x−au−1),

where u = 2t or u = 2t +1. The polynomial g(x) is called the generating polynomial. We then form

the prefix by computing xum(x).
The suffix polynomial s(x) is the remainder when the prefix polynomial is divided by g(x). That

is, if

xum(x) = q(x)g(x)+ s(x) (2)

with degs(x)< degg(x) or s(x) = 0, then the suffix is s(x).
For the various QR code versions and error correction levels, different numbers of prefix poly-

nomials of given degrees along with generating polynomials of specified degrees are used to create

codewords. Table 4 summarizes these numbers for versions 1–10 with error correction level H.

Version Num Codewords Num m(x) Deg m(x) Deg g(x)
1 1 1 8 16

2 1 1 15 27

3 2 2 11 21

4 4 4 8 16

5 4 2; 2 10; 11 22

6 4 4 14 28

7 5 4; 1 12; 13 26

8 6 4; 2 13; 14 26

9 8 4; 4 11; 12 24

10 8 6; 2 14; 15 28

Table 4: Codeword formulations for QR code versions 1–10 with error correction level H.

2Other descriptions of Reed-Solomon codes specify codewords as single polynomials. Separating the prefix and suffix

is useful though, because it allows for the coefficients of the data to be visible in the prefix.
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Codeword formulations for all of the various QR code versions and error correction levels can be

found in [5].

From Table 4, we can see that a QR code of version 3 with error correction level H requires

that information be formulated into two codewords, both with prefixes of degree 11, resulting in 12

polynomial coefficients containing data. The generating polynomial is then of degree 21, and has the

form g(x) = (x−1)(x−a) · · ·(x−a20). Since this code is guaranteed to correct t = 10 position errors,

each suffix corresponding to each prefix will have maximum degree 20, resulting in 21 polynomial

coefficients.

Also from Table 4, we can see that a QR code of version 8 with error correction level H requires

that information be formulated into six codewords, four having prefixes of degree 13, resulting in

14 polynomial coefficients containing data, and two having prefixes of degree 14, resulting in 15

polynomial coefficients containing data. The generating polynomial is then of degree 26, and has the

form g(x) = (x−1)(x−a) · · ·(x−a25). Since this code is guaranteed to correct t = 13 position errors,

each suffix corresponding to each prefix will have maximum degree 25, resulting in 26 polynomial

coefficients.

In Section 2, the data given by (1) for the message https://atcm.mathandtech.org/ was

represented for a QR code of version 4 with error correction level H. Table 4 indicates that this data

should be formulated into four codewords, all with prefixes of degree 8, resulting in 9 polynomial

coefficients containing data. The generating polynomial for the code is then of degree 16, and has the

form g(x) = (x−1)(x−a) · · ·(x−a15). Since this code is guaranteed to correct t = 8 position errors,

each suffix corresponding to each prefix will have maximum degree 15, resulting in 16 polynomial

coefficients. The data given by (1) shows the 288-bit full data string expressed as 36 primitive power

finite field elements. Since there are four prefixes, we must divide these 36 powers of a into four

equal parts, with each part representing the 9 coefficients of each of the prefix polynomials of degree

8. Once these prefixes are formed, we divide each by the generating polynomial g(x), and using (2),

find the four corresponding suffixes.

To demonstrate this process, for the 36 primitive power finite field elements given by (1), we take

the first 9 of these elements, which are

a191
,a85

,a13
,a253

,a253
,a198

,a125
,a209

,a213
,

and form the following message polynomial in descending degree order.

m(x) = a191x8 +a85x7 +a13x6 +a253x5 +a253x4 +a198x3 +a125x2 +a209x+a213 (3)

Since the degree of the generating polynomial is u = 16, we multiply m(x) by xu = x16 to form the

following prefix.

x16m(x) = a191x24 +a85x23 +a13x22 +a253x21 +a253x20 +a198x19 +a125x18 +a209x17 +a213x16

To form the suffix, we must divide this prefix by the generating polynomial g(x). To do this divi-

sion, we will use another Maplet written by the authors, ReedSolomonCodewordGeneratorATCM,

which has been designed to do this division and form the prefix/suffix codeword pair. Figure 3 shows

how this Maplet can be used for this purpose. The Maplet specifically allows a user to enter the

primitive polynomial, the degree of the generating polynomial, and the message polynomial, and

then by clicking the appropriate buttons, output the generating polynomial in expanded form and the

prefix/suffix codeword pair.
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Figure 3: Prefix/suffix Reed-Solomon codeword generation.

From Figure 3, we can see that the prefix/suffix pair corresponding to the message polynomial (3)

is given by the following.

x16m(x) = a191x24 +a85x23 +a13x22 +a253x21 +a253x20 +a198x19 +a125x18 +a209x17 +a213x16

s(x) = a252x15 +a145x14 +a49x13 +a146x12 +a165x11 +a39x10 +a136x9 +a97x8 +a55x7

+a181x6 +a21x5 +a21x4 +a45x3 +a100x2 +a77x+a83

The following summarizes all four prefix/suffix codeword pairs, which can be found using the Maplet.

x16m1(x) = a191x24 +a85x23 +a13x22 +a253x21 +a253x20 +a198x19 +a125x18 +a209x17 +a213x16

s1(x) = a252x15 +a145x14 +a49x13 +a146x12 +a165x11 +a39x10 +a136x9 +a97x8 +a55x7

+a181x6 +a21x5 +a21x4 +a45x3 +a100x2 +a77x+a83

x16m2(x) = a173x24 +a129x23 +a48x22 +a249x21 +a59x20 +a160x19 +a85x18 +a129x17 +a48x16

s2(x) = a9x15 +a83x14 +a148x13 +a241x12 +a94x11 +a42x10 +a74x9 +a161x8 +a52x7 +a82x6

+a188x5 +a4x4 +a167x3 +a241x2 +a111x+a97

x16m3(x) = a99x24 +a239x23 +a160x22 +a253x21 +a48x20 +a219x19 +a249x18 +a192x17 +a160x16

s3(x) = a146x14 +a84x13 +a32x12 +a206x11 +a47x10 +a109x9 +a36x8 +a151x7 +a208x6

+a105x5 +a65x4 +a134x3 +a74x2 +a61x+a38

x16m4(x) = a232x24 +a15x23 +a155x22 +a79x21 +a122x20 +a100x19 +a122x18 +a100x17 +a122x16

s4(x) = a151x15 +a48x14 +a123x13 +a235x12 +a234x11 +a25x10 +a68x9 +a45x8 +a169x7

+a245x6 +a219x5 +a138x4 +a43x3 +a51x2 +a229x+a63

To check whether the prefix and/or suffix contain any errors after their transmission, (2) is solved

as q(x)g(x) = xum(x)− s(x). Since xum(x)− s(x) is a multiple of g(x), the roots of g(x) must also
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be roots of xum(x)− s(x). As such, when xum(x)− s(x) is evaluated at the roots of g(x), which

are 1,a, . . . ,au−1, each result must be 0. These roots, 1,a, . . . ,au−1, are called the syndromes of

xum(x)− s(x).
As shown in the Maplet window in Figure 3, the syndromes for x16m1(x)− s1(x), as evaluated

for the roots 1,a, . . . ,a15 of the generating polynomial g(x) of degree 16, are all 0, indicating that

the prefix and suffix in that example are correct. When errors occur in either the prefix or suffix

coefficients, Reed-Solomon codes provide an error-correction process through which the location of

the errors can be found, and the errors corrected. We provide some details of this process in [2].

After the prefix/suffix codeword pairs are created, the data is then interleaved together. The pur-

pose of this interleaving is so that when the data is placed into the QR code, localized damage to the

QR code and an overwhelming of its capacity to correct errors can be prevented. This interleaving of

the data occurs as follows.

• The coefficients of each prefix are written consecutively in order across the rows of a matrix,

and then taken in order down the columns of this matrix, skipping over any blank entries that

may have resulted from prefixes of different lengths.

• The coefficients of each suffix are written consecutively in order across the rows of a matrix,

and then taken in order down the columns of this matrix.

• The interleaved prefixes and suffixes are then joined together to represent the data.

As an example of this, with the four prefix/suffix pairs we gave previously, we first write the

coefficients of the prefixes in order across the rows in a 4×9 array.

a191 a85 a13 a253 a253 a198 a125 a209 a213

a173 a129 a48 a249 a59 a160 a85 a129 a48

a99 a239 a160 a253 a48 a219 a249 a192 a160

a232 a15 a155 a79 a122 a100 a122 a100 a122

We then interleave these prefix coefficients by taking them in order down the columns of this array.

This results in the following.

a191 a173 a99 a232 a85 a129 a239 a15 a13 a48 a160 a155

a253 a249 a253 a79 a253 a59 a48 a122 a198 a160 a219 a100

a125 a85 a249 a122 a209 a129 a192 a100 a213 a48 a160 a122

We next write the coefficients of the suffixes in order across the rows in a 4×16 array.

a252 a145 a49 a146 a165 a39 a136 a97 a55 a181 a21 a21 a45 a100 a77 a83

a9 a83 a148 a241 a94 a42 a74 a161 a52 a82 a188 a4 a167 a241 a111 a97

0 a146 a84 a32 a206 a47 a109 a36 a151 a208 a105 a65 a134 a74 a61 a38

a151 a48 a123 a235 a234 a25 a68 a45 a169 a245 a219 a138 a43 a51 a229 a63

We then interleave these suffix coefficients by taking them in order down the columns of this array.

This results in the following.

a252 a9 0 a151 a145 a83 a146 a48 a49 a148 a84 a123 a146 a241 a32 a235

a165 a94 a206 a234 a39 a42 a47 a25 a136 a74 a109 a68 a97 a161 a36 a45

a55 a52 a151 a169 a181 a82 a208 a245 a21 a188 a105 a219 a21 a4 a65 a138

a45 a167 a134 a43 a100 a241 a74 a51 a77 a111 a61 a229 a83 a97 a38 a63
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Combining the interleaved prefix and suffix coefficients gives the following full data for the QR code.

a191 a173 a99 a232 a85 a129 a239 a15 a13 a48 a160 a155 a253 a249 a253 a79 a253

a59 a48 a122 a198 a160 a219 a100 a125 a85 a249 a122 a209 a129 a192 a100 a213 a48

a160 a122 a252 a9 0 a151 a145 a83 a146 a48 a49 a148 a84 a123 a146 a241 a32

a235 a165 a94 a206 a234 a39 a42 a47 a25 a136 a74 a109 a68 a97 a161 a36 a45

a55 a52 a151 a169 a181 a82 a208 a245 a21 a188 a105 a219 a21 a4 a65 a138 a45

a167 a134 a43 a100 a241 a74 a51 a77 a111 a61 a229 a83 a97 a38 a63

(4)

This interleaved prefix and suffix data gives a total of 100 primitive element powers. Each power

can be converted into a byte, giving a total of 8 · 100 = 800 bits to represent the data in full for the

code. Some QR code versions also require a string of 0s to be included to completely fill out the data.

This number of additional 0s, which depends on the version, is given in [5]. QR codes of version 4

require seven additional 0s. Thus, for our example, the string 0000000 would be appended to the 800

bits representing the data, giving a total of 807 bits for the data section of the QR code. Next we will

describe how this data is placed into the QR code, and the code itself created.

4 Data Placement and QR Code Creation

QR codes include several components placed in precise locations in a two-dimensional array. Figure

4 gives a summary of the placement of components in a QR code of version 4.

Figure 4: Component summary for a QR code of version 4.

A QR code of version 4 is essentially a 33 × 33 matrix. In Figure 4, the message and error

correction data is located in the small dark blue and light brown squares. Each square in this data
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placement represents a binary digit, for which normally a 1 is represented by a darker color (dark

blue, in this case), and a 0 by a lighter color (light brown, in this case). The data is placed in the

image starting in the lower right corner. The regions outlined in red in Figure 4 are reserved for the

format information, which is a string of bits giving, among other things, the error correction level (L,

M, Q, or H) for the code. The format information also gives the mask pattern, which we will describe

in more detail later. Error correction bits are also included as part of the format information in case

any of the information is lost. The function patterns consist of the finder patterns, alignment patterns,

and timing patterns, as well as a dark module, which is a single black square located directly above

the format information block near the lower left corner of the matrix. Separators shown as solid white

rectangular strips in Figure 4 detach each finder pattern from the rest of the QR code. The function

patterns are designed to be placed in specific areas of the QR code, and their purpose is to ensure

that QR code scanners can correctly identify and orient an image for decoding. More information

about how the function patterns are aligned in a QR code can be found in [5]. Finally, a quiet zone is

included, as indicated in yellow in Figure 4, as an area of lighter color designed to enclose the main

QR code matrix.

QR codes of versions 7–40 require more alignment patterns and an additional 18-bit block placed

in two parts of the matrix containing information about the QR code version. More information can

be found about their generation and placement in [5].

For the message https://atcm.mathandtech.org/, Figure 5 shows how the data given by (4)

is placed in a QR code of version 4.

Figure 5: QR code data placement for the message https://atcm.mathandtech.org/.
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Starting in the lower right corner of a QR code matrix, the data for each codeword prefix/suffix

is placed in blocks in an up-and-down pattern. Each primitive power element is color-coded to illus-

trate the codeword prefix/suffix with which it is associated, as well as how the interleaving spreads

each codeword prefix/suffix throughout the matrix. For each individual block, the eight binary digits

representing the primitive power element are placed in a zig-zag pattern. The region bit placement

summary section in Figure 4 indicates the order in which the binary digits are placed within similarly

shaped blocks, with the coefficients of each polynomial of degree 7 representing each primitive ele-

ment power placed in descending degree order. For example, the first primitive power element placed

in the lower right corner, a191, is represented by the polynomial a6 +1. The coefficients of this poly-

nomial are read in descending order, 01000001, and placed in the first rectangular block. The order

of the placement is indicated by the first rectangular block under the region bit placement summary

section in Figure 4.

After the data is placed into the QR code matrix, to make the data as readable as possible by a QR

code scanner, the process of masking is applied. When data in a QR code is masked, particular data

squares, depending on their location in the matrix, are flipped, with a dark square becoming light,

and vice versa. Only data squares are flipped though. Squares involving function patterns, version,

and format information are left intact. QR code specifications define eight mask patterns that can

be applied to a QR code. The mask pattern chosen is dependent on a calculated penalty score from

certain observed square occurrences in the QR code matrix. The different type of mask patterns and

how the penalty score is calculated for each are summarized in [5].

For the QR code of version 4 representing https://atcm.mathandtech.org/, mask pattern 2 is

chosen. Numbering the 33 columns of this matrix from 0,1, . . . ,32, mask pattern 2 flips all of the data

squares in all columns with (column number) mod 3 = 0. Figure 6 illustrates this QR code before

and after masking, with the column numbers labeled where the masking occurs.

Figure 6: QR code example before and after masking.

After masking, a QR code is ready to be output. For generating QR codes, we will use another

Maplet written by the authors, QRcode. This Maplet allows users to input a message to be included,
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select an error correction level, and then generate the resulting QR code. The Maplet automatically

generates the QR code with a specific version based on how much and what type of data is entered

and the error correction level selected. Figure 7 shows the output for a QR code of version 4 and with

error correction level H that will scan to the message https://atcm.mathandtech.org/.

Figure 7: QR code Maplet generation example for the message https://atcm.mathandtech.org/.

With error correction included, images up to a certain size can be overlaid onto a QR code to

help identify its message contents. With error correction level H, even with 30% of the message data

squares covered by the image, the QR code would still scan correctly. The QRcode Maplet can select

a jpg file of a user’s choice and overlay it onto a generated QR code. Figure 8 shows the result with the

ATCM logo overlaid onto a QR code that would still scan to https://atcm.mathandtech.org/.
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Figure 8: QR code with an overlaid image.

5 Conclusion

In this paper, we showed the basics of how data is formatted and placed into QR codes, with error cor-

rection included via Reed-Solomon codes. Maplets written by the authors were used to demonstrate

this. These Maplets are available for download at [4].

The QR code generated in this paper focused on specific data that was generated for a particular

version. Additional explanations for how other data can be formatted and placed into QR codes of

other versions can be found in [5].
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Approaching Cesàro’s inequality
through GeoGebra Discovery
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Abstract

We illustrate the possibility of developing, using the automated reasoning tools im-
plemented in the dynamic geometry program GeoGebra Discovery, a certain parallelism
with Michael de Villiers reflection on the ’discovery function’ of proof, as described in his
2012 paper concerning the formulation by one student of a certain geometric conjecture
(Clough’s conjecture).

1 Motivation and goals

Michael de Villiers is a well know emeritus professor from the University of KwaZulu-Natal and
an honorary professor at the University of Stellenbosch, both in South Africa, with worldwide
leading research contributions along the past 30 years on Dynamic Geometry and on the role
of proof and reasoning in mathematics education. Visit, for example, his web page http:

//dynamicmathematicslearning.com/homepage4.html for a relation of his publications with
links to some of them.

In 2004 he conducted workshops at two different conferences (AMESA1, South Africa, and
NTCM2, USA), dealing, in particular, with what he labeled as “Clough’s Conjecture”[6]. Later
on, based on a presentation by himself at the 12th International Congress on Mathematics
Education (ICME, July 2012, Seoul, Korea), de Villiers published an article [7], mentioning his
contributions to the above Conferences and describing its content as follows ([7], p.3; Figure 1
below is reproduced from there):

The main purpose of this article is to contribute further to the theoretical aspects
of the role of proof by providing a heuristic description of some of my personal
experiences of the explanatory and discovery functions of proof with a geometric
conjecture made by a Grade 11 student.

[. . . ]

110th Association for Mathematics Education of South Africa (AMESA) Conference, 30 June-4 July 2004,
Potchefstroom, South Africa, http://www.amesa.org.za/AMESA2004/

2National Council of Teachers of Mathematics (NCTM) Annual Meeting, April 2004, Philadelphia, USA
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During 2003, a Grade 11 student from a high school in Cape Town was explor-
ing Vivianis theorem using dynamic geometry. The theorem says that the sum
of distances of a point to the sides of an equilateral triangle is constant (i.e. in
Figure [below] PPa + PPb + PPc is constant, irrespective of the position of point
P inside triangle ABC). The students further exploration led him to measure the
distances APc, BPa and CPb, and then add them. To his surprise, he noticed that
APc +BPa +CPb also remained constant no matter how much he dragged P inside
the triangle. However, he could not prove it.

His teacher eventually wrote to me to ask whether I could perhaps produce a simple
geometric proof, as he himself could only prove it algebraically by means of co-
ordinate geometry. Below is the geometric proof I first produced, followed by further
proofs, explorations and different generalisations of what has become known as
Clough’s conjecture ([6]).

[. . . ]

The underlying heuristic reasoning is carefully described in order to provide an
exemplar for designing learning trajectories to engage students with these functions
of proof.

In summary: in [7] de Villiers describes a Grade 11 student (Clough) experiment with
Dynamic Geometry, initially aiming to prove Viviani’s theorem, but at some point deriving
towards the formulation of a different statement, conjectured by the student. And de Villiers
develops the different steps (proving, discovering, conjecturing, generalizing, proving again . . . )
involved in this experience, as a useful example for the analysis and design of learning paths
concerning the role of proof in mathematics.

It is our goal here to follow, in some sense, the same storyline, but replacing Clough’s
protagonist role by the performance of our dearest “personal geometry assistant”, the program
GeoGebra Discovery3, whose main characteristics and features have been already described in

3See https://github.com/kovzol/geogebra-discovery, and http://autgeo.online/

geogebra-discovery/. GeoGebra Discovery is available in two options: GeoGebra Classic 5, for Win-
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[2], [16] or in the Asian Technology Conference in Mathematics (ATCM) 2020 invited lecture,
entitled “GeoGebra Reasoning Tools for Humans and for Automatons” [11]. See the next
section for a short collection of basic examples illustrating the different tools and possibilities
of GeoGebra Discovery.

On the other hand, as a more challenging instance of the performance of this program,
Figure 1 shows the answer of GeoGebra Discovery to Clough’s conjecture, namely, when asked
for the relation between

• the sum of segments l = EC, m = FB, and n = GA, where E,F,G are the feet of the
perpendiculars to the sides of the equilateral triangle from an arbitrary point D,

• and 3p/2, where p is the length of side AB, i.e. 3p/2 is half the perimeter 3p of the
equilateral triangle ABC.

Here GeoGebra Discovery declares that such relation is “true on parts, false on parts”, an
answer that we will explain and comment in the last part of this paper and that illustrates
some of the issues we would like to address here.

Figure 1: Checking Clough’s conjecture yields ”’true on parts”

Of course, we are aware that the intended parallelism between de Villiers’ mentioned paper
[7] and our work here, has several limitations. Leaving aside the obvious differences of expertise
from the authors of both articles, it is clear that de Villiers’ aims to exemplify the educational
relevance of the heuristics involved in the production of traditional proofs. This interaction:
proof/heuristics, i.e. what he calls “. . . the ’looking back’ discovery function of proof. . . ” [7],
p. 7, could

dows, Mac and Linux systems; and GeoGebra Classic 6, made for starting it in a browser, mainly ready for use
on tablets and smartphones
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. . . at least acquaint students with the idea that a deductive argument can provide
additional insight and some form of novel discovery . . . Problem posing and gener-
alisation through the utilisation of the ’discovery’ function of proof is as important
and creative as problem-solving itself, and ways of encouraging this kind of thinking
in students need to be further explored.

And then he emphasizes that this ’discovery’ function of proof is, in his own words, some-
thing to remark over the more traditional functions, such as ’verification’:

. . . Instead of defining proof in terms of its verification function (or any other func-
tion for that matter), it is suggested that proof should rather be defined simply as
a deductive or logical argument that shows how a particular result can be derived
from other proven or assumed results; nothing more, nothing less. It is not here
suggested that fidelity to the verification function of proof is sacrificed at all, but
that it should not be elevated to a defining characteristic of proof. Moreover, the
verification function ought to be supplemented with other important functions of
proof using genuine mathematical activities as described above.

On the contrary, as described in the ATCM 2020 proceedings [11], GeoGebra Discovery
facilitates

. . . the exploration, by humans, of geometric tasks by using GeoGebra as a kind
of “symbolic geometry calculator”: the user poses a concrete geometric task and
GeoGebra provides a mathematically sound answer.

That is, as a “symbolic geometry calculator”, GeoGebra Discovery main feature is, precisely,
the verification of geometric statements, without bringing any human readable argument for
their truth or falsity. Roughly speaking, as we will show in the next section, it provides just a
“yes/no” answer to a certain query posed by the user. Therefore, in some sense, the use of this
technological tool can not enhance the ’discovery function’ of proof, since there is no proof at
all!

Thus, bearing in mind this drastic affirmation, why do we regard in this paper the possibility
to follow with GeoGebra Discovery a parallel path to the one established in de Villiers’ cited
work?

Answer: in three different ways. First of all, trying to imitate de Villiers’ discourse on the
opportunities brought by the ’discovery function’ of proof, but now concerning the ’extended
discovery opportunity’ of geometric properties that comes when having an ’oracle’ at hand, just
as having a numerical calculator at our disposal can help us finding out numerical properties.
This has already been sufficiently argued in some recent works of ours, such as [13], [10], [18],
[12], [16], thus we will not address in more detail this issue here.

Second, replicating de Villiers’ route towards proving and generalizing Clough’s conjecture,
now through the analysis of the problems and difficulties shown by the algorithms involved in
the GeoGebra Discovery commands when dealing with different statements. We will exhibit
how these elements conform a sort of ’discovery function’ of automated proof, describing a
helpful learning path to discover algebro-geometric properties of the involved figures for more
advanced mathematics students, teachers, researchers. . . .

Third, as a way to describe, again, a learning path, this time not for the human user, but
for the “personal geometry assistant”, i.e. for the researchers and programmers involved in its
debugging and improvement.
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2 GeoGebra Discovery: a short digest

We have described GeoGebra Discovery as a kind of ’oracle’. Indeed, the most obvious com-
mand in this context (see [13] for a sort of tutorial) is the one that answers to the quest to
Prove. . . a certain relation between two geometric objects in a figure. For example4 consider a
parallelogram ABCD and let E,F,G, I be the midpoints of the sides. Then we would like to
verify if the line j = EF and the line k = IG are parallel. The answer is displayed in Figure 2.

Figure 2: Left, input: Prove(AreParallell(j,k)). Center, output: True. Right, details: true in
the case of non-degeneracy (i.e. with non-coincident initial points, A 6= B).

To the left of the Figure, in the input line, the command Prove(AreParallell(j,k)). The
output is presented in the central image, with the concise true reply. To the right, after
introducing the user the demand for details through the ProveDetails(AreParallell(j,k)) order,
GeoGebra Discovery points out that it is required –for the parallelism of j and k– that the
construction does not colapse, i.e. that points A and B, that are the starting points for
constructing the parallelogram (together with point C, displaying some segments f = AB, g =
AC and then some lines h, i parallel to f, g (respectively) passing through C and B, etc.), are
different.

Now, a key feature of GeoGebra Discovery is the Relation command, that allows the user to
ask the program to formulate possible relations holding between two elements of a figure. That
is, while the Prove command requires the user to “guess” a statement that will be confirmed or
denied by the program, the Relation automatically tests, numerically, a collection of potential
statements involving two selected elements and outputs, in a first step, some relations that seem
(apparently) to hold true. Then, after clicking on the More. . . button, GeoGebra Discovery
confirms or denies the rigorous truth of the automatically suggested statement. See Figure 3.

Next, an ample generalization of the Relation command is the Discover command, that does
not even require the user to point out two possible elements, but just one, for example, point
E in Figure 4. Then, Discover(E) launches a collection of Relation tests between E and other
elements in the geometric construction, yielding, and visually highlighting, a list of statements
that are true involving point E. See Figure 4.

Finally, let us mention (and exemplify with an elementary, yet surprising, result) the recent
extension of these GeoGebra Discovery tools to deal with statements involving inequalities [17].

4Following de Villiers’ inspiring paper, we will on purpose restrict in general to simple examples, of school
level, although GeoGebra Discovery is able to deal with quite complicated ones, arising for instance, in mathe-
matical contests, university entrance or professional selection exams, see [14], [15], [16].
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Figure 3: Left, input question: is there any Relation(j,k)? Center, initial output: numerical
parallelism of the two lines. Right, symbolic verification: parallelism of j, k is a mathematically
sound statement.

Figure 4: Left: input, Discover(E). Right: output, a collection of true statements on parallel
or perpendicular lines or congruent segments, involving E.

Thus, in the next section we will describe an attempt to investigate the basic inequality number
1.4 (from E. Cesàro’s [4], p. 140) included in the classic book by Bottema et al. [3], p. 12. Let
us remark that the original proposal by Cesàro (see Figure 5) includes, as a footnote, the fact
that for equilateral triangles the inequality is an equality, while Bottema’s formulation of the
same inequality adds that this only holds in this equilateral case.

How can GeoGebra Discovery ’s very concise answers help developing ’learning paths’ associ-
ated to some kind of ’discovery’ function of proof in this context? We will attempt to exemplify
our point of view on this issue in the next section.

3 Cesàro’s inequality

Let us start by asking GeoGebra Discovery for the relation between the products (a + b) · (a +
c) · (b + c) and abc, where a, b, c are the lengths of the sides of a triangle. GeoGebra replies
almost immediately (over an old MacBookPro 2.5 GHz) presenting the –perhaps– unexpected
inequality (a + b) · (a + c) · (b + c) ≥ 8abc. See Figure 6.

Next, we try to provide some reasons that justify GeoGebra’s answer. Our first idea is to
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Figure 5: Original formulation of E. Cesàro’s inequality.

consider (and verify with GeoGebra) a much simpler case, the well known triangle’s inequality:
every side is smaller than the sum of the other two. Thus, (a+ b) ≥ c, and, likewise, (b+ c) ≥ a
and (a+c) ≥ b. See Figure 7. But, using these inequalities, we would just obtain abc as a lower
bound for (a+b)·(a+c)·(b+c), not 8abc. We wonder, then, if it could be true in general over any
triangle that (a+ b) ≥ 2c, (b+ c) ≥ 2a and (a+ c) ≥ 2b. After a moment’s thought we discard
this hypothesis, thinking, for instance, of the right triangle with sides a = 3, b = 4, c = 5, where
a+ b � 2c. We do not even need to recall such Pythagorean triple; we could just ask GeoGebra
Discovery for the locus of, say, vertex C such that a + b = 2c. The answer ’seems’ to be an
ellipse, see Figure 7. Placing C inside the ellipse would yield a+ b ≤ 2c; and placing it outside
would imply a + b ≥ 2c.

But we would like to confirm this visual impression. Thus, we select some simple coordinates
for A = (0, 0), B = (1, 0), as the analysis of the investigated equality can be reduced, without
loss of generality, to this particular case, by homothecy. Now we can handle easily the displayed
output equation, which is, indeed, an ellipse with foci in A,B, center in the midpoint of AB,
axis of size 2 and

√
(3), respectively. And the ellipse includes the points C = (1/2,

√
(3)/2)

and C = (1/2,−
√

(3)/2), corresponding to an equilateral triangle.
Now, in the next Figure 9 we show how we have extended this computation and displayed

the locus of C for 2c = a + b, the red ellipse; the locus of C for 2a − b − c, the blue quartic;
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Figure 6: Left: input, asking for the relation between (a+ b) · (a+ c) · (b+ c) and a · b · c. Right:
output, the inequality (a + b) · (a + c) · (b + c) ≥ 8abc .

Figure 7: Left: A side of a triangle is smaller than the sum of the other two. Right: Locus of
C for a + b = 2c.

and the locus of C for 2b − a − c, the black quartic. We have labeled as d, e, f the values of
2c− a− b, 2b− a− c, 2a− b− c, respectively. Notice that placing C inside the red ellipse
makes d positive (and negative outside of the ellipse), while placing this point inside the blue
or black quartics makes both e, f negative (positive, otherwise).

But finding in a geometrically precise way the intersection of the three curves seems chal-
lenging for GeoGebra (there is no command for finding the intersection of three curves). Yet,
in this case the intersection is easy to describe: indeed, the conjunction of {a + b − 2 ∗ c =
0, a + c − 2 ∗ b = 0, b + c − 2 ∗ a = 0} yields as solution a = b = c, which means
that C should be the third vertex of one of the two equilateral triangles with vertices at
A = (0, 0), B = (1, 0). Notice that, conversely, for any equilateral triangle it is true that
{a + b− 2 ∗ c = 0, a + c− 2 ∗ b = 0, b + c− 2 ∗ a = 0}, since a = b = c. In particular this
means that over such triangles (a + b) · (a + c) · (b + c) = 8abc, as remarked by Cesàro.

Obviously, this success also means that our initial conjecture about “. . . if it could be true in
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Figure 8: Left: d = 2c− a− b. Right: Equation of the locus of C for a + b = 2c, showing it is
an ellipse.

general over any triangle that (a+b) ≥ 2c, (b+c) ≥ 2a and (a+c) ≥ 2b.” is false. Thus, we have
to look for a different approach towards proving Cesàro’s inequality (a+b)·(a+c)·(b+c) ≥ 8abc.
Since it involves the sum and the product of every two sides of the triangle, we might try to find
out if there is some simpler inequality holding between, say, a + b and ab. The initial problem
is that both expressions are not of the same degree and, thus, they can not be reduced to the
case A = (0, 0), B = (1, 0). Yet, we ask GeoGebra, through the Relation tool, for the relation
between a + b and ab, yielding that (a + b)2 ≥ 4ab, see Figure 10.

In order to have some explanation for this inequality (let us remark that GeoGebra’s
output is the result of some symbolic computation with real algebraic geometry tools, such
as quantifier elimination, so it is already mathematically sound) we observe that the in-
equality is equivalent to ((a + b)/2)2 ≥ ab. Thus, in Figure 10, right, following https://

en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means, we have con-
structed a circle with diameter AB and radius i = (a + b)/2. We place now a point C on
this circle in such a way that the foot of its height is the point where the segments a, b meet,
yielding the triangle ABC and apply the altitude (or geometric mean) theorem h2 = ab (see
https://en.wikipedia.org/wiki/Geometric_mean_theorem, and [8] for a proof with GeoGe-
bra and a generalization), yielding that i ≥ h, and thus i2 ≥ h2, i.e. that ((a + b)/2)2 ≥ ab.

Now, this inequality implies that (a + b) ≥ 2
√

(ab) and, likewise, (a + c) ≥ 2
√

(ac) and

(b+c) ≥ 2
√

(bc). It is now clear that multiplying all these expressions we will arrive to Ces̀aro’s
inequality, Q.E.D.

4 Cesàro’s Equality locus

Finally, we wonder about when the equality (a + b) · (a + c) · (b + c) = 8abc holds, beyond
the already analyzed equilateral case. In Figure 11 we show how computing the locus of C
verifying this equality yields an empty graph, associated to a complicated equation: eq4 :=
{252 ∗ x10 + 1264 ∗ x8 ∗ y2 + 2536 ∗ x6 ∗ y4 + 2544 ∗ x4 ∗ y6 + 1276 ∗ x2 ∗ y8 + 256 ∗ y10− 1260 ∗
x9 − 5056 ∗ x7 ∗ y2 − 7608 ∗ x5 ∗ y4 − 5088 ∗ x3 ∗ y6 − 1276 ∗ x ∗ y8 + 2151 ∗ x8 + 6596 ∗ x6 ∗ y2 +
6866 ∗ x4 ∗ y4 + 2548 ∗ x2 ∗ y6 + 127 ∗ y8 − 1044 ∗ x7 − 2092 ∗ x5 ∗ y2 − 1052 ∗ x3 ∗ y4 − 4 ∗ x ∗
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Figure 9: Intersection of the three curves corresponding to the loci of C for 2c − a − b = 0,
2a− b− c = 0, and 2b− a− c = 0, respectively.

Figure 10: Left: (a+b)2 ≥ 4ab. Right: Explaining this inequality through the altitude theorem.

y6 − 198 ∗ x6 − 682 ∗ x4 ∗ y2 − 738 ∗ x2 ∗ y4 − 254 ∗ y6 − 1044 ∗ x5 − 1048 ∗ x3 ∗ y2 − 4 ∗ x ∗ y4 +
2151 ∗ x4 + 2294 ∗ x2 ∗ y2 + 127 ∗ y4 − 1260 ∗ x3 − 1276 ∗ x ∗ y2 + 252 ∗ x2 + 256 ∗ y2 = 0}

This “missing real points” problem (empty or not complete graphic output in GeoGebra,
of the equation of a curve) happens in many other cases. For example, if we input Implic-
itCurve(x2 + y2), we get just the empty set. Or, if we input ImplicitCurve(x2 + y2−x3), we get
a branch of the curve, but not the origin –a point that obviously belongs to the curve. Thus
we need to find specific ways to deal with this issue in this case.

To begin with, we know that this equality locus eq4 should contain the points C =
(1/2,

√
(3)/2) and C = (1/2,−

√
(3)/2), and this can be easily verified using the Substitute

command in GeoGebra CAS view, over the above equation eq4. It is also easy to imagine
(and to check) that the curve contains the degenerate instances C = A,C = B. Any other
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Figure 11: Computing the locus of C for (a + b) · (a + c) · (b + c) = 8abc

points? To answer this question we proceed as follows, using some tools from the CAS Maple5,
such as sturm, that computes the number of real roots of univariate polynomial on an interval
(eventually, the interval (−infinity,+infinity)), or realroot, that computes isolating intervals
for each real root:

• We collect eq4 as a polynomial in the variable y with coefficients in x

• We compute the discriminant of this polynomial in y, getting a univariate polynomial in
x.

• We compute the different real roots of this discriminant (11 in total), including 0, 1/2 and
1.

• We compute the real roots of the curve over each of these roots of the discriminant, finding
only the already known ones: y = 0 over x = 0, y =

√
(3)/2 and y = −

√
(3)/2 over

x = 1/2, y = 0 over x = 1.

• For each interval conformed by a pair of consecutive roots of the discriminant (or between
minus infinity and the smallest root, and between the largest root and plus infinity)
assign a test number in the interval. For example, we know that the smallest root is
1/2−

√
(63618 + 7446 ·

√
(73))/4, thus we can choose −90 as a smaller, test number. As

a more automatic alternative, use realroot for handling intervals enclosing the roots of
the discriminant.

5https://www.maplesoft.com
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• Over each assigned real number between the real roots of the discriminant, compute the
number of real roots in the curve (using, again, the sturm command). For example,
substitute x = −90 in eq4, yielding a polynomial in y, that has no real roots.

• As there are no real roots over each one of these test points, we conclude that the only
points in the curve are {(0, 0), (1/2,

√
(3)/2), (1/2,−

√
(3)/2), (1, 0)}. In fact let us recall

that the number of real roots of eq4(x, y) does not vary as x moves on an interval between
consecutive roots of the discriminant. So, since in the test points of the intervals we have
selected there are no roots, it follows the same happens all over the interval. So the only
roots are the ones we have already previously found.

Of course, the obtained computation confirms Bottema’s assertion that Cesàro’s inequality
holds as an equality only in the equilateral case, leaving aside the degenerate instances when
C coincides with A or B.

5 Conclusions

The last two sections show, in our opinion, a way to approach geometry learning that combines
empiric experimentation and formal reasoning, in which man-machine interaction is fundamen-
tal, not just auxiliary, following the declaration of Corless [5]: “Any tool should always be used
to expand the users capabilities, and not as a crutch to prop up weak skills”. See [8] for another
recent example in the same direction.

We could say that “computer mediated thinking” (again, a formulation from [5]) should
have a parallel status to the traditional “writing mediated thinking”: how could we think of
developing a sound geometry reasoning without using symbols and writing skills? How can we
nowadays think of developing geometry reasoning without using “personal geometry assistants”
such as GeoGebra Discovery? The evolution of our approach to the proof of Cesàro inequality
(and equality) shows well –at least in this particular example– the great advantages (and specific
difficulties) of having this tool at our disposal. It would have been very difficult to replicate our
way of proving these statements without the concourse of GeoGebra. Of course, it is possible
that there is an alternative way, but . . . will it be relevant in mathematics education in the
digital era?

We are aware that this is just one isolated example, and it is one addressed to persons
with some skills on higher mathematics. But it also intends to support the urgent need for
“Opening a discussion on teaching proof with automated theorem provers” [9], the title of a
very recent paper by Hanna –one of the world most reputed experts in the topic– and Yan. In
that paper there is a section specifically dealing with GeoGebra’s automated reasoning tools,
and the authors conclude that

It is perhaps too early for empirical studies of classroom experience using the en-
hancements to GeoGebra. In this respect the situation of GeoGebra is similar, but
not identical, to the proof technology in general. While it is reasonable to expect
proof technology to foster students proving abilities, and there is certainly support-
ing anecdotal evidence, its potential advantages have not yet been systematically
assessed.

[. . . ]
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We know that automated proof assistants are designed to provide a guarantee
of correctness, and indeed they are very good at establishing the validity of a proof.
The question, then, is to what degree these tools can also be helpful in explaining
why it is that a theorem is true.

We agree about the need to seriously start investigating these issues about how the use
of GeoGebra Discovery can improve mathematics learning, not of the traditional curriculum,
but of one that already takes into account the existence of new possibilities associated to the
’discovery function’ of computer-enhanced proof processes.

It is also true that this research must go in parallel, involving, on the one side, to curriculum
decision makers, teachers, students [1] and, on the other, proof assistant developers. As stated
in [9]

Proof assistants . . . will never be developed in the absence of initiative on the
part of mathematics educators and a demonstrated demand fueled by increased use.
Secondly, success also requires new and effective teaching strategies. These two
efforts stand in a reciprocal relationship, so that the full benefit of proof assistants
will be seen only over time as new teaching strategies effect the demand for new
tool features and vice versa. The responsibility for both efforts rests squarely on
the shoulders of educators. The key is to make a start, beginning with exploratory
studies of the potential of these new tools at both the secondary and post-secondary
levels.

Indeed, our verification of Clough’s conjecture, see Figure 1, shows the need (and the in-
volved mathematical, algorithmic and user-interface difficulties) to improve proof assistants to
output some answer that could be clearly understood by most users. Here let us just succinctly
state that ‘true on parts, false on parts’ refers to the fact that the algebraic translation of the
construction involves different components (but, for a standard user, there is only one, the
one that is graphically and intuitively perceived), because the idea of ’length’ of a side is, in
the complex geometry algorithmic background for GeoGebra Discovery, some square root that
can take positive or negative values. And, of course, the involved conjecture is true for the
component where these roots are positive, and fails for the others.

The option to associate signs to the lengths of segments involves real algebraic geometry and
it is on-going work [17]; but it is much less efficient at this moment, so it would be more useful
to develop –with the cooperation of teachers, experimenting with students, etc.– some user-
interface modifications to avoid such confusing answers for the expected users of the program
in the educational world, perhaps implementing two kind of versions: for ’experts’ and for
’students’.
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Abstract: The aim of this paper is to show the crucial role of knowledge to tackle some geometric problems. We have 

chosen to show in detail how to tackle the problem of construction of Steiner chains, that is to say, closed chains of 

tangent circles also tangent to two given nested circles (to simplify the presentation and get understandable figures). 

Accordingly, a great part of the paper is a reminder of the necessary knowledge used for the techniques of construction 

of such chains: notion of harmonic division, notion of bundle of circles, notion of polar of a point with respect to a circle 

and above all the notion of inversion and the link between this transformation and the previous notions. The paper shows 

how these techniques can be used with some dynamic geometry software such as the New Cabri (containing the tool 

“macro” but not the tool “inversion”), Cabri 3D (containing the tool “inversion” with respect to spheres) or TI-NSpire 

(less efficient for complex figures because the tools “macro” and “inversion” are not available). Finally, we will perform 

very precise figures mostly with the New Cabri where Steiner chains associated to two given nested circles are generated 

and can be animated when their conditions of existence are satisfied. 
 

1. Link between bundle of circles at base points and bundle of circles at Poncelet 

points ([4]) 
 

1.1. Definitions (figure 1 left): 

1.1.1. The bundle of circles at base points A and A’ with A ≠A’, is the set of circles centered on the 

perpendicular bisector of [AA’] and passing through A and A’. 

1.1.2. The bundle of circles at Poncelet points A and A’ with A ≠ A’ is the set of circles centered on 

(AA’) cutting this line in two points C and D , these points cutting the segment [AA’] under the same 

ratio or such that (A, A’, C, D) is an harmonic division (see §2) or such that D is the image of C with 

the inversion (see §4) of circle the circle with diameter [AA’]  

 

1.2. Orthogonality of such bundles (Figure 1 left) 

Let us prove the following theorem 

Theorem: Each circle of the bundle of circles at base points A and A’ is orthogonal to every 

circle of the bundle at Poncelet points A and A’. 
 

 

             
 

Figure 1: Orthogonality of bundles and construction of a polar 
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Let us give A and A’ two points symmetric with respect to point O on the horizontal blue line. (G) is 

one of the circles of the bundle at base points A and A’, centered at B on the red line (perpendicular 

bisector of [AA’]). In the system of axes supported by the blue and the red lines, A(a,0), A’(-a,0) and 

B(0,𝛽). Let us find all the circles centered on (AA’) (center called I), orthogonal to (G) and passing 

through a point T of (G). Let us consider one of these circles (P). The radius of (G) is equal to BA’ 

or BT or BA: we know that BA2 = 𝑎2 + 𝛽2. Let us evaluate BI2 in two different ways: 

BI2 = BT2 + TI2 = BT2 + CI2 = BA2 + CI2 =  𝑎2 + 𝛽2 + CI2 and also BI2 = BO2 + OI2 = 𝛽2 + OI2. 

From these we get  𝑎2 = OI2 - CI2 which is the power of O for (P) ([9]) that can also be written 

OC.OD. So, D is the image of C by the inversion centered at O which circle is the blue circle (center 

O and radius OA = a). Another consequence is that (A’, A, C, D) is an harmonic division and circle 

(P) is one of the circles of the bundle at Poncelet points A and A’. 

When T is moving on (G), we get all the centers I on the blue line and therefore all the circles of the 

Poncelet bundle. That completes the proof. 

 

2. Harmonic division  
 

Definition: if A, B, C and D are four points belonging to the same line, (A, B, C, D) is an harmonic 

division if C and D cut segment [AB] under the same ratio. In particular: 
𝑪𝑨̅̅ ̅̅

𝑪𝑩̅̅ ̅̅ = −
𝑫𝑨̅̅ ̅̅

𝑫𝑩̅̅̅̅̅ 

Property 1: If a, b, c and d are the abscissa of A, B, C and D with respect to an axis supported by 

(AB) and where the origin is located at the midpoint of [AB], the previous condition can be written: 

𝑐. 𝑑 = 𝑎2 or 𝑶𝑪̅̅ ̅̅ . 𝑶𝑫̅̅̅̅ ̅ = 𝑶𝑨𝟐 = 𝒂𝟐 where D (respectively C) is the image of C (respectively D) by 

the inversion centered at O which ratio is a2. 

Property 2: If the origin of the axis is located at A, this relation becomes: 
𝟐

𝒃
=

𝟏

𝒄
+

𝟏

𝒅
  or  

𝟐

𝑶𝑩̅̅̅̅̅ =
𝟏

𝑶𝑪̅̅ ̅̅ +
𝟏

𝑶𝑫̅̅̅̅̅ 

 

3. Polar of a point for a circle (Figure 1 right) ([2]) 
 

3.1. Définition: The polar of point M for a circle (C) (center I and radius r), is the set of points S such 

that the circle of diameter [MS] is orthogonal to (C). 

3.2. How to characterize the polar of a point for a circle  

3.2.1 This polar is not an empty set because point N inverse of M by the inversion centered at I and 

which circle is (C) belongs to this polar. In fact, IM.IN = r2 means that the power ([9]) of I for this 

circle is equal the square of the radius of (C), which means also that the circle with diameter [MN] is 

orthogonal to circle (C). With respect to a system of axes with origin I, supported by (IA) and its 

perpendicular at I, if M(xM,0) then, N(
𝑟2

𝑥𝑀
 ,0). 

3.2.2. Let us find now the set of points S (𝑥𝑆, 𝑦𝑆) such that the circle of diameter [MS] is orthogonal 

to (C). If J is the midpoint of [SM], which means the center of such a circle, the necessary and 

sufficient condition for this property is IJ2 = JM2 + r2.  

With  J( 
𝑥𝑀+𝑥𝑆

2
,
𝑦𝑆

2
), IJ2 = (

𝑥𝑀+𝑥𝑆

2
)2+ (

𝑦𝑆

2
)2 and as JM2 = (

𝑥𝑀−𝑥𝑆

2
)2+ (

𝑦𝑆

2
)2, the necessary and sufficient 

condition can be written: 𝑥𝑀. 𝑥𝑆 = r2 or 𝑥𝑆 = 
𝑟2

𝑥𝑀
 which is the equation of the line passing through N 

(inverse of M with respect to (C)) and perpendicular to (IM). So: 
 

Theorem: The polar of a point M of a circle (C) centered at I is the perpendicular at N to (IN) where 

N is the image of M by the inversion of circle (C). 
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Remark: if M’ is a point of the polar of M for (C) and if (MM’) cuts circle (C) at points U and V, it 

is equivalent to say that (M, M’, U, V) is an harmonic division (Figure 2 left). 

 

    
 

Figure 2: Property of polars, definition of inversion and construction of polar 

 

4. Inversion ([7], [8]) (Figure 2 right) 
  

4.1. Definition: If (C) is a circle centered at I with radius r, we call inversion with respect to this 

circle, the plane transformation mapping each point M different from I onto a point M’ belonging to 

the ray [IM) such as IM.IM’= r2 and letting I be invariant. 
 

As I is the midpoint of [AB], the equality of definition can be interpreted differently: 

(A, B, M, M’) is an harmonic division or M’ is the orthogonal projection of M on its polar for (C). 

  

4.2. Images of lines (Figure 3) 

Let us consider the inversion of circle (C) (center I, radius r) and a line (D).  

The image of a line passing (D) through I is globally invariant by such an inversion. 

The image by such an inversion of a line (D) which does not contain I is a circle containing I: 

We give a proof for the two possible cases. The first case is when the line cuts circle (C) and the 

second one is when it does not. In these two cases, we call m the orthogonal projection of I on (D) 

and m’ its image by the given inversion.  
   

First case “(D) cuts circle (C)” (Figure 3 left): point m’ belongs to the image of (D). For each other 

point n of (D) (different from m) with image n’, we have: Im.Im’ = In.In’ or  
𝐼𝑚

𝐼𝑛
=

𝐼𝑛′

𝐼𝑚′
  . Triangles 

Imn and In’m’ have a common angle; the previous equality establishes that these triangles are similar. 

Or Imn is a right-angle triangle at m, so In’m’ is a right-angle triangle at n’. therefore, n’ belongs to 

the circle of diameter [Im’]. Conducting the same reasoning would prove that each point of the circle 

is the image of a point of (D) by this inversion. 
 

Second case “(D) does not cut circle (C)” (Figure 3 right): same reasoning.  
 

Theorem: The image of a line (D) by an inversion (when (D) does not contain the center I of the 

inversion) is a circle of diameter [Im’] where m is the orthogonal projection of I on (D) and m’ is the 

image of m by this inversion. 
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Figure 3: Images of lines by an inversion 

 

4.3. Images of circles 

First case “Image of a circle passing through the center of the inversion”: as an inversion is an 

involution, the image of a circle is a line (use the previous result). 

Second case “Image of a circle which does not contain the center of the inversion” (Figure 4): 

Let us consider here the inversion I centered at O and whose circle is (C). We try to find the image 

of circle (G) whose center is I and diameter [MN] and for which O, M and N are collinear. M’ and N’ 

are the images of M and N by the inversion I. Point P is a point generating circle (G) ; its image P’ 

generates the image (G’) of (G) by I. Q is the second intersection point between (OP) and circle (G): 

this point generates (G) exactly when P generates (G) and therefore Q’ its image by I generates (G’) 

exactly when P generates (G). 

If r is the radius of circle (C), thanks to the definition of the inversion, we obtain: 

OQ’ =  
𝑟2

𝑂𝑄
 and OM’ =  

𝑟2

𝑂𝑀
 . Let us evaluate now the ratio 

𝑂𝑄′

𝑂𝑃
 : 

 

𝑂𝑄′

𝑂𝑃
=

𝑟2

𝑂𝑄

𝑂𝑃
=

𝑟2

𝑂𝑃.𝑂𝑄
 or 𝑂𝑃. 𝑂𝑄 = 𝑂𝑀.𝑂𝑁 (power of point O for circle (G)).  

Therefore, 
𝑂𝑄′

𝑂𝑃
=

𝑟2

𝑂𝑀.𝑂𝑁
=

𝑟2

𝑂𝑀

𝑂𝑁
=

𝑂𝑀′

𝑂𝑁
 . 

The equality 
𝑂𝑄′

𝑂𝑃
=

𝑂𝑀′

𝑂𝑁
 reflects the fact that Q’ is the image of P by the dilation centered at O and 

whose scale is 
𝑂𝑀′

𝑂𝑁
 . So, (G’) is a circle of diameter [M’N’]. 

Remark: be careful! The center of (G’) is not the image of I by the inversion I. It is the image J of I 

by the previous dilation. We will show a simple way to construct this center in using the composition 

of two inversions (it will allow constructions of centers of a Steiner chain easyly: see 5.5.).  

Position of J: J is the midpoint of [M’N’], so, OJ = 
𝑂𝑀′+𝑂𝑁′

2
=

𝑟2

𝑂𝑀
+ 𝑟2

𝑂𝑁

2
=

𝑟2

2
. (

1

𝑂𝑀
+

1

𝑂𝑁
). 

If H is the harmonic conjugate of O with respect to M and N, we can write the known equality 

 
2

𝑂𝐻
=

1

𝑂𝑀
+

1

𝑂𝑁
 . Let us note that H can be considered as the image of O by the inversion of circle 

(G) or the orthogonal projection of I on the polar of O for this circle.  

Eventually: OJ = 
𝑟2

𝑂𝐻
 which means that J is the image of H by the inversion I.  

Remark: this proof can be generalized to all circles of the plane which do not contain O in replacing 

distances by algebraic distances (used in the definition of harmonic division in §2). 
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Figure 4: Image of a circle by an inversion 
 

Theorem: The image of a circle (G) centered at I by an inversion I (when this circle does not contain 

the center O of the inversion) is another circle (G’) centered at J where J is the image by I of H, H 

being the image of O by the inversion of circle (G). 
 

4.4. Angular property of the tangent lines at a point of two intersecting curves  

4.4.1. An angular property of an inscribed quadrilateral (Figure 5 left) 

AA’B’B is a quadrilateral inscribed in a circle centered at O. Suppose that (AA’) and (BB’) intersect 

at M and (AB) and (A’B’) intersect at N. We know that ∠ MB’N is equal to ∠𝑀𝐴𝐵. If (MI) is the angle 

bisector of ∠𝐴𝑀𝐵 cutting (A’B’) at J, then ∠BMI = ∠IMA. 

Let us consider the two similar triangles MIA and MJB’. 

In triangle MJB’, ∠M + ∠ B’ = ∠ MJN (green); in triangle IMA,  ∠ M + ∠ A = ∠ NIJ (magenta). 

As triangles MIA and MJB’ are similar, these sums are equal and so: 

∠ IJN (green) = ∠ NIJ (magenta), which means that triangle NIJ is isosceles (base [IJ]), and also that 

lines (AB) and (A’B’) are symmetric with respect to the perpendicular bisector of [IJ]. Eventually: 
 

Theorem: If AA’B’B is a quadrilateral inscribed in a circle, if the angle bisector of ∠BMA cuts (AB) 

at I and (A’B’) at J, therefore (AB) and (A’B’) are symmetric with respect to the perpendicular bisector 

of [IJ]. 
 

          
 

Figure 5: Angular property of inversions 
 

4.4.2. A consequence about the angles of tangent lines to two secant curves and to their images 

(Figure 5 right)  

Let us give the inversion of circle (C) centered at O; (E’) is the image of the blue curve (E) by this 

inversion; A’ is the image on (E’) of point A belonging to (E) and M’ is the image on (E’) of another 

point M belonging to (E).  
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By definition of the inversion, OA.OA’ = OM.OM’ and therefore points A, A’, M’ and M belong to 

the same circle C(M). Thanks to the previous result, triangle KIJ is isosceles (base [IJ]) and then lines 

(AM) and (A’M’) are symmetric with respect to the perpendicular bisector (D) of [IJ]. 

If M approaches A along (E), the limit of (AM) is the tangent (T) to (C) at A and then, as M’ approaches 

A’ along (E’), the limit of (A’M’) is the tangent (T’) to (C’) at A’. In those conditions as I approaches 

A and J approaches A’, the tangent lines (T) and (T’) are symmetric with respect to the perpendicular 

bisector of [AA’] (limit of (D) when M approaches A). 
 

Theorem: If the curve (E) has (E’) for image by an inversion, if A is a point of (E) and A’ its image 

by this inversion, therefore, the tangent lines at A and A’ respectively to (E) and (E’) are symmetric 

with respect to the perpendicular bisector of [AA’].   
 

So, we can deduce from this theorem 
 

Corollary: If two curves intersect at A and if 𝛼 is the angle of the tangent lines to these curves at this 

point, the angle between the tangent lines to the curves images of the previous ones by an inversion, 

at A’ image of A by this inversion, is equal to -𝛼. 
 

Remark: if the tangent lines to the given intersecting curves are perpendicular, the tangent lines to 

the curves images of these curves are also perpendicular 
 

4.5. Metric properties 

Before the second part of this paper, let us recall how distances and radii of circles are modified by 

an inversion. 

Let us give I the inversion of circle (C) (center I, radius r): 

If [A’B’] is the image of [AB] by I: A’B’ =  
𝒓𝟐.𝑨𝑩

𝑰𝑨.𝑰𝑩
 (a proof uses the fact that triangle IAB is similar to 

triangle IB’A’) 

If a circle C1 of radius r1 has for image a circle C’1 of radius r’1, r’1 = 
𝒓𝟐.𝒓𝟏

𝑰𝒎.𝑰𝒎′
 where m and m’ are the 

intersection points between the circle C1 and the line joining I to the center of C1 (with the notations 

of Figure 3 right).  

Eventually, in a “certain way”, if two circles are transformed onto two other circles by an inversion, 

the ratio between the radii of the image circles is “independent” of the scale of the inversion.  

 

5. Images of bundles of circles by an inversion 
 

5.1. Image of a bundle at base points  

Figure 6 left: let us consider a bundle of circles at base points A’ and A. D is the perpendicular bisector 

of [AA’] passing through the midpoint o1 of this segment. Every circle Cn of this bundle is centered 

on D at on (in Figure 6 left, we have displayed C1 centered at o1, C2 centered at o2 and C3 centered at 

o3). Let us consider now an inversion I centered at A and which circle C passes through a point v of 

(AA’).  

Remark: all the circles of the bundle pass through the center of the inversion. 

As a consequence, the images of the circles of this bundle are lines. And, as every circle of the bundle 

passes through a common point A’, all these lines pass through the image of A’ by I. In Figure 6 (left 

and right), we can see that the images D1, D2 and D3 of C1, C2 and C3 pass really through a common 

point. This point belongs to the polar of A’ with respect to C (circle of the inversion). The direction 

of each of these lines is respectively the direction of the perpendicular to the line joining A to each 

center of the given circles of the bundle. 
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Figure 6: Image of a bundle of circles at base points 
 

Let us consider now the bundle of Poncelet points A’ and A whose circles are En (in Figure 6 right, 

only two circles are displayed: E1 and E2). We know that these circles are orthogonal to all circles of 

the previous bundle based at A’ and A. As the inversion keeps the orthogonality of tangent lines, the 

images E’n by I of the circles En are orthogonal to all the images of the circles Cn which means, to all 

lines Dn. Eventually, as all lines Dn pass through a common point e, E’n is a circle centered at e. 
 

Theorem: If F is a bundle at Poncelet points A’ and A, the image of this bundle by any inversion 

centered at A is a bundle of concentric circles centered at e image of A’ by this inversion. 

 

5.2. Steiner chains of two concentric circles (existence conditions) 

From now, our aim is to construct chains of tangent circles but also tangent to two given nested 

circles. We start by the case when the two given circles are concentric and necessarily the circles of 

the chain have the same radius. 

In Figure 7, (I) and (E) are two concentric circles centered at O with radius respectively r and k.r 

where k > 1. T1 is a point on (E) and (C1) is the circle tangent to (I) and (E) respectively at t1 and T1, 

centered at O1.   

 
 

Figure 7: Chain included between two concentric circles 

 

The radius of (C1) is equal to (𝑘 − 1).
𝑟

2
. U and V are the two contact points of the two tangent lines 

to (C1) constructed from O. 

The angle ∠VOU is the angle of the rotation centered at O which allows by iteration of the images of 

(C1), a chain of circles (Cn) isometric to (C1), respecting our initial constraints. 
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Let’s see now under what conditions for k and the number n of circles of the chain, this chain is 

closed, which means that the circle (Cn) touches for the first time (C1) and is tangent to this circle at 

V.   

If 𝛼 = ∠UOV which is the double of ∠UOO1, we have: 

sin(
𝛼

2
) = 

𝑈𝑂1

𝑂𝑂1
=  

(𝑘−1).
𝑟

2

𝑟+(𝑘−1).
𝑟

2

=
𝑘−1

𝑘+1
  and then: 𝛼 = 2. 𝑠𝑖𝑛−1(

𝑘−1

𝑘+1
). 

So, the condition expressing that n circles exactly can be inscribed in one turn is: 

𝑛. 𝛼 = 2. 𝜋 or: 𝒏. 𝒔𝒊𝒏−𝟏 (
𝒌−𝟏

𝒌+𝟏
) =  𝝅  (Eq1) 

Similarly, the condition expressing that n circles exactly can be inscribed in m turns is: 

𝑛. 𝛼 = 2.𝑚. 𝜋 or: 𝒏. 𝒔𝒊𝒏−𝟏 (
𝒌−𝟏

𝒌+𝟏
) =  𝒎.𝝅.  (Eq2) 

Particular cases: 

Chain of 2 circles in 1 turn: n = 2 in Eq1 returns k =1, which means that the two given circles are the 

same circle. This case is excluded. 

Chain of 3 circles in 1 turn: n = 3 in Eq1 returns 𝑘 = 7 + 4. √3  (Checked in Figure 8 left) 

Chain of 4 circles in 1 turn: n = 4 in Eq1 returns 𝑘 = 3 + 2. √2  (Checked in Figure 8 center) 

Chain of 5 circles in 1 turn: n = 5 in Eq1 returns 𝑘 =
4+2.√2.(5−√5)

4−2.√2.(5−√5)

  (Checked in Figure 8 right). 

 

   
 

Figure 8: Closed chains in concentric circles 
 

Chain of 6 circles in 1 turn: n = 6 in Eq1 returns 𝑘 = 3  (Figure 9 left) 
 

General case for n circles in m turns: 𝑘 =
1+sin (

𝑚𝜋

𝑛
)

1−sin (
𝑚𝜋

𝑛
)
 (particular case n = 7 and m = 2: Figure 9 right) 

 

  
 

Figure 9: Other closed chains in concentric circles 
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5.3. Steiner chains:  an approach of the general case 

We start now from two concentric circles INT and EXT (same center e) which radii are respectively 

r and k.r where k can be chosen as we want (Figure 10 left). I is an inversion centered at A and of 

circle C. We know (see 4.2.) that the images of these two circles by this inversion are two circles int 

and ext belonging to the bundle at Poncelet points A and A’ where A’ is the image of e by the inversion 

I (Figure 10 right).   

 

          

Figure 10: For our first chains in nested circles 
 

From a point T1 of EXT, let us construct (Figure 11 left), a chain of black circles (a sequence of 

tangent circles) tangent to EXT and INT (we can see three of these circles in Figure 11 left). The 

images of these circles by inversion I centered at A, is a chain of circles tangent to the two circles ext 

and int (here ext is inside of int: due to properties of inversions in this case of figure). If point T1 is 

dragged along EXT turning clockwise or anticlockwise inside the concentric circles, we obtain other 

chains between EXT and INT and by the way chains between int and ext. 

Remark: if the value of k is correctly chosen, we can obtain closed chains of circles between the 

concentric circles and by the way also between their images ext and int. That is displayed un Figure 

11 right where we have constructed such a chain of six circles called Steiner chain of circles between 

ext and int. 
 

         
 

Figure 11: Construction of a Steiner chain 
 

5.4. Steiner chains: general case 
 

5.4.1. Two nested circles belong to the same Poncelet bundle 

As shown in Figure 12 left, we consider two nested circles C1 and C2 centered respectively at i1 and 

i2. We show now how to construct the radical axis of these two circles (line containing all the points 
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having the same power for C1 and C2). As this radical axis is perpendicular to (i1i2), we need only to 

find and construct the point I on (i1i2) having the same power for the two circles, which means the 

point I verifying Im.Im’= In.In’ or which is equivalent: 
𝐼𝑛

𝐼𝑚
=

𝐼𝑚′

𝐼𝑛′
 . This equality means that I is the center of the dilation transforming m onto n and n’ onto 

m’ and finally the segment [mn’] onto the segment [nm’]. That justifies the elementary construction 

of I proposed in Figure 12 left. 
 

  
 

Figure 12: Poncelet bundle including two given nested circles 
 

Figure 12 right shows precisely the construction of point A of the ray [Im) verifying IA2 = Im.Im’ 

(this construction is based on a known property of right-angle triangles). As I is a point of the radical 

axis of C1 and C2, IA2 = In.In’ where n and n’ are the intersection points between C1 and line (i1i2). If 

A’ is the symmetric of A with respect to I, the previous relations means that (A’, A, m, m’) and (A’, 

A, n, n’) are harmonic divisions or better that circles C1 et C2 belong to the bundle at Poncelet points 

A’ and A. We already know that the images of these two circles by any inversion centered at A or A’ 

are two concentric circles (j is the midpoint of [Im’] in the construction of Figure 12 right). 
 

5.4.2. How to construct a chain of circles tangent to two nested circles  

Starting from C1 and C2, we construct as we did before point A’ and A such that C1 and C2 belong to 

the bundle of points of Poncelet A’ and A. We chose an inversion centered at A, for example. We 

transform these two circles by this inversion to get two concentric circles and their center. Then we 

construct a chain of tangent circles between the two concentric circles. The image of this chain by 

the inversion provides a chain of tangent circles between the circles we started from. 

Now, the question is: what is the inversion that will generate a value of k compatible with the 

construction of a closed chain? 

5.4.2.1. Complexity of the choice of the parameters of our problem 

For such circles C1 and C2 whose radii are respectively r1 and r2 and centers i1 and i2 (where r1 < r2), 

let us evaluate the ratio of the radii of the circles images by an inversion I centered at A where A is 

one of the two points of the Poncelet bundle containing C1 and C2.  Recall that this ratio is 

“independent” of the circle defining the inversion. All the following calculations are conducted in 

the axis system supported by the line (i1i2) oriented from i1 to i2 and which origin is i2. In this system, 

point i1 is given by its abscissa 𝛼1, with -r2 < 𝛼1 < r2. 

∎ We evaluate first the abscissa xI of point I having the same power with respect to C1 and C2, which 

means, verifying 𝐼𝑚⃗⃗⃗⃗  ⃗. 𝐼𝑚′⃗⃗⃗⃗ ⃗⃗ =  𝐼𝑛⃗⃗  ⃗. 𝐼𝑛′⃗⃗⃗⃗  ⃗ or (-r2 - xI)(r2 - xI) = (𝛼1-r1-xI). (𝛼1+r1-xI) that can be written as a 

quadratic relation: 2 xI
2+2 𝛼1.xI + r1

2
 - r2

2 - 𝛼1
2 (where r1

2
 - r2

2 - 𝛼1
2 < 0 ) 

 

If ∆ =  𝛼1
2 -2.( r1

2
 - r2

2 - 𝛼1
2)=3 𝛼1

2 -2r1
2
 + 2r2

2, we know that  ∆ is positive, so our quadratic equation 

has two solutions with opposite signs. If we add the constraint 𝛼1 < 0, then: 
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xI = 
−𝛼1−√∆

𝟐
 

∎ The abscissa of A, xA is evaluated thanks to the condition IA2 = 𝐼𝑚⃗⃗⃗⃗  ⃗. 𝐼𝑚′⃗⃗⃗⃗ ⃗⃗  which is the power ℘ of I 

with respect to circle C2. We know that this power is also equal to Ii2
2 – r2

2 or xI
2 - r2

2. After 

computation, we get: 

IA2 = 
1

4
 (4 𝛼1

2 - 2r1
2

 - 2r2
2 + 2𝛼1√∆ ) and as IA2 = (xA - xI)2, we obtain the abscissa of A and A’:  

xA = xI +√℘ and xA’ = xI -√℘. 

∎ Finally, if r’1 and r’2 are the respective radii of circles C’1 and C’2 images of C1 and C2 by I, we 

have (r is the radius of the circle of the inversion): 
𝒓′𝟏

𝒓′𝟐
 = 

𝒓𝟐 .𝒓𝟏

𝐴𝑚⃗⃗⃗⃗⃗⃗  ⃗.𝐴𝑚′⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗
∶  

𝒓𝟐.𝒓𝟐

𝐴𝑛⃗⃗ ⃗⃗  ⃗.𝐴𝑛′⃗⃗ ⃗⃗ ⃗⃗  ⃗
 = 

𝒓𝟏

𝒓𝟐
.

𝐴𝑛⃗⃗ ⃗⃗  ⃗.𝐴𝑛′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐴𝑚⃗⃗⃗⃗⃗⃗  ⃗.𝐴𝑚′⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗
 or 

𝒓𝟏

𝒓𝟐
 
𝑨𝒊𝟏

𝟐−𝒓𝟏
𝟐

𝑨𝒊𝟐
𝟐−𝒓𝟐

𝟐
 .   

We already know that to construct a Steiner chain with a given number of circles between two nested 

circles, the previous ratio must be equal to a specific number k (shown in 5.2.). 
 

∎ It is easy to imagine the complexity of the evaluation of one parameter with respect of the two 

other two parameters to obtain a particular value of k. If C2, is given, the parameters we can modify 

are 𝛼1 and r1. For example, from the previous equation 
𝒓𝟏

𝒓𝟐
 
𝑨𝒊𝟏

𝟐−𝒓𝟏
𝟐

𝑨𝒊𝟐
𝟐−𝒓𝟐

𝟐
 = k, we would have to find a 

formula giving 𝛼1with respect to r1, r2 and k, which was unsurmountable at an elementary level. If it 

had been possible, we would have been able to locate the center of C1 with respect to the center of 

C2 (if the radii of the two circles are fixed to obtain one circle inside the other compatible with the 

construction of a Steiner chain associated with k). For this reason, we will conclude with a technique 

of dichotomic approximation of the value of r1 allowing the best approximation of the given k 

compatible with the construction of the associated Steiner chain. 

5.4.2.2. Solution by successive approximations (figure 13) 

On a given line, locate i2 center of circle C2, then i1 center of circle C1 with radius r1 which is a 

displayed number that can be modified. The number k is also a displayed number, evaluated by the 

software: it is the number which is the ratio of the radii of the concentric circles allowing the 

construction of a chain of n circles tangent to these concentric circles and by the way the construction 

of a Steiner chain of n tangent circles to the given circles C1 and C2. 

We construct, as done before, point A (and point A’) which is the center of the inversion transforming 

C1 and C2 onto two concentric circles (the circle of this inversion is commanded with a point of the 

initial line). 

We construct the images C’1 and C’2 of the circles C1 and C2 by the inversion and their common 

center e (which is the image of A’ by the inversion of circle C), which allows us to evaluate (with the 

software we use: the New Cabri) their respective radii as well as the ratio of these radii. Considering 

the case of our figure, we evaluate r’1/r’2 which is displayed. 

We construct a point t2 of C2 and its image t’2 on C’2 by the inversion. Thanks to the ray [et’2), we 

construct the first circle tangent to C’1 et C’2 (tangent to C’2 at t’2) visible in grey in Figure 13 left. 

Then we construct the image of this circle by the inversion to obtain the first circle tangent to C1 and 

C2 (tangent to C2 at t2) visible in the same figure in black. 

We construct now a chain of n grey circles tangent to C’1 and C’2 starting from the previous grey 

circle which images by the inversion provide a chain of black circles tangent to C1 and C2 starting 

from the previous black circle (Figure 13 right). 

In Figure 13, we have chosen n = 6. But we can state that since r’1/r’2 is not equal to 3 which is the 

value of k associated with a closed chain of 6 circles, our chain of 6 grey circles is not closed between 

C’1 and C’2 and so, the black chain we have constructed by inversion is not a Steiner chain of 6 black 

circles. 
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The final technique consists in modifying the value of r1 in a dichotomic way until the displayed 

value of r’1/r’2 is as close as possible to number 3 when using the maximum of digits allowed by the 

software. If necessary, we can also change the position of i1. 

 

  
 

Figure 13: Starting constructions of a Steiner chain in two nested circles 
 

After such an operation we reach a situation visible in Figure 14 left where the Steiner chain of 6 

circles is constructed between C1 et C2. The animation of point t2 along C2, allows us to visualize all 

the Steiner chains of 6 circles between C1 et C2. On the same figure, we can state that, if we modify 

r1 until the value underlined in green, we have succeeded to reach for the displayed value of r’1/r’2, 

3.000,000,0. In Figure 14 right, we can appreciate the final result after hiding the constructions. 

 

  
 

Figure 14: Final construction of a Steiner chain between two nested circles 
 

In Figure 15 left, we show the construction of a Steiner chain of 11 circles closed after one turn (now 

in red). The value of k that r’1/r’2 must reach after an adequate modification of r1 is equal to 
1+sin (

𝜋

11
)

1−sin (
𝜋

11
)
 

which value given by the software with its best approximation is 1.7844781. We have reached 

1.7844785 that justifies the accuracy of our construction. We can appreciate the result when the 

constructions are hidden in Figure 15 right.  
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Figure 15: A Steiner chain of 11 circles 
 

In order to construct all possible Steiner chains, we need such a figure in which we have constructed 

the number of circles corresponding to the expected chain, change the value of k corresponding to 

this expected chain by using the formula 

1 + sin (
𝑚𝜋
𝑛 )

1 − sin (
𝑚𝜋
𝑛 )

 

where, n is the number of the circles of the chain and m is the number of turns necessary for the first 

closure of the chain 
 

5.5. Steiner chains: some other properties ([6]) 

Only the use of Dynamic Geometry Software can help us to investigate the following properties. 

∎ The first one is about the centers of the circles of a Steiner chain and the contact points between 

them (Figure 16). In Figure 16 left, we have constructed the conic passing through five of the eleven 

centers of the corresponding Steiner chain: we can easyly conjecture that all the centers belong to 

this conic which is qualified as an ellipse (in red) by our software. In Figure 16 right, we have 

constructed the conic passing through five of the eleven contact points of the corresponding Steiner 

chain: we also can easyly conjecture that all these points belong to this conic which is qualified as a 

circle (in blue) by our software. These properties are known properties that can be investigated easyly 

in such figures with the appropriate software. 

 

                  
 

Figure 16: Some points of a chain on the same ellipse or the same circle 
 

∎ The second one, in the case of n = 6, is illustrated in Figure 17: here we can conjecture another 

known property stating that the three segments connecting the contact points of the Steiner chain 
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with the exterior circle (Figure 17 left) pass through a common point belonging to the line of the 

centers of the two given circles. Same statement for the contact points of the interior circles (Figure 

17 right).  

 

                          
 

Figure 17: Segments passing through a common point on the line of the centers of the nested circles 

 

6. Addendum 
Here are some techological indications about the way we used the inversion of a point or the inversion 

of a circle under the New Cabri environment. This software is the one we used for all our figures 

even if most of them could have been realized with Cabri 3D (we did it but finally we have chosen 

the New Cabri for practical reasons). As we had to construct a great quantity of images of points or 

circles by an inversion, we have defined two macros for such a work: 

Macro 1 returning the image of a given point by a given inversion. 

Macro 2 returning the image of a given circle by a given inversion. 

Creation of Macro 1 (Figure 18 left): let us construct the circle (C) (centered at O) of an inversion, 

let us create a point M. Using the measurement tool, we display the radius r of (C) and the distance 

OM. We evaluate with the Calculator in Algebraic mode 
𝑟2

𝑂𝑀
 which is OM’. We construct ray [OM): 

point M’ is obtained with the tool Measurement Transfer in transferring 
𝑟2

𝑂𝑀
 on ray [OM) (click on 

the number, click on the ray and click on O). Then we create Macro 1: chose Initial Object(s) and 

click on circle (C) and on point M, chose Final Object(s) and click on point M’ and finally chose 

Define Macro. A square containing a wheel gear appears. It is possible to change this wheel gear 

onto another image: it is what I did in including number 1. This square represents Macro 1. It is 

possible now to use it as as tool (inversion of a point): to check it we create a point N, then we select 

Macro 1 in clicking on the square and the image of N is created after clicking on (C) first and on N. 

Creation of Macro 2 (Figure 18 right): we open another page of the same document, we copy Macro 

1 from the first page and paste it on page 2. We create circle (C) (circle of our inversion), a blue circle 

(C1) and a point M on (C1). Thanks to Macro 1 we create the image M’ of M (click on Macro 1, on 

circle (C) and on point M). Then ask the software to return the locus of M’ when M describes (C1): 

it is circle (C’1) image of (C1) by the inversion of circle (C). We have now to define Macro 2: same 

algorithm than for Macro 1: Circle (C) and circle (C1) are the initial objects, (C’1) is the final object 

and clicking on Define Macro generates the button (square with a wheel gear) which is Macro 2. 

We have inserted number 2 to replace the wheel gear. At last we can test Macro 2 in clicking on (C) 

and on a new blue circle (C2) to obtain its image by the inversion which is the orange circle (C’2).   
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Figure 18: Creation of the two macros related to the tool “Inversion” 

 

7. Conclusion 
Thanks to dynamic geometry software allowing easy use of a tool for inversion, the paper has 

demonstrated how to solve the problem of the construction of Steiner chains as simply as possible. 

The paper provides to the reader with a wide range of the necessary knowledge to understand the 

techniques of construction and to show the power of these techniques in the figures created with the 

particular software used (here the New Cabri). As always in research of this kind, the work involved 

some questions which could not be solved with elementary tools (such as computations by hand or 

by CAS), and these are explored in the paper. It is hoped that this paper provides a clear view of the 

problems of construction of Steiner chains and will inspire teachers with some ideas for experimental 

investigations for their students even at a highschool level. 

 

Acknowledgment 
I am grateful to Barry Kissane for his advice on English expression. 

 

References 
 

[1]  POLYA G., 1945, How to solve it, Princeton, University Press 

[2]  COXETER H.S.M. & GREITZER Samuel L., 1967, Geometry Revisited Volume 19, MAA 

[3]  LAKATOS I., 1984, Preuves et réfutations Essai sur la logique de la découverte, Hermann, 

Paris 

[4]  BERGER M., 1990, Géométrie Tome 1, Nathan Publishing 

[5]  DAHAN J.J., 2005, La démarche de découverte expérimentalement médiée par Cabri-

géomètre en mathématiques, PhD thesis, Université Joseph Fourier, Grenoble, France  

http://tel.archives-ouvertes.fr/tel-00356107/fr/ 

[6]  EIDEN J.D., 2009, Géométrie analytique Classique, Calvage & Mounet 

[7]  KOZAI K. & LIBESKIND S, 2009, Circle Inversions and Applications to 

Euclidean Geometry, paper online at 

http://jwilson.coe.uga.edu/MATH7200/InversionCompanion/inversion/inversionSupplem

ent.pdf  

[8]  DAVIS T., 2011, Inversion in a Circle, paper online at  

http://geometer.org/mathcircles/inversion.pdf 

WIKIPEDIA, Power of a point, article at https://en.wikipedia.org/wiki/Power_of_a_point 
 

Software 
 

Cabri “Standard”, version 3.14 and Cabri 3D by Cabrilog S.A.S at http://www.cabri.com 

TI-NspireTM CX CAS Premium Teacher Software, version5.2.0.771 by Texas Instruments at 

https://education.ti.com/ 

Proceedings of the 26th Asian Technology Conference in Mathematics

189

http://tel.archives-ouvertes.fr/tel-00356107/fr/
http://jwilson.coe.uga.edu/MATH7200/InversionCompanion/inversion/inversionSupplement.pdf
http://jwilson.coe.uga.edu/MATH7200/InversionCompanion/inversion/inversionSupplement.pdf
http://geometer.org/mathcircles/inversion.pdf
https://en.wikipedia.org/wiki/Power_of_a_point
http://www.cabri.com/
https://education.ti.com/


Mathematics Learning Strategy Scales for Junior
High School Students: Scale Development, Validation

and Intelligent Application
Guangming Wang, Mingyu Su, Xia Chen

bd690310@163.com, sumy1996@foxmail.com, bxchenxia@163.com
Faculty of Education

Tianjin Normal University
China

Abstract: Mathematics learning strategies are an important part of the psychological structure of high-quality
mathematics students. How to measure and evaluate students' mathematics learning strategies Level is of great
significance in related quantitative research. Based on the existing research on mathematics learning strategies, a set
of mathematics learning strategy scales suitable for Chinese junior high school students and with mathematics learning
characteristics were compiled. This research has done 4 times of data collection (a total of 959 valid questionnaires),
item analysis, confirmatory factor analysis and exploratory factor analysis, which proved the validity of the scale in the
measurement of mathematics learning strategies. In this study, the mathematics learning strategies of junior high
school students were divided into 3 main aspects: Mathematics Cognitive Strategies, Mathematics Meta-cognitive
Strategies, Mathematics Resource Management Strategies; 10 kinds of sub-dimensions: Retelling, Elaboration,
Organize, Planning, Monitoring, Feedback-Adjustment, Time-management, Environment-management,
Mood-management, Help-seeking. According to the operational definition, test results show that the questionnaire has
good reliability and validity, which can be used as an effective measurement tool for mathematics learning strategies of
junior high school students. The study has written the scale into an intelligent batch assessment system of mathematics
learning quality for primary and secondary school students, providing an accurate and convenient test of mathematics
learning strategies for a wide range of junior secondary school students in an automated and intelligent manner, and
providing accurate measurement reports and personalized improvement strategies for each student tested.

1. Introduction
Forty years ago, teachers and scholars have realized that traditional classroom teaching methods

are often not the best way for students to acquire knowledge and apply it in practice(see[1]), instead,
enabling students to have the ability to learn and master learning strategies has become an important
factor affecting their learning achievements(see[2]).Under the circumstance of the new era,
UNESCO regards "learn to learn" as the core of education in the 21st century, and "learn to learn" is
more important than "learn knowledge". Once learners have the ability to learn, they will be able to
learn new knowledge, new technology, accept new challenges and undertake new tasks. Mastering
learning strategies is the basis for measuring how to learn, and a good learning strategy is a
powerful tool to help students make mathematics achievements (see [3], [4], and [5]). Mathematics
learning strategies have always been playing an important role in mathematics learning. Measuring
and evaluating the level of students' mathematics learning strategies have also become an important
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link in related quantitative research.
Judging from existing researches, many measurement tools such as Motivated Strategies for

Learning Questionnaire (MSLQ) (see[6]), Learning and Study Strategies Inventory (LASSI-HS)
(see[7]) and High School Students Mathematical Learning Strategy Questionnaire (see[8]) have
been compiled by domestic and foreign scholars. However, these researches are not enough to
reflect the mathematics learning characteristics of junior high school students in the compulsory
education of our country, and because some scales have been formulated for a long time, and many
studies have not been revised but used directly, making it difficult to ensure its the effectiveness.
In March 2021, China's Ministry of Education and other six departments jointly issued the

Guidelines for Compulsory Education Quality Evaluation, which pointed out clear instructions and
requirements in terms of student development, academic development, and physical and mental
development. As a non-intellectual factor, learning strategy has a great influence on the learning
process and academic performance of junior high school students. Therefore, based on the purpose
of better understanding and measuring the learning strategies of junior middle school students in
compulsory education at this stage, this study compiled a set of reliable and valid mathematics
learning strategy scale considering the mathematics learning process of junior secondary school
students in China. According to the learning characteristics of junior high school students and the
actual use of learning strategies, this scale provided targeted theoretical references and evaluation
tools for the teaching of junior high school mathematics strategies.

2. Multifaceted definition of learning strategies

2.1. Definition and classification of learning strategies
As an important research direction in psychology and pedagogy, a lot of definitions towards

learning strategies have been carried out by scholars. Rigney (see[9]) proposed that learning
strategies are various operations and procedures that students use to acquire, maintain and extract
knowledge and homework. Bråten and Strømsø (see [10]) pointed out that students who were good
at using organizational strategies were better at obtaining good performance. According to Winstein
(see [7]), in a broad sense, learning strategies refer to various abilities that are helpful and necessary
for effective learning and maintaining information, as assumed by researchers and practitioners.
Haga (see [11]) pointed out that learning strategies are strategies affecting learners' self-information
processing activities. All activities that can promote learning are learning strategies, such as
memory methods, constructing connections between knowledge, taking notes, making comments,
drawing marks, etc. According to the definition by Chamot (see [12]), learning strategies are skills,
methods, or actions that can be directly carried out, which helps improve the learning effect,
optimize the learning process, and strengthen the memory of language knowledge. Generally
speaking, learning strategies refer to procedures, rules, methods, techniques, and control methods
that learners effectively learn in learning activities, it can be either an implicit rule system or
explicit operating procedures and steps.
There are different opinions on the definition of the concept of learning strategy in the academic

circle, and they also have different views on the structure of learning strategies. Representative
classifications are as follows. Rigney (see [9]) believed that learning strategies consisted of
independent and inclusive strategies. Weinstein and Goetz (see [13]) believed that learning
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strategies included cognitive information processing strategies, such as finishing strategies, and
active learning strategies, such as test-taking strategies. Supplementary strategies, such as strategies
for dealing with anxiety; meta-cognitive strategies, like those for monitoring the acquisition of new
information. Pintrich (see [14] and [15]) believed that the most basic cognitive strategy was
rehearsal, more complex strategies were elaboration and organization; based on learning strategies,
Dansereau (see [16]) divided learning strategies into two types: basic strategies and supporting
strategies. Basic strategies refer to various learning strategies in which materials can be directly
manipulated, which mainly includes information acquisition and storage, information retrieval and
application, such as memorization, organization and recalling strategies. Supporting strategies
mainly refer to strategies that help learners maintain an appropriate learning mentality, so as to
ensure the effective operation of basic strategies, such as focused attention strategies,
self-monitoring and judgement strategies. Mckeachie etc. (see [6]) sorted out them as cognition
based on the components covered by the learning strategy, meta-cognitive strategy, resource
management strategy. Cognitive strategies include retelling strategies, finishing strategies, and
organizational strategies; meta-cognitive strategies include planning strategies, monitoring
strategies, and adjustment strategies; resource management strategies include time management
strategies, learning environment management strategies, effort management, and support from
others and so on.
2.2. Tools for measuring learning strategies
In the establishing process of many learning strategy measurement tools, there is a certain

similarity in the structure of learning strategies by foreign researchers. Among them, the most
representative and most widely used is the MSLQ scale established by Pintrich, Mckeachie and so
on (e.g. [6]and [17]). In terms of the classification of learning strategies, it consists of three
categories: mathematical cognitive strategies, mathematical meta-cognitive strategies, and
mathematical resource management strategies, in these strategies, 81 items and 15 sub-dimensions
were included to evaluate students' learning motivation and learning strategies. Berger (see[18])
established a targeted scale for middle school students' cognitive strategies according to
Mckeachie's research. Liu (see [19]) established a learning strategy scale for middle school students
based on the research of Mckeachie et al. Secondly, The Learning and Study Strategies Inventory
established by Weinstein (see [20]) divides learning strategies into 10 sub-dimensions, namely:
attitude, motivation, time organization, anxiety, concentration, information processing, selection of
main ideas, use of techniques and support materials, self -assessment, testing strategies.
Chinese researchers have compiled a series of questionnaires on mathematics learning strategies.

For example, Liu’s (see [21]) Mathematics Learning Strategy Scale for Primary School Students
contains two main dimensions: mathematics meta-cognitive strategies (including planning strategies,
monitoring and adjustment strategies, evaluation of reflection strategies, strategic awareness) and
mathematical cognitive strategies (including mathematics concept strategies, computational
learning strategies, application problem solving strategies, geometric knowledge learning
strategies).The Middle School Students' Mathematics Learning Strategy Scale compiled by Yao
(see[22]) contains four dimensions: mathematics meta-cognitive strategy, cognitive strategy,
resource management strategy and emotional strategy. The Questionnaire on Mathematics Learning
Strategies for High School Students compiled by Wang Guangming divides mathematics learning
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strategies into mathematics cognitive strategies, mathematics meta-cognitive strategies and
mathematics resource management strategies.

3. Methods

3.1. Model construction
Integrating literature data and existing mature scales, combining expert opinions, dimensions and

model of the questionnaire are finally determined (Fig. 3.1.1), which contains 3 primary dimensions
and 10 secondary dimensions. The operational definitions of each dimension are shown in Table
3.1.1.

Table 3.1.1 Operational definition of sub-dimension of mathematics learning strategy
First-level
dimension

Second-level
dimension Definition of operation concept

Mathematics
Cognitive
Strategies

Retelling Strategy

It refers to the strategy of reproducing learning materials
or stimuli in order to remember and retain relevant
concepts, propositions, properties, inferences, solutions,
etc. in mathematics, by means of timely review,
repeated practice, multiple representation and
elimination of interference in order to form long-term
memory.

Elaboration
Strategy

It refers to the strategy of self-coding, translating,
explaining and distinguishing different mathematical
objects and situations, choosing appropriate ways, such
as adding details, giving examples and forming
associations, to express mathematical content and
construct meaningful learning.

Organize Strategy

It refers to the integration of mathematical knowledge
with a holistic view, sorting and summarizing according
to the characteristics or categories of mathematical
knowledge, forming a clear knowledge network
structure, from which a mathematical method or
mathematical model can be selected or designed to

Fig. 3.1.1 Dimension division of mathematics learning strategies

Proceedings of the 26th Asian Technology Conference in Mathematics

193



Scale pre-establishment
Questions of the initial questionnaire are mainly from:
Learning and Study Strategies Inventory (LASSI-HS) (see[7])
Questionnaire on Mathematics Learning Strategies for High School Students (see[8])
Mathematics Learning Strategies Scale (see[23])

solve problems through thinking and judgment.

Mathematics
Meta-cognitive
Strategies

Planning Strategy

It refers to the overall planning of mathematics learning,
as well as the strategy of reasonable planning and
arrangement of specific learning content, time
allocation, difficulty progress, methods and so on.

Monitoring
Strategy

It means that learners are alert to their own
mathematical knowledge level, learning state, learning
ability, learning effect, etc., and can find out abnormal
situations in time, such as realizing that their poor
ability of examining problems affects the correct rate of
solving problems, realizing that they do not understand
the concept of equation clearly, etc.

Feedback
-Adjustment
Strategy

It refers to the summary and generalization of learners'
success and failure experience in the process of
mathematics learning; And when the mathematics
learning state and the mathematics learning environment
change, in order to maintain the good mathematics
learning effect, the learners make changes in behavior,
psychology and learning methods.

Mathematics
Resource

Management
Strategies

Time-management
Strategy

It refers to the strategy of improving the efficiency of
mathematics learning, arranging learning time as a
whole, making efficient use of the best time and making
flexible use of fragmented time.

Environment
-management
Strategy

It refers to the management methods and measures for
the preservation of mathematical materials, the
placement of mathematical tools and articles, and the
creation of mathematical learning atmosphere for the
convenience of mathematics learning, such as ensuring
the quiet and undisturbed learning environment.

Mood-management
Strategy It refers to self-motivation, motivation and confidence.

Help-seeking
Strategy

It refers to the strategy of seeking external tools such as
concept map software, mind map software, graphic
calculator and online resources to assist mathematics
learning, or seeking human resources such as teachers
and students to assist learning.
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Considering characteristics of Chinese junior high school students' mathematics learning, quoting
and adapting the content of the above questionnaires, a 87-question questionnaire was established,
including 26 cognitive strategies, 28 meta-cognitive strategies, 27 resource management strategies,
and 6 polygraph questions. In the questionnaire, the LIKERT five-point method for scoring is
adopted, and the question options "very consistent", "Consistent", "uncertain", "non-consistent",
and "very non-consistent" are respectively scored as "5", "4", "3", "2", "1". Random method is
adopted to arrange the order of questions.
3.2. Sample and procedure
In the preparation of the questionnaire, a total of 4 tests were carried out using the cluster

sampling method. For questionnaires collected in each test, invalid questionnaires are eliminated
through the following two steps. Step 1: Visual inspection, eliminate invalid questionnaires with
regular, periodic, and uniform answers; Step 2: Continue to screen the rest questionnaires based on
the polygraph questions. Remove questionnaire in which there are great differences in answers to
polygraph questions.

Sample 1: Pre-test sample. Including students in 8 classes in 4 typical schools in Tianjin,
namely, there are students of the seventh and eighth grade of Experimental Middle School,
Fangzhou Experimental Middle School, Haihe Middle School, and Tianjin No. 5 Middle School,
respectively. A total of 330 questionnaires were issued and 286 were collected. After a two-step
questionnaire screening, 209 valid questionnaires were finally obtained.

Sample 2: Used for exploratory factor analysis in the process of scale formulation. Subjects of
the survey came from 5 middle schools in Tianjin, Hubei, Liaoning, Gansu, and Jiangsu. A total of
610 questionnaires were issued and 552 questionnaires were collected. After a two-step
questionnaire screening, 428 valid questionnaires were finally obtained.

Sample 3: Used for verification factor analysis in the scale formulation process. Participants
came from three schools in Tianjin, Shandong and Guangzhou. A total of 300 questionnaires were
issued and 264 questionnaires were collected. After a two-step questionnaire screening, 209 valid
questionnaires were finally obtained.

Sample 4: Used to calculate the retest reliability of the scale. Students are selected from those
who have participated in the second test in two middle schools. A total of 160 questionnaires were
issued and 142 questionnaires were collected. After a two-step questionnaire screening, 113 valid
questionnaires were finally obtained.

4. Results

4.1. Data analytic of scale
The 81 questions of the questionnaire (not including polygraph questions) were analyzed through

the SPSS software: First, analyze the correlation between the scores of each question in sample 1
and the total scores of students' mathematics learning strategies using the total question correlation
method, then delete the questions with Pearson difference correlation coefficient of less than 0.4…
which are the question 2,7,21,34,40,47,58,61,73,74,77,78 and 80, and a total of 13 questions have
been deleted. Secondly, after deleting the above 13 questions, the critical ratio method is adopted to
test the significant difference in the mathematics learning strategy scores of the high score group
(the last 27%) and the low score group (the first 27%) of sample 1, items with insignificant
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differences between high and low groups are excluded. It was found that after these items were
deleted using the total correlation of items, there were significant differences between the high
score and low score groups in the remaining items. After project analysis, 68 questions were left
(not including polygraph questions).

After going through the item analysis to screen the questions, the exploratory factor analysis
method was adopted in SPSS to analyze the data, modify and improve questions in the
questionnaire. First, perform the Bartlett sphere test on the three main dimensions of the
questionnaire, and the results are shown in Table 4.1.1. From the data in the table, we can see that
the KMO values of the overall mathematics learning strategy and the three main dimensions are
more than 0.89, and the Bartlett sphere test value is significant (p<0.01), indicating that it is suitable
for factor analysis of sample data.

Principal component analysis and maximum variance rotation method are adopted in SPSS
software to determine the number of questionnaire factors and questions. The following principles
are adhered to in terms of keeping questions in the questionnaire.
(1) The characteristic value of the factor is greater than 1;
(2) The factor loading value is at least higher than 0.4;
(3) The load on different factors is no more than 0.4;
(4) The extracted principal components are consistent with the steep-order test;
(5) Each factor contains at least 3 questions;
(6) Only delete one question at a time, and re-examine and analyze the new data after each question
is deleted.
Principles of naming after factors are as follows:
(1) If the topic of a certain factor mainly comes from a certain sub-dimension of the mathematical

learning strategy model, it is named after this sub-dimension;
(2) If the topics that contribute more than half of the variance of a certain factor are scattered

from different sub-dimensions of the mathematical learning strategy model, then they should be
named after by referring to the common mathematical learning strategies of these topics.

To identify the number of factors in the questionnaire and the number of questions for each
factor, the principal component analysis method and the maximum variance rotation method were
selected in SPSS. After exploratory factor analysis (refer to Table 4.1.2), the factor structure of the
three main dimensions of the mathematical learning strategy is established, and its load value,
common factor variance and factor contribution rate are obtained, and the four principal
components of the mathematical cognitive strategy are extracted, the three principal components of

Table 4.1.1 Factor analysis test value of the initial data of the scale
Mathematics
Learning
Strategies
(Total)

Mathematics
Cognitive
Strategies

Mathematics
Meta-cognitive
Strategies

Mathematics
Resource
Management
Strategies

KMO 0.891 0.921 0.910 0.918
11023.317 2084.042 2180.029 1493.373

Sig. 0.000 0.000 0.000 0.000
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cognitive strategy and the three principal components of mathematical resource management
strategy.

Table 4.1.2 Rotated factor matrix for Mathematics Cognitive Strategies based on
exploratory factor analyses constrained to three factors

Item
Factor loadings Common

factor
variance1 2 3

Q75 0.780 0.666
Q30 0.740 0.591
Q67 0.705 0.625
Q51 0.680 0.650
Q83 0.664 0.568
Q53 0.594 0.561
Q8 0.827 0.718
Q28 0.689 0.565
Q50 0.663 0.540
Q81 0.595 0.529
Q3 0.756 0.601
Q43 0.559 0.483
Q24 0.565 0.595
Q27 0.502 0.463

Cumulative percentage of variance
(%) 24.182 44.269 58.252

As is vividly shown in Table 4.1.2, in the factor structure matrix of the mathematical cognition
strategy, the load value of each item after rotation is greater than 0.5, indicating that there is a close
relationship between the item and the factor to which it belongs; In the common factor variance, the
explanation of each question to the questionnaire is 0.4-0.8, indicating that the extracted factors can
reflect the information of the original variables. The cumulative contribution rate of the three
factors is 58.252%, indicating that this is a first-order three-factor structure, where factor 1 is an
organization strategy, with a total of 6 questions; factor 2 is a finishing strategy, with a total of 4
questions; factor 3 is a retelling strategy, a total of 4 questions.

Table 4.1.3 Rotated factor matrix for Mathematics Meta-cognitive Strategies based on
exploratory factor analyses constrained to three factors

Item
Factor loadings Common factor

variance1 2 3
Q78 0.747 0.649
Q52 0.714 0.549
Q62 0.706 0.599
Q39 0.698 0.606
Q64 0.696 0.601

Proceedings of the 26th Asian Technology Conference in Mathematics

197



As is vividly shown in Table 4.1.3, in the factor structure matrix of the mathematical
meta-cognition strategy, the load value of each item is above 0.5, which indicates there is a close
relationship between the item and the factor to which it belongs. In the common factor variance, the
explanation of each question to the questionnaire is 0.5-0.8, indicating that the extracted factors can
reflect the information of the original variables. The cumulative contribution rate of the three
factors is 60.689%, indicating that this is a first-order three-factor structure, where factor 1 is a
reflective adjustment strategy with a total of 8 questions; factor 2 is a monitoring strategy with a
total of 3 questions; factor 3 is a planning strategy, a total of 3 questions.

As is vividly shown in table 4.1.4, in the factor structure matrix of the mathematical resource
management strategy, the load value of each item is above 0.5, which indicates that these items are
closely related to factors to which they belong; in terms of common factor variance, each item’s
explanation of the questionnaire are 0.4-0.8, which shows that the extracted factors can reflect the
information of the original variables. The cumulative contribution rate of the three factors is
58.017%, indicating that this is a first-order three-factor structure, where factor 1 is a mood
management strategy with a total of 3 questions; factor 2 is an environmental management strategy

Q13 0.628 0.559
Q9 0.614 0.491
Q32 0.505 0.541
Q59 0.834 0.742
Q4 0.773 0.625
Q31 0.447 0.412
Q38 0.829 0.746
Q57 0.812 0.770
Q29 0.706 0.563

Cumulative percentage of variance
(%) 28.990 45.846 60.689

Table 4.1.4 Rotated factor matrix for Mathematics Resource Management Strategies
based on exploratory factor analyses constrained to three factors

Item
Factor loadings Common factor

variance1 2 3
Q44 0.852 0.748
Q42 0.677 0.525
Q33 0.595 0.457
Q22 0.836 0.719
Q72 0.800 0.715
Q84 0.510 0.454
Q56 0.721 0.579
Q5 0.692 0.506
Q37 0.636 0.518

Cumulative percentage of variance
(%) 20.533 40.647 58.017
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with a total of 3 questions; factor 3 is the outside world, a total of 3 questions for the help-seeking
strategy.

Through item analysis and exploratory factor analysis, a total of 31 questions from the
questionnaire were deleted, and 37 questions from the questionnaire on mathematics learning
strategies (first edition) were retained. After deleting questions using the software's arithmetic
values, it turned out that the division of dimensions and some questions were not ideal. The
numerical value calculated by the software could be used as the basis for deleting the question, but
the question couldn't be deleted blindly based on the numerical value. It is also necessary to
consider whether the semantics of the reserved question are clear and concise, and whether it covers
all dimensions. Considering the above reasons, the original dimensions need to be merged or split
and renamed. To make questions in the questionnaire more consistent with characteristics of junior
high school students' mathematics learning, and compile a questionnaire with good reliability and
validity, students' responses to some questions in the mathematics learning strategy questionnaire
(first edition) in the process of answering questions, the expression of some questions in the
questionnaire is improved and modified. Subsequently, topics are mixed and sorted out, and the
junior high school students' mathematics learning strategy level survey questionnaire (second
edition) is finally determined, in which there is a total of 46 questions, including 42 formal
questions and 4 polygraph questions (reliability questionnaire), the specific distribution of the
questions is shown in Table 4.1.5.

Remarks: * are items with reversed scoring method
Investigate sample two using using Mathematics Learning Strategy Scale for Junior High

School Students (2nd Edition). First, process the collected data in advance, and then analyze the
questionnaire data using use SPSS software based on the data processing method and analysis
process in the initial research. The 15th and 17th questions are deleted, and 44 questions were
left.Last but not least, the data is analyzed by exploratory factors, and the Mathematics Learning

Table 4.1.5 Item Distribution of Mathematics Learning Strategy Scale for Junior High
School Students (2nd Edition)

Second-level dimension NO. Number of item
Retelling Strategy 3,17,24,27,41 5
Elaboration Strategy 2,8,28,46 4
Organize Strategy 1,6,7,15,30 5
Planning Strategy 12,26*,29,36,38,39 6
Monitoring Strategy 4,13,18,31,34,45 6

Feedback-Adjustment Strategy 9,10*,23,32 4
Time-management Strategy 19,25,44 3

Environment-management Strategy 11,16,21 3
Mood-management Strategy 33,40,42 3

Help-seeking Strategy 5*,20,37 3
Polygraph Test 11,14,35,43 4

Total 46
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Strategy Scale for Junior High School Students (3rd Edition) is determined. The specific distribution
of questions is shown in Table 4.1.6.

Table 4.1.6 Item Distribution of Mathematics Learning Strategy Scale for Junior High
School Students (3rd Edition)

First-level
dimension Second-level dimension NO. Number of item

Mathematics
Cognitive
Strategies

Retelling Strategy 3,24,27,41 4
Elaboration Strategy 2,8,17,28 4
Organize Strategy 1,6,7,30 4

Mathematics
Meta-cognitive
Strategies

Planning Strategy 12,26,29,36,38,39 6
Monitoring Strategy 4,13,15,18,31,34 6

Feedback-Adjustment Strategy 9,10,23,32 4
Mathematics
Resource

Management
Strategies

Time-management Strategy 19,25,44 3
Environment-management Strategy 11,16,21 3

Mood-management Strategy 33,40,42 3
Help-seeking Strategy 5,20,37 3

Polygraph Test 11,14,35,43 4
Total 44

Investigate the selected sample three through Mathematics Learning Strategy Scale for Junior
High School Students (3rd Edition), then perform confirmatory factor analysis on the data collected
from the questionnaire using AMOS software. The purpose of the verification factor analysis is to
test whether there is a good fitting effect in the measurement results of the questionnaire and the
conceptual model. The measurement model in the structural equation model is mainly used to test
whether the various questions of the questionnaire can well constitute the 3 main dimensions
(second-order factors) and 10 sub-dimensions (first-order factors) in the questionnaire. Before
constructing the model, the first-order factors are tested. Then analyze the operation results of the
AMOS software, first consider the load value of each topic in the dimension to which it belongs.
According to the results, there are 25 questions with a load value of 0.6-0.8, 9 questions with a load
value of 0.5-0.6, and 6 questions with a load value below 0.5. Questions with factor loading values
less than 0.5 (questions 4, 5, 10, 12, 31, 34) are deleted, and 34 questions were left. Subsequently,
observe the MI value of Covariances in Modification Induces. If the MI value is greater than 3.84, it
is considered to be large enough. Under the premise that the causality of its parameters is supported
by theory, it can be released, namely, deleted, so as to be estimated again. Observe the MI value of
Covariances in the Modification Induces report of the result. If it is found that the correction index
between 2 pairs of questions in the MI value is above 20, it indicates that there is a certain causal
relationship between these questions.

Through the observation of the content of these questions, it is believed that there are indeed
repetitive expressions in questions 6 and 7, questions 32 and 33 respectively. For example, question
6 "To consolidate the knowledge of mathematics I have learned, I will make a knowledge network
by sorting out relevant knowledge" and question 7 "I will sort out and summarize the common test
questions of mathematics in junior high school", there is a certain degree of homogeneity of
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expression, and one question can be deleted among them.The factor load of question 6 is less than
that of question 7, therefore, delete question 6; the factor load value of question 32 is 0.71, while
that of question 33 is 0.53. Therefore, delete question 33 because of its small factor load. Referring
to the MI value in Regression Weights and combining the meaning of the sentence, question 29 was
classified as a mood management strategy. According to the revised MI value, 2 questions were
deleted, leaving a total of 32 questions.

Combining the theoretical framework model, a second-order verification factor analysis was
performed on the model. The results of various indicators are shown in Table 4.1.7

As is vividly shown in the data in Table 8, the second-order 3-factor model has a better fitting
effect. The standardized load value of the first-order factor of 32 questions is between 0.50-0.78,
and that on the second-order factor is between 0.50 and 0.78. The standardized load value of first
order on the second order is between 0.45-0.68, therefore, we believe that the fitting between the
first-order 10-factor and second-order 3-factor model has a good fitting effect and is acceptable.
After conducting verification factor analysis, it turns out that the structural validity is good, and the
path analysis is carried out to construct the structural model. The structure model of the
questionnaire and the correlation coefficient between the standardized load value and the
second-order factor are shown in Figure 4.1.1.

4.2. Reliability & validity of the scale
Reliability refers to the consistency, stability and reliability of the test results. The higher the

Table 4.1.7 Fitting index of Second-order 3-factor model

Model /df RMSEA NFI TLI CFI GFI

Second order factor 1.452 0.048 0.866 0.901 0.905 0.802

Fig. 4.1.1 Dimension model of mathematics learning strategies scale for junior high school
students
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reliability coefficient, the more consistent, stable and reliable the test results. This paper analyzes
the reliability of the questionnaire by calculating the internal consistency and test-retest reliability.
According to the results (Table 4.2.1), the Cronbach's α coefficients of main dimensions of the
questionnaire on the level of mathematics learning strategies for junior high school students are
between 0.83 and 0.89, and the Spearman-Brown split-half reliability is between 0.76 and 0.86,
indicating that there is a high degree of consistency in the internal questions of main dimensions of
the compiled strategy questionnaire. The Cronbach α coefficient of all questions in the
questionnaire is 0.970, and the Spearman-Brown split-half reliability is 0.937, indicating that there
is a good internal consistency in the compiled mathematics learning strategy questionnaire. In the
retest, sample four is selected, and the Pearson product difference correlation method was adopted
to calculate the retest reliability of the questionnaire, subsequently, the correlation between the two
test scores is analyzed, according to the results, the retest reliability of each main dimension of the
questionnaire is between 0.86-0.90, and the retest reliability of the total questionnaire is 0.906, from
which we can see that there is a good internal consistency in the questionnaire. Combined with
various reliability indicators, it is believed that the Mathematics Learning Strategies Scale for
Junior High School Students is highly reliable.

Content validity refers to the extent to which questions of the questionnaire can reflect the
content being measured, and whether the purpose of the measurement can be achieved. Before the
initial test questionnaire was formed, the content of the questions was borrowed from domestic and
foreign scales or questionnaire, and the actual situation of mathematics learning of junior high
school students in our country was taken into consideration; after that, I discussed with many
experts, including the preparation of the questionnaire’s guideline and questionnaire. The structure
of the questionnaire and precautions for the preparation of the question, etc., are revised or deleted
according to opinions of experts, and the survey model is constructed to determine questions of the
Questionnaire on The Level of Mathematics Learning Strategies for Junior High School Students.
In terms of the evaluation of the content validity of the final version of the questionnaire, four
experts, Cao Yiming, Yu Ping, Li Hongyu and Wang Xiaozhuang were invited to evaluate the
correlation between each topic in the Questionnaire on the Level of Mathematics Learning
Strategies for Junior High School Students and its respective dimensions (Expert Consultation
Questionnaire) See Appendix 5), and calculate the content validity of the questionnaire based on the
expert evaluation results, according to the results, the consistency level among the four evaluators is

Table 4.2.1 Reliability of Mathematics Learning strategies scale

Scale index Cronbach’s
α coefficient

Spearman
-Brown
Split-half
reliability

Retest
reliability

Mathematics Cognitive Strategies 0.888 0.818 0.891
Mathematics Meta-cognitive Strategies 0.878 0.856 0.858
Mathematics Resource Management

Strategies 0.839 0.768 0.792

Mathematics Learning Strategies 0.970 0.937 0.906
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0.84, indicating that there is good consistency among these evaluating factors. The content validity
index of the questionnaire item level is shown in Table 4.2.2:

There are 28 questions in the questionnaire being unanimously approved by experts, which
accounts for 81% of the total number of questions, indicating that each question has good content
validity; calculating the average I-CVI value of each question, it can be obtained that the content
validity of the questionnaire, the S-CVI/Ave is 0.95, reaching the standard of 0.90, indicating that
the Mathematics Learning Strategies Scale for Junior High School Students has good content
validity.

According to Psychometric related theories, there should be a medium to high correlation
between various dimensions of the questionnaire, and each dimension should have a high
correlation with the total dimension. If the correlation between the dimensions and the total
dimensions is higher than the correlation between the dimensions, it indicates that the dimensions
are relatively independent, the structure validity is better; otherwise, the structure validity is poor.

Remarks: ** means that there is a significant correlation at a significance level of 0.01 (two-sided).
Through the observation of the data in Table 4.2.3, it is found that there is a significant

correlation among the three dimensions of the questionnaire. The Pearson correlation coefficient
between the three dimensions is between 0.75 and 0.83, and the total mathematics learning
meta-cognition questionnaire is related to the Pearson correlation coefficient of each dimension.
Between 0.90-0.95. The Pearson correlation coefficient between each dimension and the total
questionnaire is higher than the correlation coefficient between each dimension, which means that
the compiled questionnaire has good structural validity.

Table 4.2.2 Content Validity Index of Formal Questionnaire
Number of
experts

Number of experts with
a score of 3 or 4

Item
number I-CVI Pc K* Evaluation

4 3 7 0.750 0.250 0.670 Good
4 29 1.000 0.063 1.000 Excellent

Table 4.2.3 Correlation coefficients between each dimension of the questionnaire and that
between each dimension and the learning strategy

Mathematics
Cognitive
Strategies

Mathematics
Meta-cognitive
Strategies

Mathematics
Resource

Management
Strategies

Mathematics
Learning
Strategies

Mathematics Cognitive
Strategies 1 0.942**

Mathematics
Meta-cognitive
Strategies

0.804** 1 0.915**

Mathematics Resource
Management Strategies 0.821** 0.758** 1 0.929**

Proceedings of the 26th Asian Technology Conference in Mathematics

203



4.3. Establishment of the scale
In the Mathematics Learning Strategy Scale for Junior High School Students, mathematics

learning strategies were divides into three dimensions: mathematics cognitive strategies,
mathematics meta-cognitive strategies and mathematics resource management strategies. The
details of the scale development are shown in the following three aspects:
1. The number and content of questions. A total of 36 questions were set in the Mathematics

Learning Strategy Scale for Junior High School Students. The content of the questionnaire is
consistent with the characteristics of junior high school students' mathematics learning, which helps
prevent students from being distracted due to answering questions for a very long time, leading to
distortion in data collection, and simultaneously ensuring the authenticity of the collected data.
2. Expression of questionnaire and instruction. In the compilation of the "Math Learning

Strategies Scale for Junior High School Students", in order to clarify the question, words indicating
frequency (such as "rarely", "frequently", etc.) were avoided, and definition of options in each level
of the item is added to the instruction.
3. Verification factor analysis of the scale. In the compilation of the Mathematics Learning

Strategy Scale for Junior High School Students, in order to better test whether the various topics of
the scale and the theoretical model of the concept have a good fitting effect, sample data different
from those in the verification factor analysis were adopted for verification factor analysis.

The questionnaire was developed by combing through the literature and combining expert
opinions to construct a model for the initial version of the Mathematics Learning Strategies Scale,
which was tested and revised several times to obtain the second, third and fourth versions of the
scale respectively. Based on the test data of the fourth version, the survey model was revised to
establish the structural model of the scale. A total of 36 questions were contained in Mathematics
Learning Strategies Scale for Junior High School Students, which were divided into 3 dimensions
and polygraph questions. The specific distribution of these questions is shown in Table 4.3.1.

Table 4.3.1 Item Distribution of Mathematics Learning Strategy Scale for Junior High
School Students (4th Edition)

First-level
dimension Second-level dimension NO. Number of

questions
Mathematics
Cognitive
Strategies

Retelling Strategy 3,10,24,27 4
Elaboration Strategy 2,8,17,28 4
Organize Strategy 1,7,30 3

Mathematics
Meta-cognitive
Strategies

Planning Strategy 26,31,33,36 4
Monitoring Strategy 13,15,18 3

Feedback-Adjustment Strategy 9,23,32 3

Mathematics
Resource

Management
Strategies

Time-management Strategy 4,19,25 3
Environment-management

Strategy 16,21,22 3

Mood-management Strategy 6,12,29 3
Help-seeking Strategy 5,20 2

Polygraph Test 11--34,14--35 4
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Total 36
Remarks: No.11 and NO.34; NO.14 and NO.35 are two pairwise lie-detect items

5. Development of an intelligent assessment system for mathematical learning

strategies

Based on the above learning strategy scales for junior secondary school students, two intelligent
assessment tools have been designed and developed based on different scenarios, namely the
Individual Student Edition S1.0 and the Integrated School Edition X1.0, which provides reports and
recommendations for individual students and schools and districts as a whole.
The software is divided into three modules: the first module is the basic information collection
module, the second module is the scale data collection module and the third module is the results
and recommendations output module. The research team used technology to improve the
compatibility of the scale by upgrading the previous paper-and-pencil test to a combination of
online and offline tests; using technology to improve the practicality of the scale by providing
timely feedback to students on the test results and giving them strategies for improvement; and
using technology to improve the convenience of the scale by collecting the results of each student's
test in a coordinated manner to provide a basis for overall proficiency testing in schools and
districts.

The software integrates the various dimensions of the mathematics learning strategy scale for junior
high school students and the level of learning strategy levels in each region. After uploading the
overall data collected by the individual student version S1.0, it can output a customized document
for each student with the overall score, First-level dimension score rate, First-level dimension level
radar graph, and detailed response recommendations in an intelligent and batch-oriented way .The
software uses technology to accurately measure students' level of mathematical learning strategies,
enhance students' knowledge of their own level of mathematical learning strategies and greatly
improve the quality of their mathematical learning.

6. Conclusion and Discussion

Since Pintrich, Mckeachie et al. (see [6]) developed the MSLQ, scales for measuring students'
learning strategies have evolved, but there is a wide variety of dimensional divisions, and this
complexity has posed some problems for researchers in selecting and using the scales. According to
a literature review of the direction of learning strategy measurement, the learning strategy-related
scales developed in recent years are mostly universal and general scales, and there is a lack of
special scales for mathematics subjects and junior high school students.

Therefore, this research aims to achieve two goals. One is to establish a dimensional model
and operational definition of mathematics learning strategies; the other is to make an authoritative
mathematics learning strategy scale suitable for junior high school students based on the established
model.

Therefore, this study aims to achieve three objectives: firstly, to establish a dimensional model
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and operational definition of mathematics learning strategies; secondly, to produce an authoritative
mathematics learning strategies scale for junior secondary school students based on the model
developed; thirdly, to develop an intelligent assessment system to provide convenient, fast and
accurate conditions for the practical application of the Mathematics Learning Strategies Scale for
junior secondary students, and provide students with targeted countermeasure suggestions based on
accurate measurements..

In this research, 81 items (belonging to three main dimensions) were first established. Based
on the significant difference test, exploratory factor analysis, and expert guidance and suggestions,
the items were deleted and adapted to make the items, reduced 81 items to 36 items (belonging to
10 types of sub-dimensions, 3 types of main dimensions), and then the Mathematics Learning
Strategy Scales for Junior High School Students were established. The reliability of this scale is
tested by Cronbach’s α coefficient, showing that the scale is very reliable.

Furthermore, verification factor analysis was adopted in this study to evaluate and test the
established model. After the model was revised, it was found that all fitness indexes were within the
acceptable range, indicating that the structural model was verified. The development process of the
"Mathematics Learning Strategy Scale for Junior High School Students" is scientific and objective,
with good reliability and validity indicators, and can be used as an effective tool for investigating
and evaluating the level of junior high school students' mathematics learning strategy.

Finally, the "Intelligent Batch Assessment of Mathematics Learning Quality for Primary and
Secondary Students - Learning Strategies" software, S1.0 for individual students and X1.0 for
schools, was developed using the well-developed Mathematics Learning Strategies Scale for junior
secondary students. After simulation tests and field applications in Tianjin, Chongqing, Qinghai
Province and Henan Province, the software has shown very good results in helping individual
students to improve their mathematics learning strategies and learning quality, and in helping
schools and districts to accurately control the weaknesses in mathematics education development.

In the follow-up of this study, we will continue to optimize the software, provide students with
the measurement of mathematics learning level, provide suggestions for students to learn
mathematics according to the measurement results, combine it with curriculum compilation, and
make contributions to curricular choices and assessment practices based on experimental data.

Appendix 1

The Mathematics Learning Strategy Scales for Junior High School Students

Dear students:
To explore some of the thoughts and feelings of junior high school students in the process of

mathematics learning, we invite you to participate in this survey. Thank you for your cooperation
with this survey.
Specific requirements are as follows:
1. Please fill in or select the appropriate answer according to your actual situation. Note that each
question needs to be answered, and only one answer can be selected
2. There are five options in each question: A, B, C, D, and E, and the meaning of each alternative
answer is as follows
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A: Very consistent: it does not mean that the situation described by the fan is always happening to
you, but it means that the fan is consistent with you in almost all situations
B: Consistent: it means that this statement is consistent with you under normal circumstances
C: Uncertain:half of the cases where this statement is consistent with you
D: Inconsistent: this statement is inconsistent for you under normal circumstances.
E: Very inconsistent: the statement is inconsistent to you in almost all cases
3. There is no right or wrong answer to the following questions, and the answer results are only for
scientific research and not as other basis;
4. The results of this survey will be answered anonymously. We expect to keep the results of the
answers absolutely confidential. Please be sure to answer every question carefully and truthfully.
Your response is very important to our research.
Basic Information
School: Class: Gender: Age:
Survey item

NO. Items Options

1 I will sort out the difficulties in each section of junior high school
mathematics. A B C D E

2 When learning a new mathematical concept, I would contemplate the
difference and connection between it and the concept I previously learned. A B C D E

3 When encountering complex geometric problems, I will draw to assist in
the solution. A B C D E

4 In the process of junior high school mathematics, I can arrange the study
time and rest time reasonably. A B C D E

5 After entering junior high school, I will ask the teacher some math
problems. A B C D E

6 When encountering math problems, I encourage myself to persist in
thinking more. A B C D E

7 I will summarize the question types of the math exams in junior high
school. A B C D E

8

When encountering an unfamiliar mathematical problem, I try to expect it
to be transformed into a familiar problem. For example, when solving a
system of ternary linear equations, it will be transformed into a familiar
system of linear equations in two unknowns, and then solved.

A B C D E

9 I ponder how I can improve my math scores. A B C D E
10 When studying mathematics, I will mark important content. A B C D E
11 I hate taking math class. A B C D E

12 I was able to adjust my mentality during the junior high school math
learning process, so that I was neither too slack nor too nervous. A B C D E

13 I compare the differences in learning behavior between myself and
mathematics top students to find ways to improve mathematics A B C D E
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performance.
14 Learning mathematics is helpful to solve problems in real life. A B C D E
15 In math class, I will avoid being distracted. A B C D E

16 I arranged the mathematics study plans in junior high school in an orderly
manner. A B C D E

17 Magnet to complex mathematical problems. I will divide it into a small
problem. A B C D E

18 In order to check whether I have mastered the mathematical knowledge I
have learned, I will set up questions. A B C D E

19 After entering junior high school, I can arrange time reasonably and
complete math homework on time. A B C D E

20 I will discuss mathematics issues with my classmates. A B C D E

21 I will create a good environment for students to learn mathematics to
improve the efficiency of mathematics learning. A B C D E

22 I organized the math test papers in junior high school in an orderly manner
for easy review and reference. A B C D E

23 I reflect on whether my mathematics learning method is effective. A B C D E

24 I will describe mathematical concepts in a variety of ways such as text
language, graphic language and symbolic language. A B C D E

25 In junior high school mathematics study, I can effectively use the break
time between classes. A B C D E

26 Since entering junior high school, I have perfected my mathematics
half-study plan based on actual needs. A B C D E

27 I will memorize important mathematical content repeatedly. A B C D E

28 When I find similar mathematical knowledge, I will compare their
similarities and differences, like concepts of monomials and polynomials. A B C D E

29 While solving mathematics problems, I will select the appropriate method
of solving the problem according to the question type. A B C D E

30 I will sort out the key points of each mathematics knowledge in junior
high school. A B C D E

31 I will preview and figure out the key content so that I can focus on
listening to the teacher’s instructions in class. A B C D E

32 When I know the math test scores, I will think about why there are
fluctuations in my performance. A B C D E

33 As the math test papers being issued. I will first have a rough look at what
types of questions are included in the test paper. A B C D E

34 I like taking math class. A B C D E
35 Studying mathematics does not help solve real-life problems. A B C D E

36 Before taking math class, I will figure out the difficulties that I will learn
so that I can pay attention to teachers’ instructions in class. A B C D E
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Abstract:  In the Philippines, the performance task is one of the major summative assessments in the K to 12 curriculum. 
This paper discusses how performance tasks may utilize mathematical apps within the context of blended learning. 
Guidelines on designing performance tasks, as well as the GRASPS framework, are discussed. Performance tasks that 
cut across various grade levels and strands of mathematics are presented. These involve divisibility (Numbers), integer 
and polynomial operations (Algebra), triangle centers (Geometry), and statistics (Statistics). The performance tasks 
described in this paper can provide an initial idea for the design of other summative assessments and contribute to the 
literature on the use of technological tools in assessment and evaluation.  
     
1.  Introduction 
 

The Covid19-pandemic has driven a shift of modalities in teaching and learning in schools 
worldwide. In the Philippines, the Department of Education has called for a blended learning modality 
for schools in lieu of face-to-face instruction in 2020. These modalities include printed modules, 
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radio, television, and the Internet. New challenges emerged from the sudden shift in educational 
practice, and some of these challenges relate to assessment.  Traditional paper-and pencil assessment 
methods are no longer completely applicable. Schools are expected to adopt “assessment practices 
that can meaningfully support student development and respond to different contexts at this time” [1].  
    There is already a wealth of strategies for using technology in formative assessments even prior to 
the pandemic [2-7]. However, new schemes for summative assessments remain to be a key challenge 
for teachers, especially if these are to be done online [8]. This paper reports on the creation and design 
of performance tasks utilizing innovative technological tools such as mathematical applications as a 
potential strategy for summative assessment. Technology can provide new and more dynamic ways 
to face some mathematical tasks, with respect to paper and pencil methods, such as modeling real-
life phenomena, making conjectures and proving properties based on experimentation, predicting, 
pattern-seeking [7, 9]. As Spector et al. [6, p. 60] said, “In addition to providing the means to support 
personalized learning and a smart education system responsive to the needs of learners and teachers 
and their learning environments, new technologies can support key 21st century skills … – notably 
critical thinking and problem solving.”  
    In the Philippines, one mandated summative assessment is in the form of a performance task, which 
comprises 40% of students’ final grade [10]. This paper reports on the design and construction of 
sample performance tasks on numbers, algebra, geometry, and statistics using mathematical apps that 
a mathematics teacher can utilize at appropriate junctures in the curriculum. The use of mathematical 
apps in the design of each task is deliberate and aims to aid the students to carry out calculations that 
will be used in the analysis and solutions of the problems indicated in the tasks.  
 
2.  Performance Tasks  
 

Philippine policy guidelines [10] define performance tasks as tasks that allow students to 
demonstrate their knowledge in various ways. These are typically done over a period of time and the 
purpose is to provide students the opportunity to integrate their understanding of the main topics 
covered during the academic quarter (about ten weeks). There is a wide range of possible formats, 
such as skills demonstration, group work, multimedia presentations, research or investigative 
projects, or written output.  
    The assessment guidelines were refined in response to the pandemic [1]. Assessment exemplars 
and rubrics were provided, together with suggestions for students with low, medium, or high access 
to technology. For mathematics, suggested performance tasks include the following: constructing 
graphs from conducted surveys, multimedia presentations, outdoor math, probability experiments, 
problem posing, reasoning and proof, using manipulatives to show math concepts and solve problems 
using measurement tools and devices. Performance tasks may also integrate multiple competencies 
not only in mathematics but also in the other subject areas. 
    Wiggins and McTighe’s GRASPS model [11] is a recommended guide in carrying out performance 
tasks. This model is applicable when the performance task involves a real-life situation. GRASPS 
stands for: Goal (a task must state the problem or challenge to be resolved), Role (a task must explain 
who students are in the scenario and what they are being asked to do), Audience (a task must specify 
who the students are solving the problem for, who they need to convince of the validity and success 
of their solution for the problem), Situation (a task must provide the context of the situation and any 
additional factors that could impede the resolution of the problem), Product, Performance, and 
Purpose (a task must explain the product or performance that needs to be created and its larger 
purpose, and Standards and Criteria for Success (a task must dictate the standards that must be met 
and how the work will be judged by the assumed audience).  
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3.  App-based Performance Tasks 
 

The performance tasks in this section utilize apps that are part of Mathplus resources 
(mathplusresources.wordpress.com), which are products of an ongoing government supported project 
“Technology Innovations for Mathematical Reasoning, Statistical Thinking and Assessment” by the 
Department of Science and Technology- Philippine Council for Industry, Energy and Emerging 
Technology Research and Development (DOST-PCIEERD). All apps can be accessed through the 
website https://mathplusresources.wordpress.com/. 
  
3.1 Grades 1 to 6  
 
    A divisibility rule is a shorthand way of discovering whether a given number is divisible by a fixed 
divisor without performing the division, usually, just by examining its digits. Knowledge of 
divisibility and factoring rules can facilitate computations needed for more advanced topics such as 
fraction operations. This topic is listed in the most essential learning competencies [12] for students 
in Grades 4 and 5. Students are expected to solve both routine and non-routine problems using rules 
on factors, multiples, and divisibility of numbers.  
    Integrating technologies into learners’ activities has the potential to keep them more engaged in 
studying divisibility rules and factoring. Hence, the assessment activities and performance tasks on 
divisibility and factoring enumerated in this section begin with the use of technology.   
    One app designed to facilitate learning number sense is the Divisibility Game. Students may choose 
which divisibility rules they want to practice on and then either play to gain mastery, increase speed 
in answering questions, or simply engage in drill work. In the Divisibility Game, students can choose 
the divisor, for example 3, 6, 9 and the number of items (Figure 3.1 (a)). Then students select numbers 
that are divisible by the divisor.  
  

 

(a) 

 

(b) 
 

(c) 

 

(d) 
Figure 3.1 Screenshots of the Divisibility Game 
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    For example, in Figure 3.1 (b), among the numbers, which are divisible by 3? Students may also 
choose to play with 12 four-digit items such as in Figure 3.1 (c) or with 16 four-digit items such as in 
Figure 3.1 (d). 
    Another app is the Factor Game. Through the game, students demonstrate understanding of prime 
and composite numbers. The game addresses the need for the students, from various grade levels, to 
identify factors and multiples of a given number. Students select a number and all its factors.  In the 
easiest level (Figure 3.2 (a)), numbers 1 to 30 are placed on a 5×6 grid arranged in order while in the 
1-60 level (Figure 3.2 (b)), randomly selected numbers from 1 to 60, not in order, are placed on the 
6×7 grid. Students may also select a time limit. The time limit can push students to strategize in 
selecting the numbers to get a higher score within the available time. 
 

 

(a) 
 

 

(b) 

Figure 3.2 Screenshots of the Factors Game 
 
    In preparation for the performance task, a series of informal activities and formative assessments 
may be performed. Students may initially explore each game option in the app in a form of free play. 
At this point, the idea is to engage the students’ interest and motivate them to reach as many levels as 
possible. Teachers may monitor their students by asking them to send screenshots or a written record 
of their progress. The students’ outputs may enable teachers to see some learning patterns and provide 
timely feedback and interventions when necessary.  
    Students can also perform more structured activities. As a first activity, students can perform a 
“Shading Activity” using the divisibility rule.  Given a grid of numbers, students are asked to shade 
all numbers divisible by 3 as in Figure 3.3 (a). In the end, the shaded numbers will form a familiar 
letter of the alphabet, object or an animal, as in Figure 3.3 (b). 
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(a) 

 

(b) 

Figure 3.3 Shading activity 

    A sample performance task related to this, is one where the teacher asks the students to design their 
own puzzles. A student creates a puzzle by filling-up the grid (Figure 3.4 (a)) with two-digit numbers 
so that the numbers in the shaded squares are divisible by a number of their choice and the numbers 
in all other squares are not.  

  

 

(a) 

 

(b) 

Figure 3.4 (a) A sample grid (b). Fill in the blanks activity 
 
    A variation to this task requires students to create a puzzle by designing their own image, for 
example, an arrow, animal, or any object so that when students shade the correct squares with 
numbers divisible by their chosen number, the students will end up with the image. Furthermore, 
students may also use grids of different sizes, with a mixture of two-digit and three-digit numbers. In 
addition, in this task, teachers may require students to come up with three or more grids where the 
images would follow a story. At the end of the task, students write their reflection. Sample guide 
questions are i) How did you choose the numbers to be placed on the grid? ii) Any difficulties 
encountered? Explain these challenges. iii) What did you learn from this task? 
    Another activity is the “Fill in the Blanks Activity” where students fill in the blanks with numbers 
that will satisfy the given conditions on divisibility. For example, students fill in the blanks so that 
the 4-digit number is divisible by 9 as in Figure 3.4 (b).  At the end of the activity, teachers may ask 
if there are other solutions and ask students to explain. A sample performance task related to this is 
requiring students to answer more difficult non-routine problems such as those appearing in national 
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competitions. Sample problems are: i) If the nine-digit number A1234567B is divisible by 45, 
determine all possible values of A and B (2019 Metrobank-MTAP-DepEd Math Challenge - Grade 6 
National Finals), ii) How many ways are there to arrange four 3’s and two 5’s into a six-digit number 
divisible by 11? (19th Philippine Mathematical Olympiad - National Oral Stage). At the end of the 
task, students explain the steps they followed to solve the problem. Although this performance task 
does not involve a real-life situation that is central to the GRASPS model, the task is aligned with 
other alternatives indicated by the official guidelines [10] because it provides students an opportunity 
to integrate their knowledge of divisibility in an environment of inquiry and problem solving. 
  
3.2 Algebra  
 
    Addition and subtraction of integers and polynomial expressions are fundamental algebraic skills 
that students need to master. Different models have been utilized to represent the concepts underlying 
integer operations [13, 14]. However, there seems to be no app that covers polynomial expressions. 
AlgeOps is an interactive visual mathematical app [15] which makes use of pictorial and symbolic 
representations of integers and polynomials (see Figure 3.5 for screenshots from the app). The app 
incorporates both the neutralization and number line models [16] which offer a more holistic 
representation of integers and eventually, strengthens instruction on integer and polynomial 
operations. 
 

 

Figure 3.5 Screenshots of the different modes of an updated version of AlgeOps 
 
    To facilitate the operations, students use the different buttons found on the left and right panels of 
the screen to construct the expressions. For example, Figure 3.6 (a) illustrates the addition problem 
of (-2) + 5. It is represented by two red balloons and five green balloons. These visuals are displayed 
when the (-) left button is clicked twice and the (+) right button is clicked five times. Moreover, the 
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three green balloons representing the correct answer (Figure 3.6 (b)) remain after the animation of 
the neutralization method. 
 

 

(a) (b) 

Figure 3.6 A representation of the addition problem: (-2) + 5 = 3 
 
    Performance tasks are usually open-ended and often yield more than one correct answer. This 
characteristic is manifested in the following task: 
    Students are to construct different situations where the sum of the balloons is the same as the given 
diagram. The diagram shows two green balloons plus two green balloons (or 2x + 2x) and three green 
apples plus two red apples (or 3x - 2y). The diagram (Figure 3.7) can be unique to each student since 
it is generated by the device used by the student. 
 

 

Figure 3.7 Addition of polynomials 
 

   Indeed, the task involves providing different values of a, b, c, and d that satisfy the equation ax + 
by + cx + dy = 4x + y.  As such there will be numerous responses that students can provide satisfying 
the equation. Additional constraints on the values of a, b, c, and d can be added to make it more 
challenging. For example, the values must range from -20 to 20 and the values need not be integers. 
In consideration of guidelines for assessment, this performance task can involve competencies in 
another subject area. For example, the student's output requiring creative storylines and visual 
representations of the polynomials can be used competencies in writing and the arts.   
    The use of AlgeOps in designing the performance task provides a digital medium that replaces the 
usual pen and paper format of assessment. The generation of unique exercises to students illustrates 
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its efficiency and the animation of the neutralization method provides a dynamic representation of 
the addition and subtraction of integers and polynomials.   
   
3.3 Geometry  
 
    One of the advantages afforded by technology in performance tasks in geometry is the dynamic 
geometry environment [9]. As will be discussed here, a digital geometry environment in assessment 
can develop mathematical and technological competencies and connect mathematical ideas to 
everyday experiences and to other disciplines [17]. It can also promote mathematical and 
technological competencies, such as developing and applying new mathematical knowledge through 
problem solving; developing mathematical reasoning, developing visualization skills to assist in 
processing information, making connections and solving problems, and generalizing and exploring 
properties of objects [7]. In addition, the feedback provided by a dynamic geometry environment 
supports interaction during assessment [7, 18]. 
    One example of a performance task for Geometry in Grade 7 employing the GRASPS model is a 
real-life application in which students gain experience and discover the significance of triangle 
centers such as the centroid, incenter, circumcenter and orthocenter. This can be facilitated with a 
Geogebra applet “Bisectors of Triangles” that allows the student to explore the various centers 
(Figure 3.8). 

  

  

  

Figure 3.8 Screenshots from the Geogebra applet: Bisectors of Triangles 
 
    The GOAL of the performance task is for the students (their ROLE as a research team) to present 
and discuss a proposal to the Chief Executive Officer (AUDIENCE) of a local amusement park, 
Enchanted Kingdom, regarding the best possible location of a snack stand in the park so that it will 
be strategic to the three most popular rides in the park (SITUATION). The final output (PRODUCT) 
is a multimedia presentation (using a presentation software, video demo, poster) that showcases i) the 
location of the snack stand such that it is central to the three main popular rides in the park and how 
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this was determined, ii) maps and pictures to support the recommendation, and iii) the advantages 
and disadvantages of the location, supported by sound geometric principles. The multimedia 
presentation will be one session (in an online environment, this will be one synchronous session) 
where the students will present the proposal to the teacher.  
    The performance task is divided into four parts. 

1. Students will work in groups. To get students to start thinking about this task, some questions 
posed could be: “Have you ever visited the amusement park?”, “What was your experience in 
getting a snack in between rides?”, “Where would be a location that would be "central" to most 
customers?”.  The location of the snack stall is critical in order to attract more potential 
customers.  Using a Google Form, students then conduct a survey among classmates and friends 
of the top three favorite/popular rides in the park.  

2. In order to be guided with regards to the strategic location of the stall in the park, explorations 
on the definition and properties of the various four (4) centers of a triangle will be carried out 
using the Geogebra app “Bisectors of Triangles” (see Figure 3.8) which will be given to the 
students. This is a very important part of the task where students explore the various centers by 
using the “drag feature” of the app.  By being able to drag the vertices of a triangle, students 
develop visualization skills, which are important in processing information. For example, some 
key concepts and properties that can be explored for the incenter using the Geogebra app are: the 
incenter is the center of the triangle’s inscribed circle; the incenter is always inside the triangle, 
the perpendicular segments from the center to sides of the triangle serve as radii of the inscribed 
circle. The incenter can be verified for various types of triangles. 

3. For the discussion/analysis part, students will consider the four different types of circle centers 
when solving this task. They will also need to clearly establish the assumptions that are necessary 
in order to come to a solution, i.e., how did you define “best site of the stand,” etc. 
    In the proposal analysis, the student justifies the appropriate use of the triangle center 
depending on its application. (i) Is it important that the center be equidistant from the three 
vertices or sides of the triangle? ii) Should it be that the center, when connected by a line segment 
to each location (vertex) creates three portions that are equal in area? iii) Should the circle be 
circumscribed about or inscribed in the circle? iv) Is this choice realistic in a given situation? 
    Through the dynamic geometry software, the students can employ trial and error techniques, 
interpret the behavior of the triangle and its parts to make inferences about it, and test the validity 
of their conjectures. The students’ conjectures can be communicated through email or Messenger 
app for quick feedback as they go through the task and seek confirmation of their work. 

4. Students will then find evidence of the distance between the food stand and the three rides using 
Google Earth (see Figure 3.9) or some other application. 

 
    

Figure 3.9 Screenshots from the Geogebra applet: Bisectors of Triangles 

Proceedings of the 26th Asian Technology Conference in Mathematics

219



     For the STANDARDS part of the GRASPS framework, the following criteria may be used: i) 
data/assumptions used to arrive at the location of the stand (survey, geometric explorations using the 
app), ii) geometric principles used to arrive at location, iii) accuracy of the geometric solution, iv) 
supporting figures/screenshots from app/tables, and v) presentation (video, PowerPoint, poster) and 
delivery. 
 
3.4 Statistics 
 
    The role of context in learning and teaching statistics has consistently been emphasized in the 
literature. For instance, according to Cobb and Moore [19, p. 801], “Statistics requires a different kind 
of thinking, because data are not just numbers, they are numbers with a context.” Moreover, the Pre-
K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II) [20, p. 11] 
indicates that assessments “must require students to use statistical reasoning with context and 
variability at all stages of the statistical problem-solving process.” In this section, in light of the role 
of context in Statistics Education, the design of performance tasks using data from the web-based 
application Senso Eskwela Pilipinas (SEP) is discussed. The SEP app provides teachers and students 
not only contextualized but also authentic and relatable data. The benefits afforded for the exploration 
and transformation of data with digital technology reveals fresh approaches to analyzing statistics 
[21]. 
    SEP is “an online platform for gathering, storing, and accessing readily available and relatable data 
for learning and teaching statistics” [22, p. 174]. It is a web application patterned after 
CensusAtSchool, which was first established in the UK in 2000 with the “dual thrust to enliven data 
handling activities within the classroom while also educating children about the principles and 
processes involved in conducting a census” [23, p.1]. In SEP (Figure 3.10 (a)), students anonymously 
log in to the platform (freely available at mathplusresources.com) to answer a 31-item survey (Figure 
3.10 (b)) involving questions on different topics such as food, hobbies, and interactive tasks. The 
students’ responses become part of the SEP database, to which they have access. Students and 
teachers can retrieve the data of their own class/es or random samples from the entire database. 
  

  

(a) (b) 
 

Figure 3.10 Screenshots from the SEP platform: (a) The landing page for student accounts,  
(b) A question from the SEP survey 
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    It is anticipated that students’ use of data from the SEP database in performance tasks can increase 
their engagement and interest as “the sense of belonging that participating pupils feel, purely because 
they know their own responses will become part of a database of responses from their peers, is 
fascinating and motivating for them” [24, p. 175]. Another clear advantage is the ready access that 
students have to the data from the SEP database. In situations in which the actual data collection 
process is difficult or is not integral to the objectives of the task, readily available data will prove to 
be convenient. 
    The performance task From SEP to Infographic discussed below recognizes the aforementioned 
role of context and adapts the GRASPS model. It addresses the following Grade 7 Statistics 
competencies in the Philippine K-12 curriculum [12, pp. 229-230]: “poses real-life problems that can 
be solved by Statistics, gathers statistical data, organizes data in a frequency distribution table, uses 
appropriate graphs to represent organized data: pie chart, bar graph, line graph, histogram, and ogive, 
draws conclusions from graphic and tabular data and measures of central tendency and variability, 
draws conclusions from graphic and tabular data (and measures of central tendency and variability).” 
    The task involves the creation of an information graphics or infographics, which has become more 
common in recent years. These infographics, which are visual representations of information, are 
mainly used to present complex data in a form that is more understandable and, at times, more 
impactful. This performance task allows learners to choose from the varied data available in the SEP 
database and use these data to create their own infographics. The GOAL is for the learners to retrieve 
data from the SEP database and organize, process, and analyze these data so that they can create an 
infographic on their chosen topic. 
    The students are given the following setting and instructions for the performance task: “In this task, 
you will play the ROLE of a researcher and writer for a social media page that mainly posts interesting 
information (e.g., their hobbies, activities, interests) about the Filipino youth. The administrator (or 
admin) of the social media page is asking the page’s researchers and writers to submit new 
infographics (PRODUCT) that can be posted on the page. Naturally, the admin would like to receive 
submissions that have the potential for increased engagement from the page’s followers 
(AUDIENCE). Moreover, the infographic should be based on real data, so the admin has advised the 
use of the SEP database. 
     As one of the researchers and writers, you are now faced with the following tasks (SITUATION): 

1. Determine a suitable topic of the infographics based on the available data in the SEP database. 
2. Process and organize the data into graphs or charts. 
3. Analyze the data and the graphs/charts. 
4. Design and create an infographic, with the graphs/charts integrated in a creative or meaningful 

way, that presents clear, concise, and interesting information on the chosen topic.” 
    The students are also given the following criteria for grading (STANDARDS): i) topic of the 
infographic, ii) correctness of graphs or charts, iii) organization of the infographic, iv) design and 
creativity. 
    The performance task using the SEP platform offers a number of advantages. First, since the SEP 
database contains a large amount of readily available and varied data, students are given more space 
to think creatively in deciding the topic and direction of their performance task. This aspect is 
enhanced further by the fact that the students also answered the SEP survey themselves. Because the 
data is relatable to them, the students may easily develop a curiosity towards how their responses 
compare to others. Moreover, the Access Data feature (Figure 3.11) of the SEP platform offers the 
students flexibility and allows them to make their own decision/s in terms of i) using their own class’ 
data or a random sample from the database, ii) which questions in the SEP survey they want to work 
with, iii) which grade level/s they should focus on, and iv) how small or large a sample size they 
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should use. These allow them to ask themselves questions like “Do we use data only for Grade 7, or 
Grades 7 to 10? Do we do a comparison between grade levels? Do we try to relate the data from two 
SEP questions?”  
 

 

Figure 3.11 The Access Data feature of the SEP platform 
 
    Given sufficient time, students will also be able to create multiple infographics, from which they 
can choose their best work for submission. With the SEP database, this is possible for them without 
having to repeat the data collection process. Finally, accessing and processing data from the SEP 
database mirror steps in doing statistical analyses using data from actual databases. Students get raw 
data from the SEP database, then organize and process them using the skills that they have learned. 
This results in a more authentic context for the performance task. 
    Moreover, conforming to one of the thrusts of the Department of Education’s Order No. 31 s.2020 
[1], the performance task can integrate competencies in other subject areas. For example, the students 
may be asked to accompany their infographic with a feature article in English or in Filipino. The 
article may serve as an assessment for their written communication classes. The design aspect of the 
infographic may also be used as an assessment for their arts class. Lastly, their output may also be 
used as an assessment for their Understanding Culture, Society and Politics class if the possible topics 
of the infographic are restricted appropriately. 
     The SEP database naturally leads to a number of performance tasks. The infographics task is 
suitable for Grade 7, but more tasks can be designed to assess more advanced statistical concepts. For 
example, in Hypothesis Testing Using SEP Data, which is designed for Grade 11 classes, students 
play the role of researchers for a non-profit organization that promotes the health and welfare of 
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Filipino youth. After performing data analysis and hypothesis tests, they are to prepare a written report 
for the officers of the organization to help in their planning of programs and campaigns. The complete 
details of this performance task are available in the SEP website (https://mathplusresources. 
wordpress.com/senso-eskwela-pilipinas-for-grades-1-11-statistics/).  
     Finally, the use of SEP in performance tasks offers a possible avenue for doing effective online 
assessment. In addition to the elements mentioned above, these performance tasks can be easily 
implemented in an online setting. Teachers can easily communicate the instructions to students and 
receive students’ submissions online (e.g., via learning management systems, email, or 
official/school-authorized messaging platforms). In the same way, students can conveniently retrieve 
their data sets from the online SEP database. Moreover, depending on the involved topic/s, students 
may opt to use freely available online tools (e.g., a spreadsheet application) to organize and process 
their data.  
 
4.  Conclusion and Future Direction  
 

Designing mathematics performance tasks for summative assessments must be adapted to the 
changes brought by the shift to a blended learning modality of education. The summative assessments 
in the form of performance tasks described in this article were designed to address the urgent 
educational difficulties driven by the Covid-19 pandemic and the need of the teachers to create forms 
of assessment while in a blended learning modality. The design of these tasks considered alignment 
with curriculum goals so that integrity of assessments is still met.  
    This study presented the design of mathematics performance tasks that creatively make use of 
mathematical apps to support student learning. The sample tasks address the need of making 
assessments in four key content areas: Numbers, Algebra, Geometry and Statistics. This set of tasks 
can provide teachers in basic elementary, junior and senior high school with creative ideas on 
designing performance tasks in the future. The designs of all performance tasks discussed in this 
paper considered the creation of an environment of inquiry and the integration with other subject 
areas whenever applicable. Further, the task designs for Geometry and Statistics were guided by the 
GRASPS framework by Wiggins and McTighe [11].  
    While these apps were designed to help students gain more insight and develop stronger 
mathematical skills, this paper described how the apps can also be integrated into performance tasks 
that teachers can assign their students. The performance tasks were presented in the webinar for 
Philippine teachers Amplifying Development of Assessment and Performance Task Skills with 
Mathplus Resources. Although the performance tasks and apps were designed for Filipino learners, 
these can assess learning outcomes that are present in many other national curricula as well.  As a 
goal, the authors affirm the recommendations of [6] for an “open assessment repository (OAR) or an 
education observatory” that addresses the need for challenging but engaging technology-assisted 
performance tasks. The tasks designed by the authors can form part of this repository.  
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Abstract

The orbits of the planets around the Sun are ellipses, close to circles. A simple model
is given by concentric circles centered at the Sun. The radius of the orbit and the linear
velocity of the planet may be found in numerical form in the literature. The motion of
a planet on its orbit is then described by a trigonometric parametrization. Using such
parametrizations for two planets, various mobile ”virtual points” such as their midpoint
or their center of gravity, are defined and their trajectories are studied. A good opportunity
to experience different kinds of animations with software, depending on the affordances of
the package. By that way, classical plane curves appear in a dynamical way. It appears
quickly that the level of accuracy of the involved numerical data influences strongly the
shape of the constructed curves. Despite the fact that loci and envelopes are often related,
and automated commands exist for both in the same packages, their respective appearances
may be different, the one very rich and the other much apparently less. The plane curves
which appear as loci of some of the virtual points have been known for a long time, but
separately. We have here an opportunity to see them as members of a larger family.
A byproduct of the activities is an incitement to study classical plane curves and their
properties, in a dynamical framework and in relation with real world. Despite the physical
non-accuracy of the models, this is a typical STEAM approach.

1 Introduction

A few months ago, the news were filled with announcements about three space probes launched
in July 2020 towards Mars and which arrived to Mars surface (the American rover called
Perseverance, by NASA) or were inserted in a martian orbit (a Chinese probe, and Hope,
a martian orbiter from the United Arab Emirates) in February 2021. The various national
space agencies had a wonderful opportunity to attract public attention to space science and
technology. Numerous websites have been developed and are freely accessible to a general
audience. There are good reasons for mathematics educators to be part of this atmosphere,
showing applications of mathematics to real world. Maybe not a daily concern, but the same
world which appears in news.
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According to the 1st Kepler’s law ([11], p. 127), the orbit of a planet around the Sun is an
ellipse, with the Sun at one of the foci. As the foci are very close, and in order to make the
example as simple as possible, we consider an approximation of the orbits as coplanar concentric
circles, centered at the Sun. It will be enough to know radius (i.e. distance to the Sun, actually
a mean distance) and velocity. Table 1 gives some data, not the velocity. Kepler’s 2nd law is
illustrated by Figure 1, taken from [11] p. 129: the areas of the shaded sectors, covered by the
radius in equal times (i.e. it takes equal times to travel distances AB, CD and EF ), are equal.
In our very simple models, we will consider motion with constant angular velocity on circular

Figure 1: Kepler’s 2nd law of planetary motion

orbits. We compute the velocities according to the year length of the planet, with Earth year
equal to 1. Note that Table 1 displays only the eight objects, officially called planets by the
international astronomical organization. According to 3rd Kepler’s law, the orbital velocity is
a function of the distance to the Sun.

Planet Distance to the Sun (km) Period (1=terrestrial year)

Mercury 57.91 106 km 0.2408
Venus 108.2 106 km 0.6152
Earth 149.6 106 km 1
Mars 227.9 106 km 1.8808

Jupiter 778.5 106 km 11.862
Saturn 1.434 109 km 29.457
Uranus 2.871 109 km 84.018

Neptune 4.495 109 km 164.78

Table 1: Some orbital data

Because of the huge differences between the distances and the hardware constraints (we mean
mostly the size of the screen and the number of available pixels), we will consider examples
with Earth and Mars only. The same activities can be done with the pair Venus-Earth, they
will produce the same family of curves. Nte that in order to make the first examples easy, we
use approximations less precise than in Table 1.
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For the simulations and the animations, we use GeoGebra, a freely downloadable software,
whose main characteristic is devoted to Dynamic Geometry. For some uses, including auto-
mated determination of loci and envelopes, it can be supplemented with the package GeoGebra-
Discovery, also freely downloadable. A general analysis of the automated methods for loci and
envelopes is given in [13]. We will also use the Computer Algebra System Maple for its specific
animated affordances.

The goal of this paper is to present mathematical situations with a STEAM1 approach
where plane curves, either algebraic or not, are presented and some of their properties explored
using technology. We see this kind of study as an opportunity to explore also classical families
of plane curves. Nothing beyond that.

2 The midpoint Earth-Mars

Because of Mars ubiquity in the news during last year, we consider now the pair Earth-Mars
and their midpoint. We choose the distance Sun-Earth as equal to 1, which is consistent with
the general definition of the so-called astronomical unit ([11], p.24), the distance Sun-Mars is
then almost equal to 1.5. We describe the respective orbital motions of the planets by the
following parametrizations:

Earth: (x, y) = (cos t, sin t)

Mars: (x, y) =

(
r cos

t

h
, r sin

t

h

)
where 1/h encodes the angular velocity of a planet on its orbit and r denotes the ratio be-
tween the radii of the orbits. For Mars, we will take h = 1.881 or a coarser approximation.
The t−interval on which to consider these parametrizations has to be defined later, either ex-
perimentally after some trials with the software, or by computation of the number of needed
orbits, let’s say for the Earth, in order for the pair of planets to return to the initial position.
For integer values of the parameters, a LCM of two integers has to be computed; otherwise,
the computation is harder and an experimental approach will be often preferred. This general
setting allows to construct a general applet, useful for different pairs Earth-other planet, and
will be translated by GeoGebra into a slider bar.

Of course, when proposing to students such an activity, an educator should make clear that
this midpoint has no physical meaning. Figure 3 illustrates this. In July 2020, the NASA
launched a rover called Perseverance which landed on Mars in February 2021. The trajectory
was not a segment of line, and the trajectory in space was roughly the union of arcs of ellipses.
Figure 3(b) shows the midpoint on the trajectory; it is easy to see that this point has no
relation with a midpoint of a segment Earth-Mars. The simplified model that we will use in
the activities contributes to this understanding.

1STEAM = acronym for Science, Technology, Engineering, Arts and Mathematics.
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Figure 2: A snapshot of the general applet for the midpoint of two planets

(a) The trajectory - an arc of ellipse (b) At midpoint of the space trip

Figure 3: Perseverance’s trajectory from Earth to Mars (Credit: NASA/JPL-Caltech)

2.1 First example: r = 1.5, h = 1.9

The midpoint of the pair Earth-Mars is described by the parametrization{
x = 1

2

(
cos t+ 1.5 cos t

1.9

)
y = 1

2

(
sin t+ 1.5 sin t

1.9

) . (1)

In Figure 4, the orbit of the Earth (point T ) is represented in blue and the orbit of Mars (point
M) in brown. The midpoint is denoted by A and is plotted in dark green. Note that in the
applet, a slider for a parameter m instead of t is used, as t has a special meaning in GeoGebra.
There are two ways to use the applet from which we have here a snapshot:

• Automated command: use the Locus command, either typed in the command line or
using a specific button. The syntax is as follows:

Locus(<Point creating the Locus line>,<slider>)

. Here we need Locus(A,m).

• Dynamics: Use Animation On for the slider m. The curve is created dynamically.
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(a) Animated construction (b) Automated construction with Locus com-
mand

Figure 4: The locus of the midpoint Earth-Mars - first attempts with h = 1.9

In both cases, if a defining interval for the parameter is ”too short”, then the obtained
curve is incomplete. Either experiments and successive trials or computations, depending on
the computational skills of the user, lead to a suitable interval. The first option may be time
consuming. Figure 4(a) has been obtained within 10 minutes with Animation On for the
slider and Trace On for the point A. Figure 4(b) shows a incomplete attempt with the Locus
command: the given interval for the parameter m is [0, 30π] and is too small.

Remark 1 Figure 4 displays both the algebraic and the graphical windows of the GeoGebra
session. The algebraic window is easily written, and the order of commands can be checked
with the windows displaying Object Properties, or better, with the windows displaying the
Construction Protocol, accessible from the main menu.

The same activity can be performed using the animate command of Maple. In the following
code, the animations to simulate the moving of Earth and of Mars on their orbits are defined
separately, then displayed together. The resulting plot is quite trivial, as it creates dynamically
two concentric circles. This may be used as a preliminary control, before plotting the animation
for the midpoint, which comes afterwards.

restart;

with(plots):with(plottools): setoptions = (thickness = 2):

earth := <cos(t), sin(t)>;

mars := <1.5*cos(t/1.9), 1.5*sin(t/1.9)>;

plotearth := plot([earth[1], earth[2], t = 0 .. 2*Pi], color = blue);

plotmars := plot([mars[1], mars[2], t = 0 .. 4*Pi], color = brown);

display(plotearth, plotmars);

animearth := plots[animate](plot, [[earth[1], earth[2], t = 0 .. A],

color = navy], A = 0 .. 2*Pi);

animmars := plots[animate](plot, [[mars[1], mars[2], t = 0 .. A],

color = red], A = 0 .. 4*Pi);

animmidpt := plots[animate](plot, [[1/2*(earth[1] + mars[1]), 1/2*(earth[2] + mars[2]),

t = 0 .. A], color = green], A = 0 .. 28*Pi);

display(animearth, animmars, animmidpt);
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At start, the plot is empty; it is made alive by a left click, then by clicking on the suitable
button in the command row shown in Figure 5. The animation speed is controlled from the
command row to. Eventually, to improve the visualization, the segment TM can be added to
the animation, using the line command..

Figure 5: Snapshot of a Maple animation

2.2 Second example: r = 1.5, h = 1.85

We modify slightly the approximation of the parameter h encoding the period of Mars on its
orbit, and take here h = 1.85 and h = 1.86. Snapshots of the resulting geometric loci of the
midpoint of the two planets are displayed in Figure 6. The small modifications of the value of

(a) h = 1.85 (b) h = 1.86

Figure 6: The locus of the midpoint Earth-Mars: the influence of the approximations

the parameter h result in very different geometric loci. The existence of rotational and axial
symmetries has been preserved, but their nature has changed.
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2.3 Generalisations.

A GeoGebra applet is available to explore the influence of the different parameters and of chang-
ing the rounding for numerical values. A screen snapshot is displayed in Figure 7. Actually, the
ratio of the radii of the orbits is much closer to 1.881. The resulting geometric locus is still more
complicated than Figure 6(a). Note that rounding has to be changed to 3 digits in order to
use efficiently the slider and fix h = 1.881; to change the increment in the Object Properties
windows is necessary, but not enough. Pay attention to the 3 sliders on the screen. Their range

Figure 7: An applet to generalize the previous study

can be modified, most of the possible values cannot be considered as good approximations of
the celestial parameters, but enable a broader exploration of the family of curves.

Further generalization is provided as follows:

• The ratio r of the radii of the orbits can be changed. For example for Venus, we have
h = 0.6152 and r = 0.723 (see Table 1).

• The masses of the two planets may be taken into account, if interested in the center of
gravity of the pair of planets.

A complete GeoGebra applet is available for such an exploration. Once again, nice plane
periodic curves are created. Note that this applet allows any value for each parameter, which
is not true in the real world, first because we use a very simplified model with circular orbits,
and further according to Kepler’s laws, which establish a relation between the distance to the
Sun and the velocity on the orbit. Once again with the simplified model, Figure 8 shows the
locus of the center of gravity of the pair Earth-Mars, with a rounding of 4 digits.

Remark 2 Different values of the parameters yield different closed curves with rotational sym-
metries. This is clear already from the trigonometric parametrization given for the curves and
the midpoint. When an algebraic curve is given, an important question is whether it has a ra-
tional parametrization or not [15]. It is well known that rational parametrizations are available
for a circle. Here above, it was more efficient to use trigonometric parametrizations, not only
to have a more ”linear” behaviour of the animations, an issue mentioned and studied in [4, 7],
but in order to reflect the motion of each planet on its orbit, with constant velocity. This will
be useful in Section 3.
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Figure 8: The trajectory of the center of gravity Earth-Mars

3 Identification of classical curves

The parametric presentations that are in use in the previous sections have a too specific form
not to be already known among the plane periodic curves. A quick websearch reveals that they
are special cases of the family of epitrochoids (from the Greek ”trochos”=wheel). These curves
are defined by the following equations (see [18], p.233-234, and the MacTutor website:{

x = (a+ b) cos t+ c cos
(
a
b

+ 1
)
t

y = (a+ b) sin t+ c sin
(
a
b

+ 1
)
t

(2)

where a, b, c are real parameters. With these notations, let C1 be a circle of radius a and C2

a circle of radius b rolling outside C1. A point P at a distance c from the center of C2 rolls
together with C2. Its locus is an epitrochoid.

With the same simple model of coplanar concentric circular orbits as above, another descrip-
tion of epitrochoids is as the apparent trajectory of a planet when seen from another planet.
Derivation of equations in this setting is beyond the scope of this paper. The obtained anima-
tions explain why, in certain circumstances, a planet seems to travel in reverse direction (what
is called retrograde motion). Figure 9 shows an illustration by Kepler of Mars motion on its
orbit, viewed from Earth (see for example [10] p. 86).

For special values of the parameters, well-known plane curves are obtained. For example, if
a = b, i.e. C1 and C2 have the same radius, the corresponding curve is a Pascal Limaçon, for
other values it is a nephroid, etc.. The illustrations in Figure 10 have been obtained with the
following Maple code with p = 1:

x := 1/2*(p*cos (t) +k*cos(t/k));

y := 1/2*(p*sin(t) + k*sin(t/k));

for k from 2 to 6 do

plot([x, y, t = 0 .. 20*Pi]);

end do

With p = 3, Figure 11 is obtained:
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Figure 9: Kepler’s drawing of Mars orbit viewed from Earth

(a) Limao̧n (b) Nephroid (c) Clover (d) Cross (e) Star

Figure 10: Special epitrochoids

3.1 Envelopes

A detail appearing in Figure 6 has not been mentioned until now: the segment TM is there,
dotted. It may help to visualize the coordinated motion of the 3 points T,M,A. Another
feature may be worth of an exploration: does the family of segments TM have an envelope?

A first exploration may be performed using the DGS. Figure 12 shows two trials with
different values of r and h.

With the current settings, i.e. when everything depends on the parametric presentation of
the points T and M , we cannot use GeoGebra’s command Envelope. It has been developed
on another basis. Four different definitions of envelopes are given and their similarities and
differences analyzed in [3]. Here we consider one of their definitions, the only one considered by
Berger [2]3](sections 9.6.7 and 14.6.1). Some recent developments and examples can be found
in [6].

Definition 3 Let Cm be a family of plane curves given by an equation of the form F (x, y,m) =
0, where x, y are real variables and m is a real parameter. An envelope of this family, if it exists,
is the solution set of the system of equations:{

F (x, y,m) = 0
∂F
∂m
F (x, y,m) = 0

. (3)
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(a) (b) (c) (d) (e)

Figure 11: Other epitrochoids

(a) r = 2, h = 2 (b) r = 2.5, h = 3

Figure 12: Experiments to determine envelopes graphically

Actually we will look for an envelope of the family of lines TM . It is easily shown that the
family has no fixed point, so an envelope should exist. First we compute an equation for the
lines; the role of the parameter m in Definition 3 will be played by the parameter t in the
parametric presentation of the moving planets. Working with Maple, here is the source code
of a suitable session:

restart;

with(plots);with(LinearAlgebra);

T := <cos(t), sin(t)>; # Earth

M := <r*cos(t/h), r*sin(t/h)>; #Mars

mat := Matrix(2, 2, [[x - T[1], M[1] - T[1]], [y - T[2], M[2] - T[2]]]);

line := Determinant(mat); # implicit equation of the line TM

dline := diff(line, t);

solve({dline = 0, line = 0}, {x, y}); #the solutions determine the desired envelope

env:=simplify(%);

An implicit equation for the line TM is

x

(
r sin

t

h
− sin t

)
+ y

(
cos t− r cos

t

h

)
+ r

(
cos t cos

t

h
+ sin t sin

t

h

)
= 0

and, after simplification:

x

(
r sin

t

h
− sin t

)
+ y

(
cos t− r cos

t

h

)
+ r sin

(
h+ 1

h
t

)
= 0. (4)
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We denote by F (x, y, t) the polynomial in left hand side. Solving now Equations (3) we obtain
the output of last command row above::

x =
(h cos ( t

h)−cos (t))(− sin ( t
h) sin (t)+cos (t) cos ( t

h)−1)
cos (t)(h+r) cos ( t

h)+sin (t)(hr+1) sin ( t
h)−h−r

y =
(cos (t) cos ( t

h)hr−cos (t)2+h+1) sin ( t
h)+sin (t)

(
cos ( t

h)
2
hr−cos (t) cos ( t

h)−r(h+1)
)

sin (t)(hr+1) sin ( t
h)+(cos (t) cos ( t

h)−1)(h+r)

(5)

The first output displayed by the CAS is quite complicated, but simplify commands are
helpful. Nevertheless, the final display with general parameters is still heavy and trying to
identify the curve using catalogs of curves and websearch is unilluminating, even hopeless.
Moreover, in order to try and implicitize the parametric presentation, methods such as sub-
stituting rational expressions for sine and cosine may be considered, but even for the CAS
it can be a heavy task. Substituting specific values for the parameters, the plot command
yields a plot of the curve, and the result is somehow surprising (an example is given in Figure
13). Graphical superposition of the curves obtained with an animation as in Figure 12 and 13
showed differences. We have here still an open question.

Figure 13: The envelope of lines TM for r = 1.5 and h = 1.9

And, after all, the literature, either printed or electronic, devoted to the epitrochoids, show
only integer values for the parameters and do not display any implicit equation, which can
mean that theses curves are not algebraic. We invite the reader to check.

4 Discussion

This is not the first time that we analyze the different contributions of a CAS and of a DGS
for exploring the same question. Generally, the roles are complementary, and with the help of
both kinds of software together, letting them having a dialog, a precise insight into the problem
is obtained [6, 7].
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Here a first exploration has been done with the DGS, using the following features:

• The numerous options for the animation (interval, speed, oscillating, etc.) may be changed
in the Object Properties window, which has to be opened. Sometimes, numerous trials
are needed.

• The animated construction and the plot of the locus are driven by different commands.

• Zoom-in and zoom-out are easy to perform with the mouse. This is important to discover
properties of the curves in neighborhoods of singular points. As an example, see the study
of the relations between the cusps of a given curve and of its offsets [6]. A strong zooming
with the DGS provided conviction, and an algebraic proof was not needed. Here with non
integer values of the parameters, zooming is strongly needed to distinguish arcs through
multiple points, as can be seen in Figure 8.

• Modifications (size, proportions, colors, etc.) may be performed quickly with the mouse,
for example with a right-click on the object.

Exploration with the CAS is slightly different.

• After a command line to define a parametric curve, an animate command has to be
entered. Its output is not immediately visible.

• A left-click on the graphical window is necessary, and it switches automatically to the
row of graphical buttons.

• Here too, the relevant values for the parameters (number of frames, speed, etc.), in order
to obtain a significant graphical output have to be looked for experimentally, using the
buttons.

• Other modifications of the output may require changes in the written commands.

The animation speed is quite different with the two software packages2. A complete plot
for the midpoint of Earth-Mars with h = 1.881 (see Figure ??)has been obtained with Maple
within a few seconds; with GeoGebra it took much longer. Interesting conjectures and results
can be obtained with a single software only, but joint work (we should say collaboration between
packages) provides a richer insight. We do not always a strong dialog between the two kinds of
software, as in [7], but the collaboration man-and-machine in this triangular setting is efficient
and enrich the study.

The starting point of the study is STEAM oriented, namely using a scientific model from
an item in the news. Students may have prior interest in the domain, without having a strong
knowledge. The present topic offers an opportunity to collaborate between educators, between
man and machine, of course between students. The study output is multiple, and among the
”rewards” we have:

• Acquisition of new mathematical knowledge: classical curves (epitrochoids), which are
not part of the regular curriculum, have been discovered and studied. Epitrochoids are
members of a larger family of curves, which involves roses, epicycloids, etc. Activities as

2We wish to mention that we worked with both packages on the same computer.
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Figure 14: The locus of the midpoint Earth-Mars with h = 1.881

in this work may be a nice incitement to explore other situations and to broaden horizons.
The literature describes generally the epitrochoids for integer values of the parameters,
and our experimentations showed also more general settings.

• Emphasis on the importance of the data precision (in space, contrary to most classrooms,
nothing is measured by integers) and of rounding. We considered non integer ratios of
radii of orbits, and of orbital angular velocity, approximations and rounding became an
important issue. We could discover that different precisions in the approximation yield
very different output. This is probably a crucial product of this work: students do not
always believe that mastering errors is important, and they believe that the answers
provided by a numerical calculator are always accurate. Asking them which answer is
true among the cases that we studied with different rounding should lead at least to some
questioning.

• Emphasis on the differences between results obtained by a graphical method and results
obtained by an algebraic method. There may be a difference between what you see and
what actually exists. Zooming appeared as an important feature. More general studies
are available in [12, 8, 19].

• Development on new technological skills, which are part of the new mathematical knowl-
edge [1].

• Emphasis on multidisciplinary tasks, whence development of STEAM skills.

In the present work, the geometric locus of the midpoint of two planets (within a very
simplified model of motion) has been explored using the dynamical features of the DGS. An
automated method could be applied to find this locus for various values of the parameters.
Then sliders allow to modify interactively the values of the parameters and to observe the
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consequent changes in the obtained loci. Algebraic work was not strongly needed, but could
add another layer to the study. We did not elaborate on this topic, as our discovery of the
different loci for positive integer values of the parameters showed classical plane curves, namely
the epitrochoids. Anyway, the different websites devoted to the curves that we discovered
provide parametric presentations and polar equations, but no implicit equation. This is a good
enough reason for the educator not to push in that direction, and purely algebraic methods
have not been applied.

The fact that we started from a concrete question with planets had two goals: to attract
students to explore mathematical situations linked to topics from their everyday life. We
have here a good example of the importance of teaching mathematics in relation with the
cultural background of the students. In [5, 9] various situations accessible at an early stage
of the curriculum have been proposed. Here we propose a more advanced environment, where
classical mathematics, sometimes already known in Antiquity, model very modern situations.
Some websearch will enrich more the new developed knowledge. In 21st century, STEAM is the
name of the game; around curves, models of planetary motion, usage of software, we propose a
truly STEAM oriented activity.

WE devoted a brief section to envelopes. This, because envelopes are a classical topic with
numerous applications, and they provides also new constructions of classical curves, as in [4, 6].
Moreover, the notions are related, and automated commands exist in the same technological
environments for loci and envelopes. Nevertheless, it happens, and we have here an example,
that one topic provides richer results than the other.

Finally, we wish to emphasize that among the components of the STEAM approach, we
focused on STEM and did not address issues involving Arts. No need to say that the curves
which have been discovered provide patterns for rosette-like design, generally more complicated
than the traditional rosettes on European monuments. The reader’s imagination will do the
rest.
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Abstract:  In this paper, we present the MathCityMap system which aims at bringing the idea of mathematics trails 

into an educational context. To facilitate the preparation and conduct from both, teacher’s and students’ perspective, 

the system provides two components: a web portal to create outdoor tasks and a smartphone app to guide students to 

discover mathematics outdoors. In this paper, we focus on the benefits of the math trail idea for educational purposes 

and, in particular, its enrichment through digital tools in the context of mobile learning. By taking learning theories 

and empirical findings into consideration, the potentials of the system are analyzed and evaluated. Hereby, the focus is 

on different aspects of math trails and, in particular, math trails with MathCityMap that differ from “classic” 

mathematics teaching, i.e. the autonomous learning, the potential for modelling tasks, the use of mobile learning, the 

role of embodiment and their empirical impact on students’ performance and motivation. 

      

1.  Theoretical Background of Math Trails 
      

Learning and the learning of mathematics can take place in different learning environments. 

For sustainable learning, [8] describe that a learning environment should offer enough space for 

own discoveries and still introduce new discoveries stepwise. In addition, it should communicate 

the required knowledge directly when needed and the task difficulty should not be too high.  

In such a learning environment, mathematics does not have to take place exclusively in the 

classroom. Due to the demand for relating mathematics education to reality, i.e. contextualized 

tasks with relevance to the living world, a current trend emerges to do mathematics outside – often 

found under the catchword "outdoor mathematics" [10]. So-called mathematical trails (also known 

as "math trails") offer a possibility to meet this demand and to consciously perceive and apply 

mathematics in the environment. When running a math trail, objects in the environment become the 

centre of mathematical tasks through appropriate questions. In this way, it is possible to transfer 

tasks that are known from the textbook to everyday objects, places and concrete situations that are 

familiar to the students. A math trail is thus a mathematical path along a map with several fixed 

places where mathematics can be experienced. At these places, there are tasks that can only be 

solved on site because to solve the problem, the own data have to be collect exactly at these places. 

In order to decide which data must be collected, the task solver must have a mathematical model 

for this situation [15]. This can be, for example, the model of direct proportionality when counting 

paving stones in a limited area, the gradient triangle when calculating the slope of a wheelchair 

ramp, or a suitable geometric body when determining the weight of a stone. 

The idea of the math trail is not new, but already several decades old. However, its original 

intention was not focused on a school setting but was to popularize mathematics in society. The 

math trail created by [4] in Melbourne in the 1980s was intended as a vacation activity for the 

whole family. Accordingly, the tasks were set in such a way that simple basic arithmetic was 

sufficient to discover or just discuss mathematical relationships and phenomena in the environment. 

Over the past several decades, there have been scattered reports of positive experiences 

using math trails in schools [17]. Hereby, using math trails in school seems legitimate in many 
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respects. Emotions, interest and personal significance have been shown to correlate positively with 

(mathematical) performance [18].  

Already at first glance, math trails differ from the “classic” mathematics teaching and 

learning inside the classroom. When walking a math trail, students work in small groups on various 

tasks. The groups are independent of each other and also quite independent of the teacher. Because 

of this open form of learning, math trails are reminiscent of the “learning at station” method, in 

which students work on tasks independently. [3] emphasizes, in particular, the autonomous learning 

at one's own pace and the observing, rather passive role of the teacher during the processing as 

advantages of this method. It is true that the observing role of the teacher in math trail can only be 

realized to a limited extent due to the spatial distance of the tasks – in contrast to learning at station 

in the classroom. The feature of the Digital Classroom of MathCityMap (see section 2), which 

allows the teacher to observe the students' entries, walking paths and hint retrievals and to analyze 

them after they have been completed, provides the teacher with diagnostic possibilities. In addition, 

students can chat with the teacher if necessary and ask for individual hints. Nevertheless, this 

request for assistance and, in particular, the development of the solution lies with the students, 

whereby autonomous learning takes place.  

Not only methodically, but also in terms of content, the math trails require independent 

decisions from the students. Unlike in the textbook, the tasks do not specify data about the object 

and students have to decide independently which data should be collected based on a mathematical 

model and which data can be collected at all [10; 12]. Through a math trail, an introduction to 

mathematical modelling is usefully possible.  

Another benefit of working on math trail tasks is the own (physical) activity on site. Studies 

show that one's own physical activity has a positive effect on cognitive learning [19], which is 

understood in terms of "embodied mathematics" as an important basis for grasping mathematical 

concepts [16]. The embodiment view emphasizes that mathematical concepts and terms cannot be 

meaningfully thought about and grasped without corresponding bodily experiences. For example, 

the circumference and diameter of a cylinder can be internalized in a contrasted manner if these 

quantities have been actively measured and thus the difference is also evident in the active 

measurement. Especially the connection between these enactive actions on the one hand and iconic 

representations (e.g. a sketch of the object) and the symbolic representation (e.g. formula of an 

object’s volume) on the other hand, is valuable for learning mathematics [15].  

Nevertheless, these theoretical benefits have not led to a widespread use of math trails in 

mathematics education. The main reason for this is probably the high effort required to create a 

math trail. In particular, the development of the tasks and the compilation of the map that contains 

the tasks should be mentioned here. More recently, there has been increased experimentation with 

electronic maps (e.g. Google Maps) and QR codes for task delivery to cell phones. But even this 

did not lead to the desired minimization of the workload in creating math trails. By combining a 

web-based database and a mobile app, the MathCityMap system has brought the idea of math trails 

into a digital and didactic context [15]. 

 

 

2.  The Digital Components of the MathCityMap System 
       

The MathCityMap system consists of two main technical components. First, there is a web 

portal (www.mathcitymap.eu; Figure 2.1 left) that acts as an international database and community 

portal. On the other hand, there is a corresponding smartphone and tablet app (Figure 2.1 right), 
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which loads a selected math trail from the portal and makes it available to users (e.g. students) 

while they are walking along the trail. 

 

   
Figure 2.1  The MathCityMap Web Portal (left) and Smartphone App (right) 

 

Task and Trail Creation in the Web Portal. The web portal offers the possibility to view tasks to 

get ideas and create your own tasks. When creating tasks, the portal allows to position the task pin 

on the map by mouse click and to upload a photo of the task’s object. If geotagging is activated 

when the picture is taken, the system automatically takes over the positioning of the task pin. 

During the task creation, it is possible to choose from different answer formats. As solution format, 

the system allows exact values, intervals, multiple choice, fill-in-the-blanks, set, vector as well as 

GPS coordinates as answer. Thus, combinatorial tasks with an exact solution as well as 

measurement and modelling tasks, where small deviations should not lead to a wrong result, can be 

equally realized. In addition, stepped hints and one possible sample solution must be provided for 

each task. 

To make it easier for the user to create tasks, there is a catalogue of so-called "generic 

tasks" – selected tasks that can be created as if by magic with the help of templates (Task Wizard) 

with just a few clicks. The intention here is to make frequently found task objects, such as the slope 

of a ramp or the speed of an escalator, transferable to new locations with as little effort as possible.  

Users can combine their self-created tasks with public tasks to form a math trail. Once the 

trail has been created, it is assigned a unique code. The trail can now be downloaded using the 

MathCityMap app via code. Afterwards it is available for the actual math trail walk. 

 

The MathCityMap App. In the app’s section “Add Trails”, students can add a private trail by 

entering the trail code from the web portal. Once the download of a trail is complete, no further 

internet connection is required to run a trail with the basic functions described in this section. With 

the help of a map and your own location (Figure 2.2 first row left), the app guides students along 

the tasks of the trail. By clicking on the respective task pin, the task text and the picture of the 

object are displayed (Figure 2.2 first row middle).  
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Figure 2.2  Screenshots in the MathCityMap App 

 from left to right -  First Row: Map (left), Task Formulation (middle), Hints (Right) – Second 

Row: Answer Validation (left), Sample Solution (middle), Map with Validation (right) 

 

The app upgrades the paper version of a math trail with a stepped help system by displaying hints 

(Figure 2.2 first row right), as well as automated and direct feedback after solutions have been 

entered (Figure 2.2 second row left). Task creators can add points as gamification elements when 

creating a trail. Then students receive up to 100 points per task. From the second wrong solution 

entry, 15 points are deducted to prevent guessing. The use of hints, on the other hand, does not lead 

to a point deduction. With the "interval" answer format, further points may be deducted, depending 

on the quality of the solution (in the example of Figure 2.2 the deviation is about 45 points). When 

setting the solution interval, the collected measured values and possible deviations are taken into 
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account. This results in a green interval for very good solutions, a yellow interval for acceptable 

solutions and a red interval for wrong solutions. After entering a correct or acceptable solution or 

giving up on the task, it is possible to view the sample solution (Figure 2.2 second row middle). 

Depending on the range of the solution interval in which a task was solved, the app gives 

corresponding feedback and displays the tasks that have already been solved on the overview map 

(Figure 2.2 second row right). Blue pins represent tasks that have not yet been worked on. Grey 

pins represent tasks that have been skipped and can be worked on again later.  

 

MathCityMap sample tasks. After presenting the basic technical components, this paragraph 

presents sample MathCityMap tasks get an idea about the actual use of outdoor mathematics. One 

of the main goals of outdoor mathematics is to foster the application of mathematics and 

mathematical modelling competencies. 

Hereby, we understand modeling as the ability to work out relevant questions from the 

environment, to transfer them to mathematics, to work on them mathematically and finally to 

validate and interpret them on the basis of the given real situation. Furthermore, the ability to 

choose from different models and to evaluate them is also part of the modeling ability [5]. In 

particular, the aspect that different models can be chosen to address a real-world problem is 

emphasized by MathCityMap tasks. At this point, it should be noted that MathCityMap tasks are 

mainly questions that are particularly suitable for providing an introduction to modeling and should 

therefore be distinguished from complex and extensive modeling tasks. The fact that a math trail is 

usually composed of ten different tasks and that each task should be completed in a time frame of 

up to 15 minutes makes it clear that MathCityMap tasks cannot require every single modeling step 

in its full complexity. Therefore, in the following we deal with individual steps in the modeling 

cycle and present suitable examples from the MathCityMap project. Most of the MathCityMap 

tasks focus on simplifying and mathematizing the real situation into an adequate mathematical 

model, which corresponds to steps 2 and 3 of the seven-step modeling cycle (Figure 2.3 left) 

according to [5]. In simplifying, important information is separated from unimportant information 

taken from the real situation. Mathematization involves the translation of the simplified real 

situation into mathematical models. This is illustrated by the sample task (see Figure 2.3 right). 

.         

 

Figure 2.3  The Modelling Cycle according to [5] (left) and the Sample Task “Flowerpot” (right) 
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For the flower pot, which can be described fairly accurately by a truncated cone, three 

different geometric approaches could be observed among 9th grade students solving the task 

outdoors. This can probably be attributed to the fact that the formula of the volume of a truncated 

cone is not familiar or present to every group. Despite students not being able to solve the task, the 

following modelling processes were performed (see Figure 2.4). 
 

 
Figure 2.4  Three different Student Solutions on the Sample Task “Flowerpot”  

 

Here, each solution emphasizes a different mathematical model and the students have 

worked with it mathematically in different ways. The first solution variant (Figure 2.4 left) 

approximates the result by the mean value of the volume of a cylinder with the large radius (R) and 

a cylinder with the small radius (r), thus: 

 
 

The second possible solution (Figure 2.4 middle) approximates the result by a middle 

cylinder. For this, the students take the mean value of the small (r) and large radius (R) as the 

radius, resulting in the following mathematical model: 

 
 

The third student solution (Figure 2.4 right) is based on knowledge of the formula of the 

volume of a truncated cone with: 

 
 

It seems particularly interesting here that the real results of all three approaches hardly 

differ. On the one hand, this can be explained by the carefully collected measured values of all 

three groups of students. On the other hand, the shape of the truncated cone shown here does not 

differ that much from an exact cylinder, so that the models used only lead to minor deviations. 

We conclude: Each solution deals with different mathematical models. For each approach, 

the students have to create their own real model and then they mathematize it by adding variables 

they have to measure. The students hereby have to think about which data they have to measure – a 

difference to modelling tasks in the classroom.  

Other typical sample task in the MathCityMap system – also with respect to the idea of 

generic tasks at frequently found objects – are the determination of the slope of a handrail, the 

weight of a stone or the age of a tree (see Figure 2.5). 
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Figure 2.5  Three Generic Tasks in the MathCityMap App  

 

The Digital Classroom. A challenge when conducting a MathCityMap math trail with a school 

class is to keep track of what is happening. Similar to the learning at station method, when starting 

a MathCityMap math trail, students are sensibly divided into small groups to work at different 

stations in the area of the math trail. Subsequently, they work on task after task. This makes it 

impossible for the teacher to keep an eye on all the learners and, if necessary, to provide support. 

This is where the digital classroom of MathCityMap comes into play. The digital classroom is a 

temporary pedagogical digital environment that allows the teacher to communicate with the 

learners via smartphone during a math trail, while at the same time tracking their learning status 

and determining their position. 

To create a digital classroom, the teacher goes to the MathCityMap web portal and selects 

the desired trail, he/she would like to use in the digital classroom. Since the digital classroom is 

intended to be used only temporarily, a start and end time must be defined. The system now 

generates an access code for the digital classroom that has just been created. This code is used to 

download the trail onto the smartphone. The participating students are informed about the 

conditions of use and have to enter a "player name" and the group members. While the digital 

classroom is active, the teacher has access to a special interface in the web portal. In this interface, 

three main functions for class management and diagnosis are available during the math trail. 
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  Figure 2.6  Chat (left), Walking Paths (middle) and E-Portfolio (right)  

 

The chat (see Figure 2.6 left) as a communication channel allows the teacher to give 

instructions or differentiated help to all or selected students digitally in real time. In addition, 

students can request help when problems arise or have part of their solution (e.g. measured values) 

validated by the teacher. 

The walking path tool (see Figure 2.6 middle) shows the teacher on which tasks the learners 

are currently active as well as their previous walked path during the math trail. For example, if 

several small groups are jammed at one station, the teacher can recognize this without being there 

and react to it via a broadcast message. In this way, teachers retain pedagogical control over their 

learning group without being physically present at all stations. 

The e-portfolio (see Figure 2.6 right) is an additional evaluation and diagnostic tool. It 

contains information about the progress along the math trail for each group. This includes, for 

example, the number of tasks completed so far, the hints used, and the answers entered. In addition, 

learners can transmit their answers and calculation methods to the teacher in the form of text, 

images and voice message, using the smartphone’s camera and microphone. The information 

obtained through the e-portfolio can be used for diagnosis and incorporated into further lesson 

planning. 

 

MathCityMap in the context of mobile learning. As presented in the introductory section, 

running a math trail with MathCityMap is supported by the use of digital media. From the student's 

perspective, this is done in particular through the use of the smartphone app. The use of mobile 

technologies in an educational context is called "mobile learning" (m-learning). Mobile learning 

describes learning that is enabled by mobile technologies at any time and any place, or learning that 

is supported by the use of mobile technologies in a profitable way [15]. Especially the second 

aspect is considered by connecting math trails with mobile technologies and mobile learning is 

implemented with MathCityMap. The added value of using a smartphone app compared to math 

trails with paper and pencil is seen - from a student perspective - in the following aspects: 
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1. Navigation support: The app shows your own location and the task location. In order to 

train the use of maps, the app does not provide a leading navigation, it is only supported 

by the position display. After completing a task, the app automatically shows the 

position of the next task in the trail and thus organizes the trail sequence. 

 

2. Retrieval of hints: Unlike an analog math trail, the app not only presents the task and 

task object, but also holds hints entered by the author or teacher if needed. These are 

graded, i.e. up to three hints are stored, which increase in specificity.  

 

3. Validation of the solution: The solution is validated automatically and immediately after 

input. The students thus learn directly on the spot whether their result is correct, 

acceptable or incorrect and can revise incorrect considerations again if necessary. 

Furthermore, the sample solution is available to them after correct answer or after giving 

up the task. By additional playful elements, like points or group sequences, math trails 

can be embedded further into an optional competition character. 

 

The Math Trail Community. One reason why the math trail idea has not spread as much as one 

could have expected in the last century was that no (international) community could develop in 

which tasks could be exchanged or experiences could be shared. The previous math trail projects 

(e.g. Niagara Falls Math Trail and Canadian Math Trail by E. Muller) were therefore isolated 

solutions for individual areas or regions, or relatively old-fashioned and unknown websites that 

were not interactive and therefore did not contribute to the exchange among users [20]. It was 

important from the beginning of the MathCityMap project to create the possibility that on the one 

hand the web portal can be offered in different languages and that on the other hand the contact 

among the users can be established.  

In the context of these demands, the MathCityMap project defines different roles for the 

users with different tasks. There is the classic simple user who can create tasks and combine them 

to a private trail. The users have the possibility to contact other users directly via the community 

portal.  

In order to publish tasks, so that every user can view and use them, the tasks have to be put 

into a review process. Over the years, quite a large number of reviewers have been established in 

various languages who review MathCityMap task voluntarily. Currently, the system has more than 

27.000 tasks of which nearly the half are public. These tasks have been created by more than 8.700 

users on all continents in more than 40 countries around the world.  

In addition to the reviewers, there are also translators who are responsible for ensuring that 

the latest new developments are translated into the respective languages.  

Each member of the community receives various awards for reaching goals in certain 

categories (see Figure 2.7).    

 Taskmanager (number of tasks created)    

 Pathfinder (number of trails created),  

 Teacher 4.0 (number of Digital Classrooms conducted),  

 Influencer (number of followers),  

 Consultant (number of reviews conducted) and  

 Apptastic (number of downloaded own trails). 
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Figure 2.7  The Badges the MathCityMap Community 

     

We do not know exactly which of the factors (e.g. community website, the MathCityMap idea 

itself, outdoor learning, mobile learning) has led to the fact that the MathCityMap community has 

been developing almost exponentially for the last six years. Every year, the users create as many 

tasks as at large of all previous years. The only exception was 2020, the first year of Corona 

pandemic. For 2021, we expect an increase of more than 15.000 tasks and 4.000 users. It is 

encouraging that the users have created 10 % more tasks per user since the Corona crisis. Before 

Corona, we were averaging 2.76 tasks per user, now we are averaging 3.06. This development can 

be seen in Figure 2.8.   

 
 

Figure 2.8  The Exponential Development of the Number of Tasks and Users 
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3.  Research Interest on Mobile Math Trails  
 

As stated in the introductory part, MathCityMap has been created for the use and digital 

enrichment of math trails in the educational context. In order to state the relevance of math trails in 

mathematics teaching and learning, considerations on both levels – theoretical and empirical – are 

necessary. Especially the digital enrichment of the math trail idea through the digital components of 

MathCityMap are of interest for the educational purpose. In order to legitimate the use of math 

trails on the one hand and the digital enrichment through MathCityMap on the other hand, we focus 

on the following research question: 

 

In what way do math trails and, in particular, their digital enrichment support the teaching 

and learning of mathematics? 

 

In order to answer the question, several research findings from the educational context are 

taken into consideration. Hereby, the focus is on different aspects of math trails and, in particular, 

math trails with MathCityMap that differ from “classic” mathematics teaching. More specifically, 

we narrow the research question to the aspects of performance, motivation, and mathematical skills 

using modeling as an example. Already at this point, it should be pointed out that this compilation 

of potential benefits certainly cannot claim to be exhaustive. 

 

 

4.   Empirical Findings on Math Trails   
 

Math trails in the context of performance. [6] was the first to investigate the impact of the 

MathCityMap system on mathematical performance. For this, an empirical study was conducted in 

Indonesia with over 500 students. The experimental group tried math trails with the MathCityMap 

app, while the control group had normal math classes [21]. The Indonesian study found no 

significant difference between the control and experimental group regarding the pretest on 

mathematics (p = .35 for a two-sided t-test). However, the post-test has a significant difference 

between the two groups (p < .000, d = 1.2) [21].   

Also [20] investigates the influence of math trails with MathCityMap on mathematical 

performance. For this purpose, an empirical study was conducted in 2017 with 235 German ninth 

grade high school students on the topic of cylinders. After a grouping test, treatment and control 

groups were formed. For the treatment group, math trails with cylinder tasks were created and run 

in two 90-minute sessions. In a comparison test on cylinder tasks, there was a strong significant 

difference between treatment and control group (p < .01) with a medium effect (d=0.5) in favor of 

the treatment group. This showed an increase in performance especially after the second run [20]. 

Notably, long-term learning through math trails was demonstrated in the context of the study with a 

smaller sample, which is consistent with the findings of previous studies on long-lasting memories 

of learning in outdoor situations [7]. 

  

Math trails in the context of motivation. In addition to the pre- and post-test, [6] used the Self-

Determination Index in both experimental and control group to specify the influence of 

MathCityMap on the students’ motivation. The values of the experimental group were significantly 

higher than those of the control group. The follow-up math trail activity and the survey one year 

later showed that increased motivation is also a long-term effect.  
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Additionally, the previously described German study examined the influence of 

gamification elements (game elements) on students' motivation while completing a math trail. In 

total, 196 ninth grade students were divided into three different gamification groups [9]: 

 G0: No Gamification - The app only provides feedback on the correctness of the answer. 

 G1: Points gamification - There are up to 100 points for each task. Each incorrect answer is 

penalized with a point deduction. The first incorrect entry has no consequences yet. 

Answers within the acceptable solution range are rewarded with partial points depending on 

their proximity to the correct solution. 

 G2: Local Leaderboard Gamification - In addition to points, groups can see which group is 

ahead or behind them in the score. 

After completing a trail with one of the above gamification variations, students completed 

an intrinsic motivation questionnaire. Missed entries and the number of tasks solved were also 

recorded using the app.  

The results show that gamification variants G1 and G2 increase motivation, but not 

significantly. Nevertheless, they significantly change the groups' solving behavior. On the one 

hand, the number of incorrect entries - and thus the guessing behavior in particular - was reduced. 

In particular, the leaderboard increased the number of solved tasks [9].   

 

Math trails in the context of modelling. Also when it comes to mathematical skills, outdoor 

mathematics shows potential to enrich the teaching and learning of mathematics. As stated in 

section 2, through the necessity of collecting data from the real environment under consideration of 

simplification, a strong connection to mathematical modelling [5] can be assumed. In the context of 

a comparative case study [14], the differences in indoor and outdoor modelling settings were taken 

into consideration. Through the nature of outdoor mathematics, the modelling process was mainly 

limited to the “Structuring and Simplifying”, “Mathematizing” and “Validating” steps [5].  

Two groups of students solved similar modelling tasks – one group being outside at the real 

object’s location and one group solving the task inside the classroom with a picture including an 

object of reference. Both group’s solving processes involve the “Structuring and Simplifying” and 

“Mathematizing” modelling steps. The basic chosen models are often similar in the indoor and 

outdoor context.  

Still, the discussion which model should be chosen is more intense in the group of students 

being outdoors. While doing so, they take different perspectives and discuss which data and 

knowledge are needed. Through the possibility of measuring at the real object, the students try to be 

as precise as possible and do not take any estimations. Still, it is their aim to work effectively. The 

students inside the classroom have fewer possibilities to choose a model because of the limited data 

that can be collected. Through the picture, they only have one unchangeable perspective of the 

object. In contrast, the students indoors have more intense discussions on the assumptions and 

estimations that they have to make in order to collect the necessary data for the mathematical model 

[14]. These findings are exemplary presented in Figure 4.1 which gives an overview on the 

different modelling steps and the duration for the outdoor and the indoor group. The activities in 

“Simplifying/Structuring” and “Mathematizing” are divided into subcategories. Still the choice of 

colour (deep and light blue and red) should symbolize their relationship. 
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Figure 4.1  Modelling Activity Diagram [1; 14] 

 

 

5.  Discussion and Limitations 

 
On the one hand being an open form of learning, on the other hand through strongly 

emphasizing embodiment and enactive actions, we have assigned math trails in the introductory 

part a special role alongside or in mathematics learning and teaching. The results from the various 

empirical studies confirm the special significance of math trails hypothesized from the theory. In 

addition, the empirical results show that this special role indeed seems to have an impact on the 

learning of mathematics.  

First, the impact on (initially short-term) learning performance could be shown. In both 

studies presented by [20] and [6], the experimental groups that were outside with MathCityMap 

performed better. With reference to the theoretical advantages of mobile math trails (own decisions, 

open-ended work, embodiment and enactivity, and digital enrichment), the theoretical and 

empirical considerations seem to fit together. Nonetheless, it remains unclear at this point which 

influences lead to this increase in performance – going outside, the smartphone, or even a mixture 

of both. This remains to be investigated on a qualitative level.  

Furthermore, circumstantial evidence for long-term learning success emerges in [20]. Based 

on a subsample of his study, he hypothesizes that math trails with MathCityMap lead to long-

lasting memories of what is learned. This hypothesis will be investigated by [2] in the quantitative 

longitudinal study “MEMORI”. 

In terms of motivation, the MathCityMap system was found to be intrinsically motivating. 

As with performance, this may be due on the one hand to going outside, but also to the use of the 

smartphone. Especially the latter shows relevance in the study of [9]. The supplementary use of 

digital gamification elements shows that these playful elements have an additional influence on 

motivation and prevent undesired behavior such as guessing.  

To confirm the quantitative results also on a qualitative level, we have listed the results on 

the actual solution process when modelling in the classroom and outside. Here we find different 

emphases regarding the steps structuring and mathematizing from the modeling cycle of [5]. 

Validating also has a different meaning in the context outside and is particularly stimulated by the 

digital component of the app. Modelling outside the home thus seems to be a profitable enrichment 

of "classical" mathematics instruction in the classroom. In the qualitative study "MAP - Modelling, 
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Arguing and Problem Solving in Outdoor Mathematics" we will investigate the modelling 

competence in more detail and furthermore the competences arguing and problem solving in 

outdoor mathematics tasks [11]. 

The limitations and outlooks show that there is still much work to be done concerning the 

special learning form of math trails. Both, theoretically and empirically, math trails show 

advantages that can be used to enrich normal mathematics instruction. Thus, in addition to these 

research activities, our practice-oriented goal is to convince teachers to use the tool regularly. In the 

strategic partnership MaSCE³ (Math Trails in School, Curriculum and Educational Environments of 

Europe), we realize this by creating theme-based trails – trails that fit a specific topic from the 

curriculum (e.g., slope or statistics) and that can be created on objects that can be easily found in 

numerous locations (e.g., stair railings or city maps) [13]. Ultimately, through this curricular 

adaptation, we hope to see an even greater emphasis on the benefits of math trails – and an ever-

growing international community of teachers and instructors willing to use them. 
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Abstract: This paper examines an experience of mathematics preservice teachers of using problem-based learning (PBL) 
approach in an online course about teaching applied mathematics. The study results showed that PBL approach to 
teaching mathematics supports collaborative/cooperative work and increases PSTs’ engagement in and out of class. The 
structure of the course that involved PBL experiences from students’ perspective followed by analysis of PBL approach 
from teacher’s perspective provided PSTs with sufficient background to develop their own PBL-based instructional units. 
The study results also showed that while PSTs’ teams were successful in developing curriculum-based problematic 
situations with real-world connections, they were challenged to justify the use of technology in these experiences. PSTs 
also had difficulty with development of authentic assessments within PBL approach. 

1. Introduction 
 
In March of 2020 the pandemic demanded that teachers design a 21st century learning solution 

that is scalable, adaptable, engaging, and meaningful.  We were forced to untether our thinking and 
create a new world for learning. This transformation required educators at all levels to move quickly 
to create fundamentally different virtual environments that provided learning experiences that had 
never before been offered.  Transforming the traditional in-person classroom to a virtual environment 
while maintaining student-centered teaching became one of the most difficult challenges for all 
educators during the COVID-19 pandemic. This paper examines experiences of mathematics 
preservice teachers’ (PSTs) in an online problem-based learning (PBL) course about teaching and 
learning applied mathematics designed to address the challenges of the online environment, e.g. truly 
engaging students in learning mathematics in and out of class, providing space and time for 
collaborative/cooperative work, and rethinking formative assessment. The course was designed to 
meet the following goals: 

i. Apply the philosophy, theory, and rationale behind PBL through the experience of a variety 
of mathematics modeling and applications PBL activities. 

ii. Use a variety of resources, including the use of technology to facilitate and create PBL units 
that demonstrate mathematics modeling and applications. 

iii. Use authentic assessments, techniques, and tools in planning and evaluating PBL lessons that 
reflect the needs of the students. 

iv. Illustrate how to employ a PBL in mathematics courses through the creation of a collaborative 
and engaging environment. 

v. Evaluate the effectiveness of a PBL lesson by using a set of criteria to determine if the lesson 
meets the educational needs of the students. 

The purpose of this paper is to discuss my success with these goals. To do so, I address the 
following research question: Did PBL-based design of online course support PSTs’ engagement in 
mathematics problem-solving, collaborative/cooperative work, and development of their own PBL-
based instructional units for secondary mathematics classrooms? 
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2. Background 
 

Studies show that PBL has been an effective approach to teaching and learning mathematics in 
the in-person settings. In [1] a meta-analysis of 217 studies showed that the implementation of PBL 
into secondary school mathematics courses significantly enhanced learners' higher-order thinking 
skills in mathematics. In higher education, the implementation of PBL in mathematics courses led to 
increased student achievement [2], interest, engagement, enthusiasm, and sense of ownership [3], 
and improved reasoning skills [4]. Research also shows that PBL is an effective approach to teacher 
education. Specifically, empirical evidence suggests PBL can deepen PSTs’ mathematics content 
knowledge [5], and prepare PSTs for implementing PBL in their own classrooms [6]. While there is 
overwhelming evidence that PBL is an effective approach to teaching and learning mathematics and 
mathematics education courses in the in-person settings, very few studies examine the PBL approach 
in online mathematics or mathematics education courses. In [7] a study that compared academic 
achievement of undergraduate students in online and in-person mathematics PBL course, students in 
the online course performed significantly better than in the in-person course. Moreover, the online 
environment supported the use of social media for student discussion in a hybrid mathematics PBL 
course, which led to increased student interaction and development of the mathematics learning 
community [8]. However, studies are needed to examine how online PBL-based courses can support 
preparing mathematics PSTs to implement PBL in their future classrooms. 

According to [9] students learn best when their teachers maintain a high-level of cognitive 
demand throughout the lessons, which can be achieved through PBL approach. Therefore, in order 
to provide an active learning environment with high cognitive demand tasks, I decided to use a 
problem-based learning (PBL) approach as suggested in [10]. In this approach each unit starts with 
a problematic situation that serves as the organizing center and context for learning. The problematic 
situation is usually ill-structured and messy, that students perceive as important and relevant. The 
PBL process steers students through the complex tasks of brainstorming ideas, identifying useful 
knowledge, asking appropriate questions, and crafting a strategy for finding answers [11]. However, 
PBL requires a high level of interaction and collaboration which is not naturally supported by the 
virtual environment. Thus, I needed to redesign a course about teaching applied mathematics for 
mathematics PSTs that would transform PBL approach used in the in-person settings to a virtual 
environment. 

 
3. Course design and implementation 

 
In order to create a highly active learning environment where PSTs could discuss and share ideas, 

and collaboratively solve problems, I analyzed high-impact influences on student learning [12]. John 
Hattie [12] examined and synthesized more than 1,600 meta-analyses comprising more than 95,000 
studies about factors affecting student learning and ranked them according to their effect size 
(Cohen’s d). Among teaching strategies with the largest effect sizes that could be enhanced by open 
source instructional technology and effectively used in an online PBL environment I selected 
Cognitive Task Analysis (CTA, d = 1.29), classroom discussion (d = 0.82), and providing feedback 
strategies (d = 0.62). I knew I could support these strategies in an online environment by using 
Nearpod (https://nearpod.com/), a multimedia student engagement platform for designing interactive 
lessons using various multimedia content, e.g. PhET simulations, interactive videos, VR field trips, 
Desmos graphing calculator, etc. Nearpod also includes a variety of activities that could be used for 
formative assessment, e.g. Collaborate board, Draw-it, different types of questions, and FlipGrid 
video. Live Nearpod presentations could be used in a synchronous mode of teaching enabling 
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teachers to control student progression through the lesson. An asynchronous mode  can provide self-
paced Nearpod presentations so students can experience the same interactive features at their own 
pace. All my classes were conducted live, so it was very important for me to have an asynchronous 
option for students who might have difficulties accessing the Internet during classes. I also wanted 
to be able to integrate various resources in my lessons, and Nearpod enabled me to do that within one 
platform, so students would only need to join a single Nearpod lesson to have access to all resources 
that I had planned for them.  

The goal of the redesigned online course was to explore and experience the ways in which applied 
mathematicians approach practical applications, from understanding the underlying problem, 
creating a model, analyzing the model using mathematical techniques and digital technology, and 
interpreting the findings in terms of the original problem. In order to provide PSTs with first-hand 
PBL experience, I started each unit of the course with a problematic situation on a topic aligned with 
7 – 12th grades mathematics curriculum. The course outline is shown in Table 1. 
 
Table 1. Outline for the course Teaching applied mathematics 

Week Focus Topics  
Week 1 Introduction Introductory problem: A greenhouse extension 
Week 2 PBL philosophy and 

theory 
What is PBL? Why use PBL? 

Week 3 Teacher role in PBL. 
Week 4 Student role in PBL.  
Week 5 Middle school Problem 1. Crime scene investigation: Classroom experience 

from students’ perspective. 
Week 6 PBL model Developing a PBL. 
Week 7 Criteria for good applied mathematics PBL.  
Week 8 Algebra, geometry Problem 2. Moving a ladder: Classroom experience from 

students’ perspective 
Week 9 Evaluating PBL in the classroom. 
Week 10 Precalculus, calculus Problem 3. Designing a detector: Classroom experience from 

students’ perspective. 
Week 11 Brainstorming PBL scenarios for the final project.  
Week 12 Assessment in PBL Alternative assessment options. 
Week 13 Gains and pains of PBL Teachers, students, parents. 
Week 14 Student presentations 

 
Individual/group presentations of problems.  
Peer evaluation. 

Week 15 Final project Reflection on experience. Course evaluation. 
 

3.1.  PBL design 
Designing a problem scenario that results in the targeted learning outcomes is critical. You want 

to make sure that the problem scenario encourages students to take charge of their learning, that it 
emphasizes critical and creative thinking, problem-solving, collaboration, and self-directed learning. 
The following criteria were used to evaluate problematic situations [: 

• Does the problem approximate reality? Will your students perceive the problem scenario as 
realistic?  Avoid creating a scenario that is unbelievable. Avoid designing a problem that is 
so global and generic that students will throw up their hands in frustration and dismay. If 
students think that the scenario could never happen in a million they won’t be bought into 
solving it. 
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• Is the problem curriculum-based? You want to ensure that the problem addresses the target 
knowledge and skills.  Avoid getting carried away writing a problem that you think is 
intriguing and thrilling, when in reality the problem doesn’t match teaching objectives. 

• Is the problem engaging? How well will the problem stimulate and sustain curiosity, or the 
need to explain or understand, or the desire for order, or the need to resolve the situation, or 
the need to improve a condition? The problem must sustain the motivation to continue 
interaction and learning from beginning to end. 

• Does the problem allow inquiry? The problem presentation should further inquiry and 
analysis. Is it sufficiently open-ended, ill-structured, and messy?  

The problem design is an iterative process, it takes time and energy to write a good problem. The 
Tragedy problem scenario went through multiple iterations before it took its final form shared in this 
paper as an example of a problem that could be used at the beginning of a middle school unit to teach 
proportionality and similarity in scale drawings. Here is the excerpt from the problem scenario [13]: 

 
A Tragedy at the National Gallery of Art 

As a team of forensic specialists from Lloyds of London, you have been asked to 
investigate a theft of a priceless Picasso painting that took place at the National Gallery of 
Art in Washington, D.C. The painting, titled The Tragedy was housed in the East Building, 
Upper Level, Gallery 99. The theft of this painting marks the first successful removal of a 
painting from the National Gallery of Art. The National Gallery had The Tragedy insured by 
Lloyd's of London for $15,000,000, but of course, the painting is priceless. 

Neither the audible alarm nor the police alarm had been activated. The wall, which had 
just hours earlier housed several of Picasso's greatest works, was now missing The Tragedy, 
one of the most prized paintings of Picasso's "Blue Period". To the officers' surprise, there 
was no one in the gallery. Black paint was found on the floor beneath the area where the 
Picasso had hung, and spatters of black paint were found throughout the gallery. In addition, 
footprints from the paint were found leading from the missing painting to the gallery exit door 
and outside.  

Digital images were taken of the paint spatters and footprints. After examining digital 
images of the trace evidence left at the scene, your team should be prepared to present 
quantitative evidence that can lead to the warrant for the arrest of the suspected thief. Lloyd's 
of London and the National Gallery of Art are relying heavily on your team of forensic 
specialists to determine who stole the Picasso.  

 
The problem then provides a list of suspects identified by the police, digital images, background 

on the painting, and requirements for the dossier to be submitted by the forensic team (you can see 
the full text of the problem at http://bit.ly/3uWcCMg). Considering the fact that this problem was 
developed for an online environment, instead of a ‘real’ crime scene I used digital images ‘taken at 
the crime scene’ that were ‘sent’ to the forensics lab, thus creating an opportunity for students to 
conduct an investigation using online resources only. This problem becomes the context for student 
learning about proportionality and similarity in scale drawings. The whole unit for this topic could 
take up to ten days with the plan shown in Table 2. 
 
Table 2.  Teaching plan for the middle school unit on similarity in scale drawings. 

Day 1 Introduction of the CSI scenario. Whole class development of learning needs using problem-solving grid. 
Day 2 Review of ratios and proportions. Introduction of similar figures. 
Day 3 Practice solving similarity problems, including problems with proportions in the human body. 
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Day 4 Learning to use GeoGebra software. Practice constructing similar figures and exploring their properties in 
GeoGebra. 

Day 5 Practice solving similarity word problems dealing with indirect measurements. Group work with digital 
evidence – qualitative analysis. 

Day 6 Introduction to scale drawings. Scale factor. Practice drawing objects to scale using ratios and proportions. 
Day 7 Practice finding distances on the map or scale drawings given scale factor. 
Day 8 Practice finding distances on the map or scale drawings given scale factor. 
Day 9 Group presentations of evidence, results, and conclusions 
Day 10 Peer review: Presentation of rebuttal analysis from the “defense attorneys”. 

 
3.2.  PBL implementation 
This problem places students in an active role of forensic specialists to investigate the theft of 

Picasso’s masterpiece, The Tragedy, from the National Gallery of Art in Washington, DC. In order 
to provide authentic experience to PSTs, I modeled the first day lesson the way it would be taught to 
middle school students. The Nearpod slides for this lesson are shown on Figure 1. (You can access 
this lesson at join.nearpod.com with the code UZGN9 that is valid through September 4, 2022). 

 

 
Figure 1. Nearpod slides for Day 1  

 
In this lesson we first discussed the rules of working with the problem-solving grid, a graphic 

organizer for logical brainstorming (Figure 1, slides 2-3). This graphic organizer is used to help 
students unpack the problem, e.g. to identify the information given in the problem and translate it 
into mathematics language, then formulate problem questions in mathematics terms, determine what 
mathematics they know and develop a plan on how they intend to approach the problem. The final 
step leads to identifying learning needs for solving the problem that become learning objectives for 
the whole unit. The process of working with the problem-solving grid as a whole class involves 
assigning one of the students to be a scribe, a person who facilitates whole class discussion and 
records information provided by other students. The whole class starts working with the first column 
until the scribe decides to move to the next column. Students can still add information to the previous 
column, but they cannot move forward until the scribe decides to do so. One very important aspect 
of this whole class activity is recording all student ideas without judgment or evaluation.  

After the rules were clarified, Nearpod took PSTs to a Microsoft Sway (Figure 1, slide 4) that 
included a full problem statement, digital images from the crime scene, link to editable Google 
Document with a blank problem-solving grid, as well as some additional information about the actual 
painting. At this point PSTs were given quiet time to read the problem and then each of them had an 
opportunity to use a ‘raise hand’ feature of Zoom in order to add information to the grid. Working 
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with the problem-solving grid took about 30 minutes with adult learners, but I would have allocated 
one full class period for unpacking the problem if I were working with middle school students.  

There were 18 PSTs in this course and every one of them contributed to the grid. They were 
truly interested in the plot and wanted to share their ideas about solving the problem. The Google 
Document that everyone could see replaced the white board we would have used in the physical 
classroom. At the same time, PSTs’ ideas were saved in a document that was easily accessible to all 
of them. This is just one example of how Google Apps can be used as tools for collaborative problem 
solving, inquiry-based learning, and student discourse in online courses. 

In a PBL classroom, a problematic situation is used as a context for learning the topic. Thus, it 
is critical that the learning needs that students identify through their work with the problem-solving 
grid  match the unit teaching objectives. I consider it a successful problem design if students’ learning 
needs and my teaching objectives match at 80% or more. In my previous experience teaching middle 
and high school students, it took about 1-2 months to get to this matching level.  After the introduction 
of the problem on the first day of a unit, the problem becomes a student group project for the length 
of the unit. When a problem is engaging, students want to learn mathematics as they immediately see 
how they can use what they learn in class to resolve a given problematic situation, and I think that is 
the major advantage of the problem-based learning.  

With PSTs we continued the lesson to discuss pedagogical aspects of the task, we compared 
their learning needs with my teaching objectives (Figure 1, slides 5-7), and discussed how the unit 
could continue in a middle school mathematics classroom. In the lessons that followed I continued 
using the Nearpod platform to embed inquiry activities, problem-solving, technology tasks to 
demonstrate how this platform could be used throughout the unit to maintain a high level of 
engagement and to provide students with collaborative activities and feedback. Nearpod has over 
8,000 premade lessons available online, so teachers can find lessons that will meet their teaching 
needs for most of the topics and modify these lessons as needed. As an example, we reviewed a 
Nearpod lesson that I modified from the available premade lesson to demonstrate a possible way to 
introduce a Day 6 topic of scale drawings (selected slides are shown on Figure 2).  

 

 
Figure 2. Selected slides from Day 6 Nearpod lesson 

 
This lesson uses interactive features such as slideshow, video, and VR to present material to 

students in an engaging way. Nearpod’s Collaborate board serves as a place for sharing ideas, and 
student drawings and answers to open-ended questions provide the teacher and the students with 
ongoing feedback. At the end of the lesson, students are asked to reflect on their learning and how 
what they learned could help them in their crime scene investigation. All student work is 
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automatically saved in Nearpod reports, providing the teacher with another opportunity to review 
student learning and make necessary adjustments to the next lesson. (You can access this lesson at 
join.nearpod.com with the code ZEGCN that is be valid through September 4, 2022). 

This lesson also helped me engage PSTs in a discussion of pedagogical aspects of teaching 
applied mathematics through a PBL approach. Throughout the course for each problematic situation 
that I introduced to PSTs, we continued discussions about PBL philosophy and theory, design of 
problems, models for PBL implementation, issues of assessment, as well as issues of using a PBL 
approach in teaching mathematics in an online environment.  
 

3.3.  Examples of PSTs’ solutions of the Tragedy problem 
In order to have a full PBL experience, PSTs working in groups of 3 were required to solve each 

unit problem as part of their out-of-class assignments. For the Tragedy, the final product had to 
include the dossier with quantitative evidence that could lead to the search warrant of the suspected 
thief (thieves). These were the requirements for the dossier content: 

1. Summary of your findings based on your analysis of the digital evidence left at the crime 
scene that can be understood by the judge who is not a mathematics professor. 

2. Appendix that includes: 
a. Step-by-step explanation of your analysis. 
b. GeoGebra files with completed constructions and calculations. 
c. Explanations of how you used GeoGebra with illustrations from the software. 

When problems are ill-structured and messy, you can expect very different approaches and 
solutions from different students. Team A presented a flowchart showing their process of solving the 
problem (Figure 3).   

 

 
Figure 3. The problem-solving process used by Team A to identify the suspect. 

 
Following this plan, team A produced mathematical analysis to estimate the size of the footprint, 

the stride and the speed of the criminal, the height where the paint spatter came from, and the weight 
of the framed painting. Using these data, they were able to identify a suspect most likely responsible 
for the theft.   
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Team B used GeoGebra to perform an analysis of the provided image of multiple footprints that 
were found on the floor of the gallery (Figure 4).  
 

 
Figure 4. GeoGebra analysis of the footprints image by Team B. The black tape is placed at 1-

meter intervals.  
 
Here PSTs measured distances between the black tape on the image and then plotted the measured 

distance against the actual distance. They then used regression analysis and found a quadratic 
function to model this relationship. Using this function, students found the distance between the base 
of one footprint to the base of the next footprint, which led them to an estimation of the height of the 
suspect.  

In order to understand the paint spatter, Team C conducted an experiment with spattering water 
onto a paper to find a spatter pattern similar to that in the digital evidence (Figure 5). 
 

 
Figure 5. Water spatter experiment by Team C to understand paint spatter evidence 

 
Team D used physics to model the shape of paint drops on the floor (Figure 6) and properties of 

right triangles to determine the height from which the paint was spattered (Figure 7) in order to 
estimate the height of the suspect. 
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Figure 6. Physical model used by Team D 

 

 
Figure 7. Paint spatter analysis by Team D 

 
When time came to share their solutions, I wanted PSTs to engage in peer review in a meaningful 

way. Therefore, each of them was assigned to a suspect identified by a peer as a ‘defense attorney’.  
The defense attorney had the following task: 

 
Your job is to help your client, and therefore, you will be looking for flaws in the quantitative 
evidence provided by the forensics team. After a careful review of the documents provided to 
you by the forensic team, submit a summary of your comments and recommendations for the 
judge based on your analysis of these documents.  

 
This task created another problematic situation for PSTs that engaged them in much deeper 

analysis of the work developed by their peers. Here is an excerpt from one of the peer reviews: 
 
Your Honor, 
I respectfully ask that you disregard the forensic report’s findings based on the following 
reasons: 

1. First and foremost, there is a grave inconsistency in this report. The scientists affirm 
they have calculated a step length of 1.07 m. Later, they affirm the stride length of 
2.86 m. This can mean one of two things. Either the suspect has a left step of 1.07 m 
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and a right step of 1.79 m, or the scientists miscalculated. If they made an error here, 
who is to say where else there are hidden mistakes? Note that Frothingan (2018) 
suggests the stride is usually 2 times the step length (meaning, the left and right steps 
are roughly the same size). 

2. The report includes the calculations for only one footprint. In case an average was 
calculated (like in the case of the paint spatter), the scientists could have a stronger 
case. 

3. This report simply dismisses the women suspects, affirming they are not strong 
enough to carry a heavy painting. This sort of stereotypical profiling is often 
deceptive. What if the women suspects practice CrossFit? Further, the report assumes 
that the footprints were left by the thief by chance, when everyone knows any woman 
could be smart enough to plant evidence to point to other suspects. 

4. The calculations of the paint spatter assume that the suspect was running and dropped 
paint on the floor by accident. However, it could be that a suspect was actually 
dispersing paint deliberately with horizontal and vertical initial velocity. 

Given the reasons above, please consider releasing my client from preventive custody. The 
prosecutor’s case is very weak. (a member of Team B) 

 
4. Analysis of PST-generated PBL units 

 
As part of the course final project, PSTs engaged in designing their own problematic situations. 

The scenarios covered a wide range of topics, such as planning a school concert during pandemic 
(Team F) to address middle school mathematics standards, park design competition (Team C) and 
building accessible entryways to public schools (Team B) to address high school geometry standards, 
designing a soccer shooting machine (Team A) and planning an indoor intelligent traffic flow for 
social distancing (Team E) to address high school algebra standards, and Coca-Cola bottle design 
competition for Olympic games (Team D) to address calculus topics. Each team submitted written 
PBL package that included teacher’s materials and student package. Teacher’s materials had to 
include instructional objectives and research-based rationale for the PBL-based unit, emphasizing 
PBL design in relation to meeting instructional objectives, justification of the topic relevance and 
value for students, and explanation of connections of mathematics knowledge and skills with real-
world problems or natural or social science applications. PSTs also had to justify essentiality and 
affordances of technology integrated into the PBL experience. The teacher’s materials also included 
unit teaching plan and assessment strategies. Student package had to include PBL scenario with 
suggested reading and Internet resources, expectations for the final product, and detailed assessment 
instrument of the final product. 

The team’s PBL packages were assessed using 4-point rubric that measured quality of PBL 
package in five different domains: research-based rationale for PBL (RBR), analysis of real-world 
connections of mathematics knowledge in the PBL unit (RWC), technological essentiality and 
affordances (TEA), pedagogical approach to support and assess student PBL experience (PA), and 
quality of scenario/problematic situation according to PBL evaluation criteria described above in 
section 3.1 (QPS). Table 2 represents results of this analysis for the six team projects. These results 
indicate that the most difficult aspect of designing PBL experience for this group of PSTs was 
meaningful integration of technology and providing research-based rationale for the use of 
technology by students. For example, Team A included requirement for the students to use GeoGebra 
in order to find a mathematical model for the trajectory of a soccer ball, but they did not include any 
explanation of how students will be using the software and they did not justify why technology was 
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essential for problem-solving. Team E just made a generic statement that students will use technology 
to “develop the plan of the situation, create a model, and perform calculations aligned with the social 
distancing guidelines”. Team F included requirement for students to use GeoGebra “to sketch the 
school gymnasium, create a location of each audience seat, and calculate the distance between each 
seat” but did not explain how GeoGebra features could be used for this task. 
 
Table 2. Descriptive statistics for PSTs’ written PBL packages 

 RBR RWC TEA PA QPS Group Mean SD 
Team A 4.0 4.0 1.0 2.0 4.0 3.0 1.26 
Team B 4.0 4.0 3.0 4.0 4.0 3.8 0.40 
Team C 4.0 4.0 3.0 3.0 4.0 3.6 0.49 
Team D 4.0 4.0 4.0 4.0 4.0 4.0 0.00 
Team E 2.0 4.0 2.0 2.0 4.0 2.8 0.98 
Team F 3.0 4.0 2.0 3.0 4.0 3.2 0.75 
Class mean 3.5 4.0 2.5 3.0 4.0 3.4 0.58 

 
The pedagogical aspects of integrating PBL into curriculum-based instructions were also 

challenging for majority of PSTs. Specifically, development of authentic assessment that was aligned 
with unit instructional objectives, and provided opportunities to assess individual students within 
groups was the most challenging task for the same teams. Team F failed to explain the expectations 
for the student final project and all three teams (A, E and F) developed rubrics that did not align with 
unit objectives and were mostly measuring completion and organization of the student project rather 
than their learning of mathematics.  

However, the results also demonstrate that all teams of PSTs were able to develop an engaging 
problem-based scenario for the selected instructional unit, that represented good approximation of 
real-world problem, provided opportunities for student inquiry, and was sufficiently open-ended and 
ill-structured. All problematic situations were curriculum-based and the teacher’s materials included 
thorough synthesis and analysis of the connections between mathematics knowledge and skills and 
real-world applications. 
 
5. Conclusions 
 

While the focus of the course was mostly on pedagogical aspects of teaching, my experience with 
PSTs demonstrated that they got deeply engaged in problem solving and actively participated in class 
discussions and activities, despite the physical separation of remote learning. The final projects 
developed by PSTs suggest that course design and structure supported their pedagogical content 
knowledge for using PBL approach in teaching mathematics online. These findings are also 
supported by PSTs’ comments from the course evaluations: 

 
• Experiencing the PBL approach first hand and reading about the PBL approach in scholarly 

journals that specifically discuss the pedagogy behind the different decisions made in using 
a PBL approach helped to prepare for using PBL in the classroom.  

• It was great to learn about problem-based learning. It was also interesting to work on PBL 
as students and also create our own PBL as teachers. It was motivating. 

• PBL approach encourages students to go beyond the rote memorization aspect of learning. 
It motivates students to learn more. Students can answer the following question: why am I 
taking this course? 
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• PBL makes me understand that students could learn by themselves, and teachers could play 
more roles not only the "teacher". 

 
At the same time, the study identified challenges PSTs had in integrating PBL into teaching 

mathematics that related to use of instructional technology and assessment of individual students 
within collaborative settings of PBL approach. Future studies are needed to examine how PSTs could 
be supported in online pedagogy courses to develop skills necessary to effectively integrate 
technology and design assessment tools appropriate for PBL classrooms. 
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Abstract: Evidence of poor performance in mathematics by secondary school students highlights the 
fact that the most desired technological, scientific and business application for mathematics cannot be 
sustained. This makes it paramount to seek a strategy for teaching mathematics that aims at improving 
its understanding and performance by students practically. Problem-Based Learning as a method of 
teaching may be used to accomplish the instructional roles of learning basic facts, concepts, and 
procedures, as well as goals for problem-solving. Thus, the aim of the study reported here was to 
ascertain the extent to which the Problem-Based Learning (PBL) strategy would affect the achievement 
and retention of students when teaching Mathematics concepts as applied in the online learning in the 
Philippine secondary schools. The subject of this research was the twenty Grade 10 students of Calbeg 
National High School who were diagnosed to have difficulty in solving probability problems during the 
third quarterly examination of this School Year 2019-2020.All the needed data for the study were drawn 
from the questionnaires taken from the Learner’s Material of Grade 10 and other reference books in 
Mathematics. Frequency and t-test were used to treat the academic performance of the Grade 10 students 
in the pretest and posttest. 
 
1. Introduction 
 The development of students' Mathematics understanding is generally accepted 
to be one of the major goals of K-12 mathematics teaching. Mathematics is a branch of 
mathematics in which symbols (usually letters) represent unknown numbers in 
mathematical equations [10]. Over the years, there have been students who have not 
performed well on math testing as they have in the classroom. Students' experiences 
with Mathematics begin with the acquisition of knowledge about procedures or 
operations that are used in dealing with Mathematics situations. Topics in Mathematics 
are taught for its usefulness in other branches of mathematics, and in the generalization 
of scientific truth, its power and verification of results more simply and satisfactorily; 
and its practical value in trades and industries [1]. Mathematics provides a conceptual 
foundation for the understanding of other concepts that students encounter in the school 
mathematics curriculum. The importance of this area of mathematics has been 
underlined by the increasing attention the teaching and learning of Mathematics have 
received over the past decade from teachers and researchers alike. Children's 
understanding of Mathematics concepts begins in the early years of their school life and 
continues throughout their mathematics learning experiences in high school and 
beyond. Mathematics also provides an effective way of expressing complicated 
relations and as a good instrument for mental training. Mathematics was chosen because 
it inculcates the power of analysis and provides a good instrument for mental learning 
[1]. 

The ubiquity of the subject matter of Mathematics in the K-12 mathematics 
curriculum further attests to its critical role in helping students develop an appreciation 
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of links that exist among other topics in mathematics. Indeed, this issue has been given 
considerable attention to the agenda of major curricular documents [5]. 

The present-day teaching and learning of mathematics are far from being 
satisfactory. [8] observed that mathematics is one of the most poorly taught, widely 
hated and poorly understood subjects in our schools. [6] had blamed this on several 
factors, which range from the students’ perception that mathematics is difficult, 
shortage of qualified mathematics teachers and lack of mathematics laboratory. The 
persistent poor performance of secondary school students in mathematics examinations 
both in teacher-made tests and external examination is now a global issue. The students’ 
low performance in mathematics is an indication of low mastery of the subject. This 
poor result calls for serious concern and this has made researchers in mathematics 
education to consider several factors. One of the factors, as examined in this study, is 
the appropriate method of teaching. 

[2] noted that very little work has been done on how achievement in 
mathematics can be improved by focusing attention on the students from which efforts 
at improvement should emanate. Others, according to Ali have suggested the 
improvement of the cognitive demand levels of the secondary school curriculum in 
mathematics. Many non-professional and in-experienced teachers present topics in 
mathematics to the student in such ways that the students find it difficult to grasp some 
mathematics concepts [3]. According to [4] many teachers cling to traditional methods 
in which answers to the previous day’s home works are first given, then the teacher-
directed explanations are used to present materials for the new lesson. The powers of 
thinking and understanding are thus not developed in the students. One of the many 
strategies that have the potentials to put students at the center of their learning is through 
Problem-Based Teaching. Today, it is recognized that every person must be empowered 
to suggest possible explanations, to propose ways to test personal or class, to collect 
and interpret data obtained, to communicate the process and results to others. 

The use of Problem-Based Learning in the mathematics classroom with the aid 
of technology may enhance the quality of mathematics teaching and learn in the 
Philippines. Problem-Based Learning as a method of teaching may be used to 
accomplish the instructional roles of learning basic facts, concepts, and procedures, as 
well as goals for problem-solving  The purpose of this study is to shed light on this 
issue. Thus, the aim of the study reported here was to ascertain the extent to which the 
Problem-Based Learning (PBL) strategy and the use of technology to employ it would 
affect the achievement and retention of students when teaching Mathematics concepts 
in the Philippine secondary schools. 
 
2. Conceptual Framework 
 

With Problem-Based Learning (PBL), learning begins with a problem to solve, 
and the problem is posed in such a way that the students need to gain new knowledge 
before they can solve the problem [12]. PBL as an instructional strategy based on 
constructivism is the concept that students construct their understanding by relating the 
concrete experience to existing knowledge where the process of collaboration and 
reflection are involved. PBL is generally based on ideas that originated earlier and 
nurtured by different researchers like Dewey, Bruner, Piaget, Ausubel, Novak, and 
Hanesian [9].  

In Problem-Based Teaching, the teacher acts just as facilitator, rather than a 
primary source of information or dispenser of knowledge. [12] argued that within 
Problem-Based Learning environments, teachers' instructional abilities are more 
critical than in the traditional teacher-centered classrooms. Beyond presenting 
mathematical knowledge through the use of a PowerPoint presentation  to the students, 
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Figure 1.1 The Paradigm of Study 

teachers in Problem-Based Learning environments must engage students in marshaling 
information and using their knowledge in applied sand real settings. 

In the Problem-Based Learning model, the students turn from passive listeners 
of information receivers to active, free self-learner and problem solvers. It also shifts 
the emphasis of educational programs from teaching to learning. It enables the students 
to learn new knowledge by facing the problems to be solved instead of feeling boredom. 
Problem-Based Learning affects positively certain other attributes such as problem-
solving, information acquisition, and information sharing with others, group works, and 
communication, etc. Again problem-solving is a deliberate and serious act, involves the 
use of some novel method, and with the aid of technology, higher thinking and 
systematic planned steps for the acquisition set goals. The basic and foremost aim of 
this learning model is the acquisition of such information based on [7].  

The teacher-researcher used the Independent–Dependent variable. The 
independent variable was the use of Problem-Based Learning.  The dependent 
variable was the performance of the Grade 10 students in Mathematics 
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3. Statement of the Problem 
 This study focused on the improvement of students’ academic performance in 
Mathematics using problem-based learning to Grade 10  students of Calbeg National High 
School, Municipality of Malasiqui, Schools Division Office of Pangasinan I, during the School 
Year 2019-2020.  

Specifically, this study aimed to answer the following research questions:  
1. What is the academic performance of the Grade 10 students in the pretest and 

posttest? 
2. Is there a significant difference between the academic performance of the Grade 10 

students in the pretest and posttest? 
 
4. Hypothesis 
 There is no significant difference between the levels of performance of the Grade 10 
students in the pretest and posttest. 
 
5. Scope and Delimitation 
 The respondents of this study handled by the teacher-researcher were the Grade 10 
students which consists of twenty students out of the eighty-one students. The respondents 
were identified having a difficulty in Mathematics as identified during their third quarterly 
examination. It is a heterogeneous group of students composed of five male students and 
fifteen female students. 
 
6. Research Design 

The teacher-researcher used the experimental research design. An experimental 
research design was employed to improve the Grade 10 students’ academic performance in 
Mathematics using problem-based teaching applied in technology.The teacher presented the 
lesson thru powerpoint presentation and video lesson and the students will access using their 
gadgets. The teacher-researcher used one group pretest-posttest design in his study. Pretest and 
posttest questions were drawn on the topic during the third quarter. It focuses mostly in solving 
probability. 

The researcher used the experimental method of research since it is the only method of 
research that can truly test hypothesis concerning cause-and-effect relationships. It represents 
the most valid approach to the solution of educational problems, both practical and theoretical.  
 Also, according to [7] when properly applied, the experimental research design is the 
best type for testing hypotheses about cause and effect relationships. It contends the 
experimental research determines the impact of an intervention on an outcome for participants 
in a study. 

According to [10] the experimental research design is a controlled procedure that sees 
the manipulation of an independent variable (IV) to observe or measure its effect on a 
dependent variable. It contends the experimental research determines the impact of the 
intervention on an outcome for participants in a study. Experimental design allows one to make 
causal inferences about relationships among variables. 

7. Sources of Data 
 The study was conducted in Calbeg National High School, Municipality of Malasiqui, 
Schools Division Office of Pangasinan I. The research had spanned from March to May. The 
respondents of this study handled by the teacher-researcher were the Grade 10 students which 
consists of twenty students out of the eighty-one students. The respondents were identified 
having a difficulty in Mathematics. It is a heterogeneous group of students composed of five 
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male students and fifteen female students. These students were selected based on their scores 
on the said examination. 
 

8. Instrumentation and Data Collection 
The teacher-researcher asked permission to conduct the study from the office of the 

School Principal. The intervention used is Problem-Based Learning which was employed using 
technology platform like video lesson and PowerPoint Presentation after the conduct of pretest 
followed by a posttest. Pretest and Posttest was sent to the students thru the created group chats.  
 
9. Tools for Data Analysis 

Responses of the respondents were tallied, tabulated and analyzed both descriptively 
and inferentially, to answer the problems raised in this study; 

Problem 1 dealt with the extent of the performance of Grade 10 students before and 
after the use of Problem-Based Learning in-class activities and performance presented in the 
PowerPoint. This was treated using frequency and percentages. 

Problem 2 dealt with the significant difference between the extent of performance of 
Grade 10 students in their Mathematics class activities and lessons before and after the use of 
Problem-Based Learning. This was treated using a t-test. 
 
10. Results and Discussions 
  Table 3.1 presents the academic performance of the Grade 10 students in the 
pretest and posttest. The table discloses that the performance of the Grade 10 students has a 
mean of 13.1 in the pretest and 17.75 in the posttest.    

 

Table 3.1 Academic Performance of the Grade 10 students during the Pretest and Posttest 

Students Pretest Posttest 

1 11 17 
2 18 25 
3 11 15 
4 11 15 
5 12 15 
6 14 16 
7 9 19 
8 10 16 
9 19 20 
10 14 15 
11 10 18 
12 14 24 
13 16 17 
14 11 16 
15 13 17 
16 18 20 
17 15 16 
18 8 17 
19 11 17 
20 17 20 

Mean 13.1 17.75 
 
 The students’ low performance in Mathematics is an indication of low mastery of the 
subject. This poor result calls for serious concern and this has made researchers in mathematics 
education to consider several factors. One of the factors, as examined in this study, is that of 
the appropriate method of teaching. 
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This suggests that the Problem-Based Learning (PBL) students have developed 
competence in essential skills of numeracy and a deeper understanding of the content 
knowledge of learned materials compared to when no intervention is being employed yet. 

 
 

 
Significant Difference between the Academic Performances of Grade 10   

Students in the Pretest and Posttest 
 

 Table 3.2 presents the significant difference between the academic performance of the 
Grade 10 students in the pretest and posttest. 
 
Table 3.2. Significant Difference Between the Academic Performance of the Grade 10 

students in the Pretest and Posttest 
Academic performance          N                 Mean                         t                t-crit at 0.05 

Pretest 
Posttest 

            20 
            20 

13.1 
17.75 - 6.94 -1.729 

 
 The most important achievement of a teacher is to help his/her students along the road 
to independent learning and the aid of technology. Presenting the students with a problem, 
allow them to take risks, to adopt new understandings, to apply knowledge, to work in context 
and to enjoy the thrill of being discoverers. [11] In those classrooms in which the Problem-
Based Learning strategy is used for the instructional process, the students take much more 
responsibility for their learning. They have become independent and long- life students and can 
continue to learn in their whole life. 

It appears from Table 2 that the t-computed value of -6.94 is beyond the t-critical value 
of -1.729 at 0.05 level of significance with 19 degrees of freedom (df), The hypothesis which 
states that there is no significant difference between the academic performance of the Grade 10  
Students in the Pretest and Posttest is therefore rejected. 

This means that students taught with problem-based learning have achieved better as 
compared when there is no intervention yet. Students made significant progress in learning 
outcomes by being stimulated with realistic questions. They gradually became more involved 
in the instruction and feel the learning was easy and fun. The findings revealed the efficacy of 
the use of PBL (Problem-Based Learning) in enhancing students’ achievement in Mathematics. 
Thus, students in groups can find ways to develop real-life problem-solving capabilities and 
develop the competencies to become self-guided students.  

The findings corroborate that of [8] from Pakistan, [10]) from South Africa as well as 
[11] in Nigeria, who all attested that students’ learning outcomes were observed to be better 
than those with ordinary learning approaches. 

 
11. Conclusions 

Based on the findings the following conclusions were drawn: 

1. At the implementation of Problem-Based Learning (PBL), the instructional activities 
became more interesting to students. The learning method changed from static to 
dynamic.  It is evident from the findings of this study that the use of a Problem-Based 
Learning strategy could provide a good way for students to learn Mathematics.  

2. In the process of PBL, students were found to obtain key knowledge, skills, and 
competences by cooperating with others to collect information, share opinions, and 
select problem-solving plans.  

3. Problem-Based Learning enhances students’ academic performance in Mathematics. A 
student who is exposed to this type of strategy is more likely to possess a meaningful 
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in-depth knowledge of the content area. Students were able to organize their thoughts 
in an orderly manner that is essential for problem-solving and the acquisition of basic 
practical skills in mathematics.  

4. PBL should, therefore, be used as an additional teaching strategy to other traditional 
methods of teaching mathematics. This could help in improving students’ performance 
in the subject.  

5. Another remarkable finding related to the retention period is that students in PBL 
remember more of the acquired knowledge. 

 
12. Recommendations 
 Based on the conclusions, the following recommendations are 

1. If this method, proposed by this study, is adopted in Mathematics teaching and 
learning, it will boost the performance of students in skills acquisition, problem-
solving ability, and development of the right type of attitude toward mathematics 
as a subject.  

2. Mathematics teacher trainees should be trained on the use of a Problem-Based 
Learning strategy with the aid of technology;  

3. Teachers of mathematics should use Problem-Based learning to improve the 
academic achievements of the students, and seminars and workshops should be 
organized for Mathematics teachers in elementary and secondary schools to employ 
Problem-Based Learning in the classrooms. 
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Curved Patterns in the Graphs of PPTs 
      

James M. Parks 
parksjm@potsdam.edu 
Dept. of Mathematics 
SUNY POTSDAM 

U.S.A. 

Abstract:   In a graph of all Primitive Pythagorean Triples (PPTs), with legs up to length 10,000, conic section-like 
patterns can be observed. We show that they are indeed parabolic curves, which follow in a natural way from the 
mathematics of the subject matter.  This work lives at the intersection of Arithmetic, H.S. Algebra, and Analytical 
Geometry. It is easily accessible by students. Computer programs for Dynamic Geometry (Sketchpad, GeoGebra) 
and Mathematica (or Maple) were used to build the graphs. 

1.  Introduction 

A Pythagorean Triple (PT) is a set of 3 positive integers (a,b,c), which satisfy the 
Pythagorean Equation a2+b2 = c2. The numbers a, b, c are associated with the sides of a right 
triangle ∆ABC [5].  

For example, (3,4,5) is a Pythagorean Triple, since, by the Pythagorean Theorem, the right 
triangle ∆ABC with sides of length 3, 4, and 5, satisfies 32+42 = 52. 

Given a PT (a,b,c), if the integers a, b, c are relatively prime (no common factors other than 
1, so GDC{a,b,c} = 1), then call the triple (a,b,c) a Primitive Pythagorean Triple (PPT).  

For example (3,4,5) is a PPT, but the PT (6,8,10) is not a PPT, since all the terms are even.   
We wish to analyzing a graph of PPTs, which is construct as follows. Given a PT (a,b,c), 

a<b<c, with associated right triangle ∆ABC, there is a way to graph it which allows us to 
compare different PTs. Choose the ordered pair (a,b) and graph it in the 1st quadrant of the xy-
plane, Figure 1.1. 
  

        
         Figure 1.1   The Graph of a PPT 

 Then the right triangle ∆ABC with sides a,b,c is congruent to the triangle formed by the 
origin O, the point (a,0), and the point (a,b). Thus the point (a,b) corresponds to ∆ABC. 
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 Another congruent copy of ∆ABC is provided by the graph of the point (b,a). The point (b,a) 
is the reflection of (a,b) about the line y = x.  
 We assumed that a<b<c, when referring to the PT (a,b,c), but occasionally it will happen, by 
way of an argument, that we have the PT (b,a,c), with a<b<c, as happened in the triangle figures 
just above. The line y = x divides the first quadrant into two regions, one which contains the 
points (a,b), a<b, and one which contains the points (b,a), a<b. Since the points (a,b) and (b,a) 
are symmetric about the line  y = x, we call (b,a) the reflected point of (a,b). 

   Figure 1.2  The Main Graph of all PPTs with 0<a<b<10,000 

Observe that if (a,b,c) is a PPT, then one of a, b must be odd, and the other must be even, 
while c is always odd. Also, it cannot happen that a = b, or that a or b = 1 [5]. 
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 If we list all PPTs with 0<a<b<10,000, and graph them and the reflected points on 
Mathematica [9], using the graphing method above, the amazing graph shown in Figure 1.2 is 
the result [6].  An identical graph was constructed by R. Knott [3]. Both graphs were constructed 
using Mathematica, but using different codes. 
 The red region is the set of points (a,b), where a < b, and the black region is the set of 
reflected points (b,a).  Thus the two regions are symmetric about the line y = x.  We call Figure 
1.2 the Main Graph. 

2.  Analysis of the Main Graph 

 In order to analyze this graph, consider the following set of the first 18 PPTs ordered by the 
size of the short leg a.  
      3, 4, 5       5, 12, 13           7, 24, 25   8, 15, 17            9, 40, 41         11, 60, 61 
  12, 35, 37   13, 84, 85       15, 112, 113      16, 63, 65        17, 144, 145      19,180, 181       
  20, 21, 29   20, 99,101      21, 220, 221       23, 264, 265     24, 143, 145      25, 312, 313    
 Those PPTs which are in bold print are meant to attract your attention. These particular 12 
PPTs all have terms “a” which are odd numbers, and they also have the form (a, b, b+1), that is 
b and c are consecutive numbers, c = b+1.  
 It is given that these particular triples all satisfy the Pythagorean equation a2+b2 = c2, and the 
terms are obviously relatively prime, since consecutive numbers cannot have any common 
divisors. They also satisfy the equivalent equation:  

          b = (a2 -1)/2               (2.1) 

This means that a2 (and thus a) must be an odd integer, so that b is then an even integer. 
 So if an arbitrary odd positive integer “a” is given, then the triple (a,b,b+1) is a PPT, 
whenever b satisfies equation (2.1). Thus these PPTs all satisfy the form (a, (a2-1)/2, (a2+1)/2), 
for “a” an odd positive integer. This determines a one-to-one correspondence between the odd 
positive integers “a” and those PPTs which have the form (a, b, b+1).  
 Note that if any two integers are relatively prime, then listing a third number with them 
makes a relatively prime list of three numbers. 
 The above formulas for (a,b,b+1) above are not a new result, they are well known.  
According to Proclus (410-485 AD), these PPTs were known to the Pythagoreans (570-495 
BCE), and perhaps before [1].  However, this does not seem to prevent the result from being 
‘rediscovered’ occasionally. 
 Using Sketchpad [7], graphs of these PPTs in the xy-plane are obtained by graphing the set of 
points (a, (a2 -1)/2), and the reflected points ((a2 -1)/2, a), for “a” an odd positive integer. 
 For example, the odd integer 3 determines the points (3,4) and (4,3), and the odd integers 5, 
7, 9,…, 25, determine the points corresponding to the PPTs given in bold in the list above. 
 A graph of these points and their reflected points in the xy-plane in the range 0 < a,b < 120 is 
given in Figure 2.1. 
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 It suggests parabolic shaped curves about the positive x and y axes.  The red points have the 
form (a, (a2 -1)/2), so they satisfy the parabola equation y = (x2 -1)/2, and the reflected points 
have the form ((a2 -1)/2, a), so they satisfy the reflected parabola equation  x = (y2 -1)/2.  
 

        
        Figure 2.1   The Graph of PPTs for d = 1 

 The first parabola opens about the positive y-axis, with focus at O, and vertex (0, -1/2). We 
denote this set of PPTs by d = 1. The second parabola opens about the positive x-axis, has focus 
at O, and vertex  (-1/2, 0), Figure 2.2. We will give a notation for it below. 

  Figure 2.2   Graph of Parabolas for d = 1 Figure 2.3   Graph of Parabolas for d = 1, 2 

 Look again at the list of the first 18 PPTs above, and notice that 5 of the PPTs have the form  
(a,b,b+2). Denote the set of all such PPTs by d = 2, since the ‘difference’ c - b = 2. The set of 
PPTs which satisfy d = 2 also satisfy the equivalent equation:  
       
          b = (a2 -4)/4               (2.2) 
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 This means that a2, and thus a, must be even, and b must be odd. The numbers a, b, c are 
relatively prime, since the odd terms b, c, are 2 units apart, so they cannot  have any common 
divisors. This form is not new, Proclus attributed this result to Plato (429-347 BCE) [1]. 
 From the list of d = 2 PPTs above, note that  “a” is even and a = 0mod4. But if “a” is even, 
and not a multiple of 4, then a = 2mod4, so the triple is a PT, but not a PPT, hence it is not on the 
list.  The “mod” notation is short-hand from modular arithmetic. If the integer z > 1, and x, y, are 
integers, then the equation x = ymodz, means x - y = zk, for some integer k, or equivalently, x = 
zk + y, for some integer k. 
 Thus, if a = 0mod4, then a = 4k, for k > 0, and  (a, b, b+2) = (4k, 4k2 -1, 4k2 +1), a PPT.  
But if a = 2mod4, then a = 4k +2, and b = 4k2 +4k, so b+2 = 4k2 +4k +2.  This PT is not a PPT, 
as all terms are even.  So every other even number “a” determines a PPT.  The curves which are 
for these PPTs with d=2, satisfy the parabola equations y = (x2 -4)/4, and x = (y2 -4)/4. They 
have vertex points at (0,-1) and (-1,0), resp., and both have focus at the origin O, Figure 2.3. 
 In general, the parabolas for arbitrary values of d>0 are given by the equations:   

          y = (x2 -d2)/2d               (2.3) 
          x = (y2 -d2)/2d               (2.4) 

where “a” and “d” are either both odd or both even positive integers, and d|a. However we find 
that a lot of the values of “d” determine PTs, but not PPTs, see below. 

     Figure 2.4   Graph of Parabolas for d = 1, d’ = 2, and d’ = 1, d = 2 

 There is another d-value associated with the PPT (a,b,c), which is determined by the form 
(b,a,c), namely d’= c - a. The point (a,b) (and (b,a)) will occur at the intersection of parabolas 
for d and d’. For example, the graph above, Figure 2.4, shows the point (3,4) at the intersection 
of the parabolas labeled d=1 and d’=2, and the point (4,3) at the intersection of the parabolas 
labeled d’=1, and d=2. 
 Any integer point (s,t) which is on a parabola y = (x2 -d2)/2d, equation (2.3), for some d will 
satisfy t = (s2 -d2)/2d, and (s,t,u) is a PT for that d, with u = (x2 +d2)/2d.  Each integer point on 
the graph of the PPTs above is on a parabola for some value of d. 
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 Note that the value d = 3 does not determine any PPTs, for all such PTs have a common 
value of 3 in their coordinates.  The same thing happens for the d values 4, 5, 6, 7, 10, 11, and 12. 
The next PPTs, after d =1 or 2, occur when d = 8 or 9, and these values have mixed results 
similar to those we found for d = 2.  

3.  Results and Conclusions 

  The list of d-values which determine PPTs begins as follows: 1, 2, 8, 9, 18, 25, 32, 49, 50, 72, 
81, 98, …, [2]. We call these numbers the allowable values of d. This list is in fact the OEIS 
sequence A096033. The graph of some of the representative points and parabolic curves for some 
of these d and d’ values is shown in Figure 3.1.        

    
  Figure 3.1   Representative Points and Parabolic Curves for Beginning d and d’ Values 
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 Comparing this graph with the Main Graph it becomes clear where some of the curved 
patterns originate. This is only a very small part of the lower left corner of the Main Graph, 
Figure 1.2, but the general picture is starting to become apparent.  
 These results are stated in the following Proposition on parabolas about positive x,y-axes 
with allowable d values. 

Proposition 3.1  If (a,b,c) is a PPT with a<b<c, and values d, d’, such that d<d’, then (a,b) is a 
point at the intersection of the parabolas with equations y = (x2-d2)/2d, and x = (y2-d’2)/2d’, and 
(b,a) is a point at the intersection of the reflection of those parabolas about y = x, which have 
equations x = (y2-d2)/2d, and y = (x2-d’2)/2d’. 

 For the Main Graph, Figure 1.2, notice that there also appear to be parabolic curve patterns 
which open about the negative x,y-axes. These curves are mentioned in [3]. The equations for 
these curves are formed in a different manner from those above.  
 First consider the parabolic curves which open about the negative y-axis. 
 An example is the parabola with equation:  

          y = -x2/(2·32) + 32/2             (2.5) 

shown here in orange, Figure 3.2. This parabola has vertex point (0,32/2), and focus at O. It also 
contains the point (3,4). 

      Figure 3.2   The Graph of Equation (2.5) in Orange 

 When studying the graphs in Figure 3.1 and Figure 3.2, notice that certain sets of points seem 
to be in a parabolic shaped pattern which opens downward. For example, the 4 points (20,99), 
(60,91), (140,51), and (180,19) appear to form a parabolic curve which opens about the negative 
y-axis. Note that the 1st coordinates of these 3 points are all multiples of 10. The LH point 
(20,99) is from the triple (20,99,101), and is on the parabola labeled d = 2. The equation for this 
parabola is:  
          y = -x2/(2·10)2+102              (2.6)  
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the vertex point is (0,102), and the focus point is (0,-102). 
 For another example, consider the 3 points (28,45), (56,33),and (84,13). They also appear to 
be on a parabola which opens about the negative y-axis. The 1st coordinates here are all 
multiples of 28. The LH point (28,45) is from the triple (28,45,53), and is on the parabola labeled 
d = 8. The equation for this parabola is:  

          y = -x2/(2·7)2 +72               (2.7) 

the vertex point is (0, 72), and the focus point is (0, -72). 
 These examples provide a pattern for the equations of the parabolas in the Main Graph which 
open about the negative y-axis. Given a series of points with even 1st coordinates all multiples 
of, say 2·n2, the general equation of the these parabolas is: 

    Figure 3.3   Examples of Graphs which Open about the Negative y-axis 
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          y = -x2/(2·n)2 + n2              (2.8)  

where n = a/m, for “a” the 1st coordinate in the LH point in the series, and m = 2, if this point is 
on the d = 2 parabola, and m = 4, if it’s on the d = 8 parabola.  Thus every point from a PPT on 
the d = 2 and d = 8 parabolas (the middle and RH red dashed lines in the graph below) 
determines a parabola in this set. These curves are shown in orange in Figure 3.3. 
 If “a” is odd, as in the example with the point (3,4) above, then the equation is derived as in 
the following example. The points (13,84), (39,80), (65,72), (91,60), (117,44), and (143,24), 
appear to be on a parabolic curve which opens about the negative y-axis. The 1st coordinates of 
these points are all multiples of 13, the LH point (13,84) is on the parabola labeled d = 1, and it’s  
from the triple (13,84,85). The equation for this parabola is:  

          y = -x2/(2·132) +132/2              (2.9) 

It has vertex point is (0,132/2), and the focus point is (0,-132/2). 
 For another example, consider the points (11,60), (33,56), (55,48), (77,36), and (99,20).  
They also appear to be on a parabola which opens about the negative y-axis. All of the 1st 
coordinates of the points are multiples of 11, the LH point (11,60) is from the triple (11,60,61), 
and is on the parabola labeled d = 1.  The equation for this parabola is:  

          y = -x2/(2·112) + 112/2           (2.10) 

the vertex point is (0,112/2), and the focus point is (0,-112/2). 
 The general form for the equations of the parabolas which open about the negative y-axis, 
when “a” is odd, is:  
          y = -x2/(2·a2) + a2/2            (2.11) 

where “a” is the value of the x-coordinate of the first LH point (a,b) on the parabola labeled d = 
1, in the series of points being considered (the LH red dashed line) Figure 3.3. 
 Thus every point (a,b), from a PPT point (a,b,c), on the d = 1 labeled parabola determines a 
parabola in this set. These curves are shown in orange in the graph, Figure 3.3. 
 When these 2 sets of parabolas, for “a” even or “a” odd, are reflected about the line y = x, 
we have the corresponding parabolas for the d’-values. These parabolas open about the negative 
x-axis, and are shown in dark blue in the graph above. Not all of the curves which exist in this 
range are shown here. 
 These results are stated in the following Proposition on parabolas about negative x,y-axes. 
  
Proposition 3.2  Let (a1,b1), … ,(ak,bk), be a finite sequence of points in the Main Graph such 
that the first coordinates a1, … ,ak form an increasing sequence, and a1 divides all of the other ai, 
i = 2, … , k.  If a1 is odd, then (a1,b1) is on the parabola labeled d = 1, and the equation of the 
parabola which contains the points (a1,b1), … ,(ak,bk) is then y = -x2/(2·a12) + a12/2.  If a1 is even, 
then (a1,b1) is on the parabola labeled d = 2 or 8.  The equation of the parabola which contains 
the points (a1,b1), … ,(ak,bk), is then y = -x2/(2·(a1/m))2 + (a1/m)2, where m = 2, when d = 2, and 
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m = 4, when d = 8.  The reflection of these parabolas about the line y = x determines parabolas  
which open about the negative x-axis. In the case for d = 1, the equation of the reflected parabola 
is x = -y2/(2·a12) + a12/2, and in the cases for d = 2 or 8, the equation of the reflected parabola is 
x = -y2/(2·(a1/m)2) + (a1/m)2, where m = 2, when d = 2, and m = 4, when d = 8. 

 That every parabola shown which opens about the negative y-axis has a point (a,b) from a 
PPT (a,b,c) on the parabolas labeled d = 1, 2, or 8, follows from the observation that these 
parabolas are the closest ones to the y-axis for even or odd values of d. 

References 
 [1]   Heath, T. (1956). Euclid, The Thirteen Books of the Elements, Vol. 1: Books 1-2, 2nd ed.  
    NY: Dover Publ. 
 [2]   Joyce, D. (2010). Primitive Pythagorean Triples. Worcester, MA: Clark U.  
          https://mathcs.clarku.edu/~djoyce/numbers/pyth.pdf 
   [3]   Knott, R. (2021). Pythagorean Right Triangles, Section 4.4.1. UK: U. of Surrey. 
         http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html#section3.4 
   [4]   Parks, J. (2021).  On the Curved Patterns Seen in Graphs of PPTs. Preprint, arXiv,  
    2104.09449. 
   [5]   ______ (2021).  Computing Pythagorean Triples. arXiv 2107.06891. 
   [6]   ______ (2021).  PPT Graph (Copy)(Copy).nb. Mathematica Notebook Archive.  
    https://www.notebookarchive.org/ppt-graph-nb--2021-06-6y23baq/ 
 [7]   KCP Technologies (2012). Geometer’s Sketchpad. Emeryville, CA. 
 [8]   International GeoGebra Institute (2016). GeoGebra. geogebra.org. 
 [9]   Wolfram Foundation (2021). Mathematica. wolfram.org. 
    [10]   Waterloo Maple (Maplesoft) (2020). Maple. maplesoft.com.

Proceedings of the 26th Asian Technology Conference in Mathematics

286

https://mathcs.clarku.edu/~djoyce/numbers/pyth.pdf
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html#section3.4
https://www.notebookarchive.org/ppt-graph-nb--2021-06-6y23baq/
http://geogebra.org
http://wolfram.org
http://maplesoft.com


Using “Turtle Geometry” in the XXIst Century for 
teaching mathematics? Classic ideas and new software 

and hardware 
 

Eugenio Roanes-Lozano 
eroanes@ucm.es 

Instituto de Matemática Interdisciplinar (IMI) &  
Departamento de Didáctica de las Ciencias Experimentales, Sociales y Matemáticas 

Facultad de Educación 
Universidad Complutense de Madrid 

Spain 
 
Abstract:  In “Turtle geometry” there is a graphic cursor (the “turtle”) that obeys elementary orders related to the 
position and orientation of the turtle itself: move forward, move backward, turn right and turn left. That is, graphics 
are not based on a classic Cartesian reference system. Turtle Geometry is best known for its incorporation into Logo 
language. As monitors had no graphical capabilities in the 1960s, the movements ordered to the turtle from the first 
Logo versions were carried out by electromechanical devices connected by cable to the computers. After a great 
success in the '80s and' 90s Logo has fallen into disuse, but there are also very modern visual computer languages 
based on the use of “blocks” for programming such as Scratch and Snap! Moreover, nowadays there are affordable 
programmable robots that use Turtle Geometry. Summarizing, wonderful powerful software and hardware that use 
Turtle Geometry, appropriate for teaching mathematics are available in 2021.  
 
1.  Introduction 
     The author has taught mathematics with ICT in teacher training programs since the late 1980s 
using computer languages including implementations of “Turtle Geometry”. He has also developed 
implementations of Turtle Geometry for different computer languages (e.g. Maple1).  
In Turtle Geometry (also known as “Turtle Graphics”) there is a graphic cursor (the “turtle”) that 
obeys elementary orders related to the position and orientation of the turtle itself. They are:  

• move forward,  
• move backward,  
• turn right, and  
• turn left.  

That is, graphics are not based on a classic Cartesian reference system, and, consequently, the list 
of commands required to draw a certain pattern neither depends on where the pattern is to be 
allocated nor on its leaning. Another advantage with respect to working with Cartesian coordinates 
is that the trigonometric calculations regarding positioning are performed internally.  
The Turtle Geometry applies constructionist ideas [1] and its range of possibilities is absolutely 
impressive, as can be seen in the seminal work [2]. 
Turtle Geometry is best known for its incorporation into Logo language [3]. For example, the image 
of Figure 1.1 is generated in Logo by typing FORWARD 200 RIGHT 90 FORWARD 100. Many 
regular and repetitive geometric designs (for instance some fractals) are very easy to program in 
Logo. A simple example can be found in Figure 1.2. 

1 All product names, trademarks and registered trademarks are property of their respective owners 
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Seymour Papert co-founded the MIT Artificial Intelligence Laboratory with Marvin Minsky in the 
early 1960s and Logo was introduced in 1967. It was a very powerful language that incorporated 
the latest trends: it was procedural and recursive, it handled lists, etc.  

 
Figure 1.1  A Logo very simple drawing. 

 
Figure 1.2  Drawing a regular hexagon and its three diagonals (that is, its six radii) in Logo is very 
simple nesting two REPEAT iterative loops (this way six equilateral triangles are drawn sharing a 
common vertex): REPEAT 6 [REPEAT 6 [FORWARD 200 RIGHT 120] RIGHT 60] 

 
Meanwhile, “turtle robots” or “tortoises” were autonomous robotic creatures introduced by Grey 
Walter in the late 1940s [4,5]. As monitors had no graphical capabilities in the 1960s, the 
movements ordered to the turtle from the first Logo versions were carried out by electromechanical 
devices connected by cable to the computers [6,7].  
After a great success in the '80s and' 90s Logo has fallen into disuse, although there are exceptions 
like [8].  
Nevertheless, there are nowadays very friendly and powerful free versions available, such as 
FMSLogo [9] (used for drawing Figures 1.1 and 1.2) and UCB Logo (Berkeley Logo) [10]. A 
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detailed comprehensive list of Logo language implementations, mentioning more than 250 dialects, 
can be found in [11]. 
 
2.  Present situation (software) 
      Apart from Logo, there are very modern visual languages based on the use of “blocks” for 
programming that base their computer graphics upon Turtle Geometry, like: 

• Scratch [12], a project of the Lifelong Kindergarten Group at the MIT Media Lab (Figure 
2.1), and  

• Snap! [13,14], presented by the University of California at Berkeley (Figure 2.2). Although 
less well known than Scracth, it has some advantages like the existence of a REPORT block 
that allows to easily implement recursive procedures. 

 

 
Figure 2.1  Drawing the regular hexagon and its three diagonals of Figure 1.2 with Scracth 3 (in 

Spanish). 
 
The use of blocks (that are grouped in “categories”, with different colors in Scratch and Snap!) has 
advantages for beginners with respect to traditional programming. For instance:  

• the end user doesn’t have to remember the names of the commands as he/she only has to 
look for them in the corresponding category (that is intuitively chosen) and drag and drop 
them in the right position in the “programming window”, 

• the colors help to identify the different types of commands, 
• loops are clearly visible, without having to “indent” the code (Figure 2.1), 
• … 

An expert programmer types faster than dragging and dropping blocks, but that is not the goal of 
these computer languages. 
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Figure 2.2  Drawing a row of square tiles with Snap! 

 
A sophisticated example of the use of Turtle Geometry to draw fractal trees related to the spread of 
virus by this author (intended to visually explain it to children and to raise their awareness) can be 
found in [15] (Scratch 3 version, see Figure 2.3) and [16] (Maple version, implemented on the 
Turtle Graphics implementation [17]).  
 

 
Figure  2.3  A figure illustrating virus propagation drawn with Scratch 3. 
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3.  Present situation (hardware) 
      Nowadays, with the downsizing and cheapening of electronic chips, affordable programmable 
robots that use Turtle Geometry are available. 
Already back in 1979 Big Trak was introduced. It was a six wheels programmable tank that moved 
using a reduced version of Turtle Geometry [18].  
Much more recently a programmable car named Pro-Bot (Figure 3.1), incorporating a very close to 
Logo’s implementation of Turtle Geometry was introduced. It has a display showing the program, it 
has connectivity with computers, it incorporates sensors, etc. [19]. It is very well suited for Primary 
and Secondary Education. 
There are other similar programmable robots with a much simplified version of Turtle Graphics 
incorporating keyboards without letters or numbers. Four arrows (↑, ←, →, ↓) indicate Forward, 
Left, Right and Backwards, respectively, but they have no numerical input. Movements are 
restricted to 1 step forward or backwards and turns are restricted to 90 degrees clockwise or 
counterclockwise. For instance, a path like that of Figure 1.1 can be programmed typing:  

↑ ↑ ↑ ↑ → ↑ ↑ . 
Therefore they are well suited for Early Childhood Education and can be used by children that still 
can’t read and write but can count. Examples are Bee-Bot/Blue-Bot [20] and Code & Go Mouse 
(Figure 3.2). 
These hardware somehow take us back to the early times of the mechanical turtles. 
 

 
Figure 3.1  The keyboard and screen of Pro-Bot. 
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Figure 3.2  The keyboard of Code & Go Mouse. 
 

4.  The formal attitude with respect to the use of technology in the mathematics 
class 
      The CEMAT (Comité Español de Matemáticas –Spanish Mathematics Committee) has recently 
published a comprehensive report about the Primary and Secondary School mathematics curricula 
[21]. The need to connect teaching mathematics with programming as a positive synergic 
experience in problem solving is underlined ([21], p. 5). Although neither specific computer 
languages nor computer systems are explicitly mentioned, the use of different technologies such as 
graphic calculators, spreadsheets, dynamic geometry systems (DGS) and computer algebra systems 
(CAS) is recommended ([21], p. 15). In the more informal interview to some of its authors [22], the 
use of Scratch or Snap! in the mathematics class at Primary School level is specifically 
recommended 
According to my experience, the authorities and the experts in Spain recommend the use of ICT but 
its use is not generalized and, when used, they are many times underused (for instance some 
Spanish high school textbooks propose to use the DGS GeoGebra to plot functions and perform 
some computations, but neither propose to use its dynamic geometric capabilities nor its computer 
algebra ones). My experience, after speaking with colleagues from different countries, is that the 
situation is not very different elsewhere. 
 
5.  The goal of this work. Our experience 
      I have thought for a long time that it is a pity to forget about using Turtle Geometry for 
mathematics teaching just because it is supposed to be outdated old stuff. This work gives a brief 
introduction to Turtle Geometry and a panoramic view of its present possibilities. The goal of this 
work is to try to convince the reader that modern Turtle Geometry implementations deserve a place 
in the set of useful pieces of software for mathematics teaching.  
We have studied different aspects of Turtle Geometry and mathematics teaching: 

• Regarding the effect on skills acquisition, we carried out an experience along three 
consecutive academic years about the effect of working with the Turtle Geometry (using 
Scratch 2) in the learning of geometric concepts of future Primary School teachers [23]. It 
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took place with students of the Universidad Complutense de Madrid and the experimental 
study carried out showed an improvement on both the academic performance as well as the 
student satisfaction. This was an extensive study, involving several teachers and 366 
students. 

• Another study about the attitude of 27 students of a Master's Degree in Secondary Teacher 
Training regarding their preferences: using computers versus using programmable robots 
(Scratch 3 versus Pro-Bot) in their future work as teachers was detailed in [24]. The future 
teachers were really enthusiastic when working with the robots, in contrast with what we 
could qualify as normal interest in Scratch. But, curiously, the showed in the polls a clear 
preference for teaching using traditional hardware (possibly due to a lack of self confidence 
in the use of the new hardware). [25]. There are many articles about the use of robots in 
STEM, like the well-known [26,27], but we haven’t found a similar one, about device 
comparisons. 

• A possible use of Turtle Geometry to visualize abstract processes has been already 
mentioned in Section 3 (virus propagation). Spanish versions of the tale and video about a 
cat that propagates a virus (illustrated with images generated by Scratch 3) are available 
from the Instituto de Matemática Interdisciplinar (IMI) web page [28]. The English version 
of the tale (illustrated with images generated by Maple) can be found in Mapleprimes web 
page [29]. The good reception of these tales gave rise to the already mentioned articles 
[15,16]. 

Summarizing our experience with Turtle Geometry, it offers a very appropriate and comfortable 
environment for certain specific tasks (teaching some geometry concepts, illustrating fractals-
related issues, etc.) on different kinds of devices. 
 
6.  Conclusions 
      There are fashions in the world of mathematics teaching too. For instance, Euclid’s The 
Elements was the standard textbook at the Victorian period in England, a didactic approach 
opposite to that of “modern mathematics”. But there are no unanimous opinions on these topics: 
consider, for example, the recent attacks against the reform-based curriculum in the Netherlands 
described in [30].  
Moreover, some ideas that are considered “modern” are older than expected. For instance, 
“recreational mathematics” are probably best known thanks to Martin Gardner’s works, like those 
in the “Mathematical Games” column in Scientific American [31], but there are also very 
interesting earlier works such as [32] (an extensive collection of problems, many of them reprinted 
from magazines and newspapers of the time). Recreational mathematics could have a much active 
role in the curriculum, as they provide a wide variety of strategies for solving mathematical 
problems. Many of them can be solved and/or checked using mathematical and computational 
techniques in fruitful synergy. 
Turtle Geometry is suffering an unjust purgatory of oblivion, despite the arrival of these mechanical 
devices that somehow close the circle sending us back to the tortoises of the origins of Logo. 
Wonderful powerful software and hardware that use Turtle Geometry, and are appropriate for 
teaching certain mathematical issues, are available in 2021.  
In my opinion, Turtle Geometry adapts very well to theories for mathematics education such as 
Realistic Mathematics Education [33], which six principles have been recently reformulated as: 
activity principle, level principle, intertwinement principle, interactivity principle and guidance 
principle. 
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Summarizing, as final conclusion of this work: despite the success of the (many times underused) 
DGS GeoGebra, the scarce use of CAS and the oblivion of Turtle Geometry, I believe there is 
place for the three of them in mathematics teaching. There are nowadays very interesting 
implementations of Turtle Geometry on different hardware that worth been used for mathematics 
teaching. I hope I have convinced the reader that Turtle Geometry shouldn’t be obliterated. 
I would like to finish with a paragraph of the 1868 book Cuentos del día (Tales of the day) by the 
Spanish writer Ventura Ruiz Aguilera: 
 

From the old, we will keep all the sacred, everything 
beautiful and everything useful and applicable to the 
construction I propose... Everything else, out! Old, 

just for being old, does not deserve even a tear. 
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Abstract
The existence of singularities often affects the learning dynamics in neural network

and caused plateau phenomena. Using Mathematica, we observed near singular regions by
examining the evolution of the parameter and the dynamics of learning on the training loss
surface. Our result is to investigate that the type of dynamics of learning changes when
the overlap and the elimination singularity is approached from a distance by changing the
initial values of the statistical model, and to clarify the plateau phenomenon observed near
singular regions.

1 Introduction

In a hierarchical structure model which is a neural network, a set of true parameters con-
sists of not a union of several manifolds. Watanabe[1], [2] investigated that the analytic set of
parameters contains singularities by using algebraic geometry and Bayesian statistics.

Let the statistical model be a three-layer neural network, plateau phenomena were observed
in singular regions where two hidden neurons can be rewritten with only one hidden neuron
and pose a serious problem in neural networks[3], [4], [5]. Amari[5] showed that a subset of
critical points corresponding to the global minimum of a smaller network can be local minima
or saddles of the larger network. Amari[3] discussed the learning dynamics near the overlap
singularity and the elimination singularity close to them. Also, Amari[4] introduced coordinate
transformation of parameters of the statistical model and fixed variables moving quickly and
searched trajectories of learning of variables moving slowly. Moreover, he[5] calculated stability
and dynamics of learning near singular regions. Guo[6] classified dynamics of learning near the
overlap singularity and the elimination singularity into five patterns.

Currently, the dynamics of learning near the elimination singularities far away from the
overlap singularities still remains unknown. By continuously changing the initial value of learn-
ing, we investigate that the type of dynamics according to Guo’s classification of overlap and
elimination singularity when approaching from a distance changes.
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2 Definition

Definition 1 (Input, noise, training data, test data) We assume that an R1-valued ran-
dom variable X that follows a probability density function p(x) is input and that an R1-valued
random variable Z that follows a normal distribution, the average and standard derivation of
which are (0, σ), is noise. For θ0 = (w∗

11, w
∗
12, w

∗
21, w

∗
22, w

∗
31, w

∗
32) ∈ R6, an R1-valued random

variable Y is determined by the training data or test data as follows[1], [2]:

Y := f(x, θ0) + Z = w∗
31 tanh(w

∗
11x+ w∗

21) + w∗
32 tanh(w

∗
12x+ w∗

22) + Z.

Definition 2 (Function approximation model) For parameters θ = (w1, w2, w31, w32) ∈
R6, and R1-valued function f(x, θ), an R1-valued random variable Y is determined as a function
approximation model as follows[1], [2]:

Y := f(x, θ) + Z = w31ϕ(x,w1) + w32ϕ(x,w2) + Z = w31 tanh(w1
Tx) + w32 tanh(w2

Tx) + Z

= w31 tanh(w11x+ w21) + w32 tanh(w12x+ w22) + Z.

where w1 = (w11, w12), w2 = (w21, w22), x = (x, 1).

Definition 3 (Statistical model, true density function) A conditional probability density
that follows function approximation model Y and is referred to as a statistical model is defined
as follows[1], [2]:

p(y|x, θ) := 1√
2πσ

exp

(
−|y − f(x, θ)|2

2σ2

)
.

A conditional probability density that follows output Y and is referred to as a true density
function is defined as follows[1], [2]:

q(y|x) := 1√
2πσ

exp

(
−|y − f(x, θ0)|2

2σ2

)
.

Definition 4 (Overlap singularity,elimination singularity) An overlap singularity is de-
fined as the special region in the parameter space in which wi satisfies[3]

R0 := {θ ∈ R6|w1 = w2}.

The elimination singularity is defined as the special region in the parameter space in which wi

satisfies[3]

R1 := {θ ∈ R6|w31 = 0} ∪ {θ ∈ R6|w32 = 0}.

We recall the following coordinate transformation from the parameter θ = (w1, w2, w31, w32)
to the parameter ξ = (a, b, v, w)[3]:

a = w2 −w1, b =
w31 − w32

w31 + w32

, v =
w31w1 + w32w2

w31 + w32

, w = w31 + w32.

Using coordinate ξ, the coordinate θ is as follows :

w1 = v +
1

2
a(b− 1), w2 = v +

1

2
a(b+ 1), w31 =

1

2
w(1 + b), w32 =

1

2
w(1− b).
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For y = f(x, θ0) + Z, we define the loss function

l(y,x, θ) :=
1

2
(y − f(x, θ))2.

Then, for a learning rate η, parameter θ, which is modified by the stochastic gradient descent
algorithm, is as follows:

θ(t+ 1)− θ(t) := −η
∂l(yt,xt, θt)

∂θ
.

Definition 5 (Learning equation of coordinate θ) For coordinate θ = (w1, w2, w31, w32),
the learning equation is defined as follows:

θ̇(t) := −η

〈
∂l(y,x, θ)

∂θ

〉
=

∫
−η

∂l(y,x, θ)

∂θ
q(y|x)dydx.

For loss e(y,x, ξ) := y − f(x, ξ), negative gradients of the loss function l(ξ) hold as
follows[1]:

lv(ξ) = w

〈
e(y,x, ξ)

∂ϕ(x,v)

∂v

〉
+

1

8
w(1− z2)Q(v, a) +O(a3),

lw(ξ) = ⟨e(y,x, ξ)ϕ(x,v)⟩+ 1

8
(1− z2)

〈
e(y,x, ξ)aT∂

2ϕ(x,v)

∂v∂vT
a

〉
+O(a3),

la(ξ) =
1

4
w(1− z2)

〈
e(y,x, ξ)a

∂2ϕ(x,v)

∂v∂vT

〉
+

1

24
wz(1− z2)

〈
e(y,x, ξ)

∂D(x,v, a)

∂a

〉
+O(a3),

lb(ξ) = −1

4
wz

〈
e(y,x, ξ)aT∂

2ϕ(x,v)

∂v∂vT
a

〉
+O(a3).

where Q(v, a) :=
〈
e(y,x, ξ) ∂

∂v
(aT ∂2ϕ(x,v)

∂v∂vT a)
〉
, D(x,v, a) :=

∑
i, j, k

∂3ϕ(x,v)
∂vi∂vj∂vk

aiajak.

Note that lv, lwis of order O(1). By taking into account the fact that a ≈ 0, we see that
the time evolution of (v, w) is fast and converges to the partial equilibrium states that satisfies
lv(ξ) = lw(ξ) = 0 quickly.

On the other hand, note that la and lb is of order O(a) and O(a2). By taking into account
the fact that a ≈ 0, we see that the time evolution of (a, b) is slow[4].

Definition 6 (Learning equation of coordinate ξ) For the coordinate ξ = (a, b, v, w),
the learning equation is defined as follows:

ξ̇ := −η
∂ξ

∂θT

(
∂ξ

∂θT

)T 〈
∂l(y,x, ξ)

∂ξ

〉
.

Then, the learning equations hold as follows[3]:

v̇ =
b2 + 1

2
lv +

b2 + 1

2w2
aaTlv +

b

w
alw − bla −

b2 + 1

w2
alb, ẇ =

b

w
aTlv + 2lw − 2b

w
lb,

ȧ = −blv + 2la, ḃ = −b2 + 1

w2
aTlv −

2b

w
lw +

2(b2 + 1)

w2
lb.
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Then, we fix (v, w) to its best approximation (v∗, w∗). We examined the evolution of
parameter (a, b). For ξ∗ = (v∗, w∗,0, b), we defined

H(v∗, w∗) :=
1

4
w∗

〈
e(y,x, ξ)

∂2ϕ(x,v)

∂v∂vT

〉∣∣∣∣
ξ=ξ∗

.

For loss function l(y,x, ξ),
〈

∂2l(y,x,ξ)
∂ξ∂ξT

〉∣∣∣
ξ=ξ∗

= (1− b2)H(v∗, w∗) holds.

Theorem 1 (Stability of learning near singular regions) For stability of learning near
singular regions, it holds as follows: When the true density function is in a singular region, the
entire critical line of R0 is stable. When the true density function is not in a singular region,
the stability of the entire critical line of R0 is divided into the following three cases according
to the eigenvalue of H(v∗, w∗)[5].

(1) both positive and negative eigenvalues: all points on the critical line of R0 are unstable.

(2) negative definite: the part b2 < 1 is stable, whereas the part b2 < 1 is unstable in R0.

(3) positive definite: the part b2 < 1 is stable, whereas the part b2 > 1 is unstable in R0.

We assume ξ̃ = (v∗, w∗, a, b). The gradient of loss function l(ξ̃) holds as follows[3]:

lv(ξ̃) =
1

8
w∗(1− z2)Q(v∗, a) +O(a3), lw(ξ̃) =

1

2

1− z2

w∗ aTH(v∗, w∗)a+O(a3),

la(ξ̃) = (1− z2)H(v∗, w∗)a+
1

24
w∗z(1− z2)

〈
e(y,x, ξ)

∂D(x,v, a)

∂a

〉∣∣∣∣
ξ=ξ̃

+O(a3),

lb(ξ̃) = −b aTH(v∗, w∗)a+O(a3).

Note that la(ξ̃) is of order O(a) and lb(ξ̃), lv(ξ̃), lw(ξ̃) is of order O(a2). Neglecting higher
terms in the above equations and taking into account the fact that a ≈ 0, the learning equation
near R0 holds as follows[3]:

ȧ = 2(1− b2)H(v∗, w∗)a, ḃ = −b(1− b2)

w∗2 aTH(v∗, w∗)a− 2b(b2 + 1)

w∗2 aTH(v∗, w∗)a.

Theorem 2 (Dynamics of learning near singular regions) An energy function h(a) :=
1
2
aTa of the dynamics of learning near singular regions, it holds as follows[3]:

(1) In the neighborhood of R0, we obtain the equation ḣ = aTȧ = 2w∗2(b2−1)
b(b2+3)

ḃ and the dynamics
of the learning equations are given by

h(a) =
2w∗2

3
log

(b2 + 3)2

|b|
+ C.

(2) In the neighborhood of R0 ∩ R1, we obtain the equation ḣ = w∗2(b2−1)
b(b2+1)

ḃ and the dynamics
of the learning equations are given by

h(a) = w∗2 log

(
|b|+ 1

|b|

)
+ C.
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Definition 7 (Classification of dynamics of learning near singular regions) The dynam-
ics of learning near a singularity is classified into following five patterns by changing an initial
value of the statistical model[6].

(1) Overlap singularity: The learning process is significantly affected by overlap singularity.

(2) Cross elimination singularity: The learning process crosses the elimination and reaches
the global optimum after training.

(3) Fast convergence: The learning process converges to the global minimum fast.

(4) Near elimination singularity:When the parameters of the statistical model are near the
elimination singularity in the training, the learning process is significantly affected by
elimination singularity.

(5) Output weight 0: After training, output weight wi becomes nearly equal to 0.

3 Construction of a neural network as the statistical

model using Mathematica.

Using Mathematica, variablesF1, F2, constants elem0, elem1, elem2, elem3 calculate as fol-
lows:

F1[a ] := NetInsertSharedArrays[NetChain[LinearLayer[1, ”Weights”− > a, ”Biases”− > None]], ”Linear1”],

F2[b ] := NetInsertSharedArrays[NetChain[LinearLayer[1, ”Weights”− > b, ”Biases”− > None]], ”Linear2”],

elem0 := ElementwiseLayer[# ∗ (1/2)&], elem1 := ElementwiseLayer[# ∗ (−1)&],

elem2[v ] := ElementwiseLayer[# ∗ (v)&], elem3[w ] := ElementwiseLayer[# ∗ (w)&].

First, to express the condition w11x =
(
v + 1

2
(b− 1)a

)
x, we input the following:

net11[a , b , v ] := NetGraph[elem0, elem1, F1[a], F2[b], elem2[v], T otalLayer[],

NetPort[”Input”]− > 1, 1− > 3− > 4, 3− > 2, 4, 2, 5− > 6]

and net11 output on the left-hand side of Figure 1.
To express the condition w31 tanh(x) =

1
2
w(b+ 1) tanh(x), we input the following:

net12[a , b , w ] := NetGraph[Tanh, elem0, elem3[w], F2[b], T otalLayer[],

NetPort[”Input”]− > 1, 1− > 2− > 3− > 4, 3, 4− > 5]

and net12 output on the light-hand side of Figure 1.

Figure 1: net11, net12
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Similarly to express the conditionw12x =
(
v + 1

2
(b+ 1)a

)
x, w32 tanh(x) = 1

2
w(−b +

1) tanh(x), similarly we input in the same way.net21, net22 output on the Figure 2.

Figure 2: net21, net22

Next to express the condition w31 tanh(w11x) =
1
2
w(b+1) tanh[

(
v + 1

2
(b− 1)a

)
x], we input

the following:

net1[a , b , v , w ] := NetGraph[net11[a, b, v], net12[a, b, w], NetPort[”Input”]− > 1, 1− > 2]

and net1 output on the left-hand side of Figure 3.
Similarly, to express the condition w32 tanh(w12x) =

1
2
w(−b+1) tanh[

(
v + 1

2
(b+ 1)a

)
x], we

defined net2.
Finally, to express the condition w31 tanh(w11x) +w32 tanh(w12x), we input the following:

parameterNet[a , b , v , w ] := NetGraph[net1[a, b, v, w], net2[a, b, v, w], T otalLayer[],

NetPort[”Input”]− > 1, NetPort[”Input”]− > 2,1, 2− > 3− > NetPort[”Output1”], ”Input”− > enc]

and parameterNet output on the light-hand side of Figure 3.

Figure 3: net1, parameterNet
Let us define the loss function as a log density ratio function. We input the following:

gaussianLikelihood[y , µ ] := PDF [NormalDistribution[µ, 1], y]

trainingNet[a , b , v , w ] := NetGraph[< |”params”− > parameterNet[a, b, v, w], ”lhood”− >

ThreadingLayer[gaussianLikelihood], ”neglog”− > ElementwiseLayer[−Log[#]&]| >,

NetPort[”Output”],NetPort[”params”, ”Output1”]− > ”lhood”,”lhood”− > ”neglog”− > NetPort[”Loss”]]

and trainingNet output on the light side of Figure 4.

Figure 4: trainingNet(log density ratio)
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For training data and test data, we input the following:

G[a , b ] := Mean[trainingNet[a, b, v0, w0][< |”Input”− > dataX, ”Output”− > enc[dataY ]| >]]

H[a , b ] := Mean[trainingNet[a, b, v0, w0][< |”Input”− > testX, ”Output”− > enc[testY ]| >]]

and defined training loss function G and validation loss function H.

4 Dynamics of learning near singular regions

4.1 Framework of dynamics of learning

Example 1 (Training data, true density function) For input X on −3 ≤ x ≤ 3 and
noise Z of σ = 0.05, let the training data (are listed in Appendix.) be

0.25 tanh(0.2x) + 0.25 tanh(0.4x) + Z,

and the true density function be

q(y|x) = 1√
2πσ

exp

(
−|y − (0.25 tanh(0.2x) + 0.25 tanh(0.4x)) |2

2σ2

)
.

For a = 0.2, b = 0, v = 0.3, w = 0.5, we consider that the dynamics of learning evolving
under the influence of a critical line classified into five cases by changing the initial values
of the statistical model for the case in which the true distribution near the singular regions
is realizable by the statistical model. Let us define the loss function as the log density ratio
function, and input the following:

results1[a , b ] := NetTrain[trainingNet[a, b, v, w], < |”Input”− > dataX, ”Output”− > enc[dataY ]| >,

{”Weights”, ”TrainedNet”, ”RoundLossList”}, LossFunction− > ”Loss”,Method− >

”ADAM”, ”LearningRate”− > 0.1, BatchSize− > 30,MaxTrainingRounds− > { },
T rainingProgressFunction− > appendToLog]

In addition, the neural network was trained.

4.2 Dynamics of overlap singularity and cross elimination singularity

Let the initial values of the statistical model be a = 0.15, b = −2.0, −1.8, −1.5, −1.3, v =
0.3, w = 0.5. The neural network was trained 140 times. We construct an array of parameters
of a, b under the influence of the critical line. The evolutions of parameters of a and the
evolutions of parameters of b are shown on the left-hand and middle-hand sides respectively, of
Figure 5, and the evolution of parameters of a, b is shown on the light-hand side of Figure 5.

Figure 5: Evolution of parameters of a, b (a = 0.15, b = −2.0, −1.8, −1.5, −1.3)
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The neural network was trained 140 times. We construct an array of the training loss, and
the evolution of the training loss and the dynamics of learning of the training loss surface are
shown on the left-hand and right-hand sides, respectively, of Figure 6.

Figure 6: Evolution of the training loss and the dynamics of the training loss surface (a = 0.15, b = −2.0, −1.8, −1.5, −1.3)

We generalize the parameter of b (−2.2 ≤ b ≤ 2.2). The evolution of the parameters of
a, b and the dynamics of learning of the training loss surface are shown on the left-hand and
right-hand sides, respectively, of Figure 7.

Figure 7: Evolution of the parameters of a, b and the dynamics of the training loss surface (−2.2 ≤ b ≤ 2.2)

Result 1 (1) We find that plateau phenomena were observed on critical line a = 0 and that
the dynamics of learning do not reach the true distribution in case b = −2.0, −1.8.

(2) We find that plateau phenomena were observed when crossing critical line b = −1 and
that the dynamics of learning reach the true distribution in case b = −1.5 − 1.3.

(3) As the parameter b evolves to 0, the dynamics of learning change from overlap singularity
to cross elimination singularity and from cross elimination singularity to fast convergence.
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4.3 Dynamics of near elimination singularity and output weight 0

Let the initial values of the statistical model be a = 0.5, 0.6, 0.7, 1.2, b = 0.75, v = 0.3, w = 0.5.
The neural network was trained 100 times. We construct an array of parameters of a, b under
the influence of critical line. The evolutions of parameters of a and the evolutions of parameters
of b are shown on the left-hand and middle-hand sides respectively, of Figure 8, and the evolution
of parameters of a, b is shown on the light-hand side of Figure 8.

Figure 8: Evolutions of parameters of a, b (a = 0.5, 0.6, 0.7, 1.2, b = 0.75)

The neural network was trained 100 times. We construct an array of the training loss, and
the evolution of the training loss and the dynamics of learning of the training loss surface are
shown on the left-hand and right-hand sides, respectively, of Figure 9.

Figure 9: Evolution of the training loss and the dynamics of the training loss surface (a = 0.5, 0.6, 0.7, 1.2, b = 0.75)

We generalize the parameter of a (0 ≤ a ≤ 2.2). The evolution of the parameters of a, b
and the dynamics of learning of the training loss surface are shown on the left-hand and right-
hand sides, respectively, of Figure 10.

Figure 10: Evolution of the parameters of a, b and the dynamics of the training loss surface (0 ≤ a ≤ 2.2)
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Result 2 (1) We find that plateau phenomena were observed on critical line b = −1 and that
the dynamics of learning do not reach the true distribution in case a = 1.2.

(2) We find that plateau phenomena were observed approaching critical line b = −1 and that
the dynamics of learning reach the true distribution in case a = 0.6, 0.7. Moreover, we
find that the dynamics of learning reach the true distribution more quickly in case a = 0.5.

(3) As the parameter of a evolves to 0, the dynamics of learning change from output weight 0
to near elimination singularity and from near elimination singularity to fast convergence.

5 Conclusion

Firstly we constructed the neural network as the statistical model using Mathmatica.
Secondly, we observed plateau phenomena near singular regions by examining the evolution of
the parameter and the dynamics of learning on the training loss surface. Finally we investigated
that the type of dynamics of learning changes when the overlap and the elimination singularity
is approached from a distance by changing the initial values of the statistical model.

The purpose of our research is not to study the current state of the art in neural networks
but to make some concepts in phenomena in neural networks correspond (explain) to learning
in educational activities. Specifically, it is to clarify what state the phenomenon of plateau and
over-fitting and over-generalization are in educational activities.

The results can also be the foundation to investigate the singular learning dynamics in
educational activities.

References

[1] S. Watanabe,“Algebraic geometry and statistical learning theory ,”Cambridge University
Press, 2009.

[2] S. Watanabe,“Mathematical Theory of Bayesian Statistics,”CRC Press, 2018.

[3] H. Wei, J. Zhang, F. Cousseau, T. Ozeki, and S. Amari,“ Dynamics of learning near
singularities in layered networks,” Neural Computation, vol. 20, no. 34, pp. 813–843,
2008.

[4] F. Cousseau, T. Ozeki, and S. Amari,“ Dynamics of Learning in Multilayer Perceptrons
Near Singularities,”IEEE Transactions on Neural Networks, vol. 19, no. 8, pp. 1313–1328,
2008.

[5] K. Fukumizu and S. Amari,“ Local minima and plateaus in hierarchical structures of
multilayer perceptrons,”Neural Networks, vol. 13, no. 3, pp. 317–327, 2000.

[6] W. Guo, H. Wei , Y. Ong, J. R. Hervas, J. Zhao, H. Wang, K. Zhang,“Numerical Analysis
near Singularities in RBF Networks,”Journal of Machine Learning Research, vol. 19, no.
1, pp. 1-39, 2018.

Proceedings of the 26th Asian Technology Conference in Mathematics

306



6 Appendix

6.1 Training data of Example1

For input xs, and output ys as follows:

xs = {2.467685732795669, 1.6313896711002975, 1.7039693114471142,−2.353539095169551,
2.5106926463104458,−2.9742536653063, 1.4778884503387921,−1.7619315572659175,
0.8575206146347014,−1.9522402751318726,−2.9186556422433796, 2.3433244821789305,
− 2.3174593747595598, 0.24745360478229195,−0.43473282858294837, 2.0777962243403962,
− 0.7489587340884398, 0.40283200240701333, 1.4393667305075848, 2.6884952319559243,
0.4233060018195829, 1.3133371734415373,−1.8687861826912897, 2.641499809476027,
1.3536619131864676, 1.4261447937286373,−1.5373889449365947, 2.5833410435168336,
− 0.7634883775841974,−1.418229957030034},

ys = {0.25047549494898375, 0.14195709642758433, 0.2416763776071971,−0.34055590890961035,
0.3082658314034902,−0.4292549244954509, 0.15038776701404105,−0.23410034295044008,
0.1674469014375939,−0.26548937037643955,−0.3321460817933551, 0.2720167181157782,
− 0.2892455062624837, 0.0520546848151971,−0.0009290519327547, 0.2940081059525326,
− 0.14421683321295234, 0.08562704853302514, 0.25724997978192643, 0.2668005655536598,
0.043918697553646746, 0.19753643159405437,−0.2627853499983649, 0.25989101875041354,
0.1395086144673041, 0.17062611740258554,−0.18466386529707135, 0.3690548490941195,
− 0.16241114605952112,−0.14051890248769974},

Then,we defined training data as follows:

{2.46769 → 0.250475, 1.63139 → 0.141957, 1.70397 → 0.241676,−2.35354 → −0.340556,
2.51069 → 0.308266,−2.97425 → −0.429255, 1.47789 → 0.150388,−1.76193 → −0.2341,
0.857521 → 0.167447,−1.95224 → −0.265489,−2.91866 → −0.332146, 2.34332 → 0.272017,
− 2.31746 → −0.289246, 0.247454 → 0.0520547,−0.434733 → −0.000929052,
2.0778 → 0.294008,−0.748959 → −0.144217, 0.402832 → 0.085627, 1.43937 → 0.25725,
2.6885 → 0.266801, 0.423306 → 0.0439187, 1.31334 → 0.197536,−1.86879 → −0.262785,
2.6415 → 0.259891, 1.35366 → 0.139509, 1.42614 → 0.170626,−1.53739 → −0.184664,
2.58334 → 0.369055,−0.763488 → −0.162411,−1.41823 → −0.140519}.
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Abstract

This article deals with Cartesian ovals and one of the many methods of their construc-
tion - the so-called Chasles construction. The paper first shows an alternative justification
of why points constructed by the Chasles construction satisfy foci definition of Cartesian
oval, and - as a part of this justification - shows why the oval has three foci and how to
construct the third focus by Euclidean means (assuming the oval is defined by two foci).
Finally, the special case in which one of the circles in the construction is replaced by a
straight line is discussed. It is shown synthetically that in such a case the construction
renders a conic, and moreover, it can be shown that the focal definition of a conic and the
definition using a directrix line are equivalent (but proof is not included in the article).

1 Introduction

The foci definition of the Cartesian oval has the following form:

c1|PF1|+ c2|PF2| = k (1)

where F1 and F2 are given points (foci) and c1, c2 and k are given constants. All points P ,
satisfying the equation, belong to the oval.
There are many ways to construct the points of an oval geometrically. The most elementary one
is to choose the distance PF2 arbitrarily and calculate PF1. If both distances are non-negative
and satisfy the triangle inequality, the point P is constructed as the intersection of two circles.
However, there are subtler and faster constructions, one of which is that of Chasles [1] (Michel
Chasles, French mathematician, 1793-1880). His procedure follows (Figure 1):

Chasles construction
Let two circles k1(F1, R1) and k2(F2, R2) are given. Let us choose a fixed point X on the line
F1F2. Let an arbitrary line through the point X intersects k1 at P1 and k2 at P2. Denote P the
intersection of the lines P1F1 and P2F2. Then the point P belongs to the oval whose equation
is:

|XF1|
R1

|PF1| −
|XF2|
R2

|PF2| = |XF1| − |XF2| (2)
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Figure 1: Chasles construction of oval

Since |XF1|/R1, |XF2|/R2 and |XF1|− |XF2|, are constants, this equation is equivalent to (1).
This statement can be derived using Menelaus theorem (the line XP1P2 intersects the sides
of the triangle F1PF2) or by spatial reasoning and subsequent projection onto a plane. These
derivations are mentioned on the website [2], and we will not present them here.
Note: A line through X can intersect each circle at two points, so we can construct up to four
points of P . It can be shown that two points belong to the oval with equation (2) and the
remaining two points belong to the oval whose equation is similar to the equation (2), except
that one of the mentioned three constants has the opposite sign. These two ovals are so called
conjugate.
The article is divided into three parts. First, we give a new justification of why the points of P
constructed using the Chasles construction belong to the oval. As a part of this justification,
we show why a Cartesian oval has three foci and how to construct its third focus geometrically.
In the second part, we show how to perform the Chasles construction of the oval, if two foci of
the oval and its equation (1) are given. Finally, we consider the case where one of the circles
is a straight line and show that in this case the construction depicts a conic. A by-product of
this proof is a justification why the definition of a conic using a directrix line is equivalent to
the definition using a foci definition.

2 Chasles construction and third focus of oval

We start from the construction described in the previous section. Our aim is to justify the
following
Theorem 2.1 The points P constructed by Chasles’ construction satisfy the equation (2).
Proof. Construct inverse points X1, X2 of the point X with respect to the circles k1 and
k2, respectively. Then construct the intersection E of the lines X1P1 and X2P2 and finally
construct the intersection F3 of the lines EP and F1F2 (Figure 2).

Due to the definition of inversion,

|XF1|
|P1F1|

=
|P1F1|
|X1F1|

,
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Figure 2: Chasles construction and the third focus

the triangles X1F1P1 and P1F1X are similar. Therefore

∠F1P1X1 = ∠F1XP1 = α

In the same way we derive the similarity of the triangles F2P2X and F2X2P2 and the equality

∠F2P2X2 = ∠F2XP2 = α

From the above equations follows that the quadrilateral P2P1PE is cyclic, therefore ∠XP2X2 =
∠XP2E = ∠P1PE. Hence, the triangles EPP1 and X2P2X are similar. Since the triangles
F2P2X2 and F2XP2 are also similar, it holds:

|EP |
|PP1|

=
|P2X2|
|P2X|

=
|P2F2|
|XF2|

(3)

In the same way, we arrive at equality

|EP |
|PP2|

=
|P1X1|
|P1X|

=
|P1F1|
|XF1|

(4)

Therefore,

|PP1|
|PP2|

=
|F1P1| − |F1P |
|F2P2| − |F2P |

=

|P1F1|
|XF1|
|P2F2|
|XF2|

=
|P1F1|
|XF1|

· |XF2|
|P2F2|

, (5)

which, after easy rearrangement, gives the equation

|XF1|
|P1F1|

· |PF1| −
|XF2|
|P2F2|

· |PF2| = |XF1| − |XF2| (6)
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identical to the equation (2).
Theorem 2.2 Point F3 is the third focus of the oval.

Proof. To prove this statement, it is necessary to justify two facts:
1) The point F3 is fixed, i.e. it does not depend on the position of the line XP2P1. 2) Points
P of the oval with foci F1F2 also lie on the (identical) ovals with foci F3F1 and F3F2

Due to the equality ∠X1EX2 = ∠P2EP1 = ∠P2PP1 and ∠X2X1E = ∠F1X1P1 = ∠F1P1X =
∠PP1P2 the triangles X2EX1 and P1PP2 are similar. Since the ratio of of the sides |PP1|/|PP2|
is constant according to equation (5), the ratio of the sides |EX2|/|EX1| is also constant. Let
us denote this constant e:

|EX2|
|EX1|

= e

Furthermore, the triangles F3EX1 and F3X2E are also similar since they share the angle at the
vertex F3 and the following equality holds:

∠X1EF3 = ∠P1EP = ∠P1P2P = ∠P1P2F2 = α + ∠P2F2X2 = ∠P2X2F3

Hence:

|F3X2|
|F3E|

= e and
|F3E|
|F3X1|

= e (7)

Multiplying these identities one gets

|F3X2| = e2 · |F3X1|

But
|X2X1| = |F3X2| − |F3X1| = |F3X1| · (e2 − 1)

Since the length of |X2X1| is constant, the length of |F3X1| is constant too and the point F3 is
fixed. (More precisely, it is the centre of the Apollonius circle for the triangle X1EX2.) This
completes the first part of the proof.
In the second part, it suffices to consider the foci of F3F1. In the case of the foci of F3F2 the
procedure is analogous. Let’s consider an equation

|XF2|
|P2F2|

· |F3P |+ |F1P | = k (8)

As |XF2|/|P2F2| = c is a constant, it is sufficient to show that k is also a constant. Putting
the identity |F3P | = |F3E|+ |EP | into the equation (8) and using the relation (3), in the form
|XF2|/|P2F2| · |EP | = |PP1|, one gets

|XF2|
|P2F2|

· |F3E|+ |XF2|
|P2F2|

· |EP |+ |F1P | = |XF2|
|P2F2|

· |F3E|+ |PP1|+ |F1P | = |XF2|
|P2F2|

· |F3E|+ |F1P1|

The right-hand side of the equation is constant if and only if |F3E| is a constant. Equation (7)
implies

|F3E| = e · |F3X1|

Since we have proved that |F3X1| is constant, |F3E| is also constant. The proof is complete.
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3 Chasles construction of an oval given by focal equation

In this section we solve the following
Problem 3.1
Let an oval is given by two foci F3 and F2 and by the equation

c3 · |PF3|+ c2 · |PF2| = k

where c3, c2 and k are constants. How to perform the Chasles construction of the oval?

Before we show the solution to this problem, we will return to the classical construction
mentioned in the introduction. We will show that it is not unique, namely, that there are
an infinite number of constructions giving the same oval. We choose one of them suitable for
solving our problem.
Let the circles k1, k2 and the point X on the line of their centres be given. These objects, as
we already know, determine the oval by the construction. Next, let us choose another point
Y ̸= X on this line. How to modify the circles k1 and k2 to l1 and l2, respectively, so that l1,
l2 and Y determine the same oval? (Figure 3)

Figure 3: Chasles constructions of the same oval

Let the line XP1P2 determine the point P of the oval. Let us draw a parallel to this
line through the point Y , which intersects the lines P2F2 and P1F1 at the points P ′

2 and P ′
1,

respectively. Then the intersection of the lines P ′
2F2 and P ′

1F1 coincides with the point P .
It remains to justify that the points P ′

2 and P ′
1 move on the circles with centres F2 and F1,

respectively. From the similarity of the triangles XP2F2 and Y P ′
2F2 follows:

|P ′
2F2| = |P2F2| ·

|F2Y |
|F2X|
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As the right-hand side of the equation is a constant, the point P ′
2 moves on the circle l2 centred

at F2. Similarly, we prove that the point P ′
1 moves on the circle l1 centred at F1.

Also, the focal point F3, whose construction is described in the previous section, remains the
same since (Figure 2 and Figure 3)

∠P1PF3 = ∠XP2X2 = ∠XP2F2 − α = ∠Y P ′
2F2 − α = ∠Y P ′

2Y2 = ∠P ′
1PF3

where Y2 is the inverse of the point Y with respect to the circle l2.
Now it is possible to choose a point Y in such a way that its inverse image Y1 with respect the
circle l1 is identical to the inverse image Y2 of Y with respect to the circle l2. Such a point
always exists unless the point X - and Y - is not centre of similitude of the circles. In such case
the solution is a conic and the third focus does not exist.

The proofs of these two propositions will be only sketched. Firstly, we show the existence
of the point Y . Since Y1 is inverse of Y in l1, it holds:

R2
l1
= |F1Y | · |F1Y1|

where Rl1 is radii of the circle. Dividing the equation by |F1Y |2 we get(
Rl1

|F1Y |

)2

=
|F1Y1|
|F1Y |

But the left hand side of the equation is constant for all points Y . Hence, the point Y1 is the
image of Y in homothethy h1, with centre at F1 and coefficient (Rl1/|F1Y |)2. Similarly, we
arrive at the conclusion that the point Y2 is the image of Y in a homothethy h2. Hence

h1 ◦ h(−1)
2 (Y2) = Y1

Now, composition of two homotheties h1 ◦ h
(−1)
2 is a third homothethy h3 if and only if the

product of the coefficients of homotheties is not equal 1, in which case it is a translation. It is
clear that the centre Z of the h3 fulfils

h3(Z) = Z

Therefore we can select Y in a way that Z = Y1 = Y2.
The second case (translation) occurs only if the point Y is the centre of similitude of the circles.
In such case, the lines P1F1 and P2F2 intersect for the points P1 and P2 being antihomologous
(for details see website [3]). They intersect in a centre of a circle tangent to the circles l1 and l2.
It is possible to show that the intersections belong to hyperbola with foci F1, F2, if the tangent
circle touches both circles externally or internally, and to ellipse, if the tangent circle touches
one circle externally and second internally.

Let’s return to the problem. The intersection E (Figure 2 with substitution of point labels
Y , Y1 and Y2 for the labels X, X1 and X2) is identical to this common image, and since it lies
on the line F1F2, it must be the third focus F3.

Let us denote this point Y by X again, this time knowing that F3 = X1 = X2. The updated
Figure 2 then looks as follows (Figure 4):
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Figure 4: Chasles constructions with F3 = X1 = X2

Denoting the radii of the circles |P1F1| = R1 and |P2F2| = R2, the new equations (3), (4),
(6) and (8) are

|F3P |
|PP1|

=
|P2F3|
|P2X|

=
R2

|XF2|
|F3P |
|PP2|

=
|P1F3|
|P1X|

=
R1

|XF1|
(9)

|XF1|
R1

· |PF1| −
|XF2|
R2

· |PF2| = |XF1| − |XF2| (10)

|XF2|
R2

· |F3P |+ |F1P | = R1 (11)

|XF1|
R1

· |F3P |+ |F2P | = R2 (12)

Equations (10), (11) and (12) express an oval with foci F1F2, F3F1 and F3F2.
Solution of problem 3.1

In order to solve the problem 3.1, we will modify the oval equation to the form (12). Then we
will proceed as follows:
1) Construct the circle k2(F2, R2).
2) Construct the inverse image X of the point F3 with respect to circle k2.
3) Construct the Apollonius circle k1 with the ratio distances of its points P1 to the points F3

and X equal to (9), |P1F3|
|P1X| = R1

|XF1| . This ratio is given by equation (12). Denote the centre of
this circle by F1.
4) The circles k1, k2 and the point X determine the oval given by equation (12).
Negative constant in equation (12) does not change the above procedure - we work with absolute
values of these constants. It may seem that absolute values of the two constants determine a
total of four different equations (12) but the Chasles construction determines only two of them.
It can be shown, however, that two of these four ovals are empty sets. Particularly, the oval
of the equation (12) with |XF1|/R1 > 0 and R2 < 0 is excluded immediately. One of the
remaining three equations is always excluded due to the improper focal distance F2F3.
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4 Chasles construction for one of the circles replaced by

a line

Now we prove that replacing one circle in the Chasles construction by a line, the set of points
P is a conic. For completeness we describe the construction (Fig. 5) in detail.

Special case of the Chasles construction
Let a circle k(F2, R2) and a line l be given and let the line p passes through F2 and is perpen-
dicular to the line l. Choose a point X on the line p. Let an arbitrary line passing through X
intersects the line l at P1 and the circle k at P2. Draw the perpendicular line p1 to the line l at
P1 and denote the intersection of the lines P2F2 and p1 as P .

Figure 5: Special case of Chasles constructions

Theorem 4.1 The set of points P constructed in this way is a conic.
Theorem 4.2 The focus F1 of this conic is constructed as follows (Figure 6):
1) Construct the axisymmetric image X1 of the point X with respect to the line l.
2) Construct the inversion image X2 of the point X with respect to the circle k.
3) Construct the intersection E of the lines P1X1 and P2X2.
4) Denote F1 the intersection of the lines EP and p.

Figure 6: Construction of a focus of a conic

Proof of 4.1 and 4.2.
Let’s start with a few obvious facts. It holds
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α = ∠F2P2X2 = ∠F2XP2 = ∠PP1P2 = ∠PP1E

Since ∠PP1E = ∠PP2X2 = ∠PP2E, the quadrilateral PP2P1E is cyclic and hence

α = ∠PP1P2 = ∠PEP2

Firstly, we will show that the point F1 is fixed for any line XP1P2. As the triangles X1X2E
and P2X2F2 are similar, we have

|X1X2| · |X2F2| = |X2E| · |X2P2|.

The left side of this equation is a constant, therefore the product on the right side is also con-
stant.
From the similarity of the triangles X2F1E and X2P2X follows

|X2E| · |X2P2| = |X2X| · |X2F1|.

The product on the left side is constant and the length of the line segment |X2X| is fixed.
Therefore, the length of the line segment |X2F1| is also fixed and the point F1 is common to
all lines XP1P2.
Since ∠PP2E = ∠PEP2, the triangle P2PE is isosceles.
Now we are at a crossroads: if the point X lies outside the circle k, the locus will be an ellipse
(see below), if it lies inside the locus will be a hyperbola, finally if the point X lies at the
intersection of p and k, the locus is parabolla. We only hint why this proposition is true in the
conclusion of the article, but before it, lets focus on the case of ellipse (Figure 6).

R2 = |F2P2| = |PF2|+ |PE| = |F2P |+ |F1P |+ |F1E|

Otherwise written:

R2 − |F1E| = |F2P |+ |F1P | (13)

This equation represents a focus definition of an ellipse if and only if |F1E| is constant. The
similarity of the triangles F1EX2 and F1X1E implies

|F1X1| · |F1X2| = |F1E|2.

The product on the left-hand side is constant and the proof is completed.
As in the case of the classical Chasel construction, the ”special one” is not unique. Let S is
the intersection of the lines l and p. Choose a point Y ̸= X on the line p, construct a circle k2
with centre F2 and radius R′

2 = R2 · |Y F2|/|F2X| and a line l2 parallel to the line l such that
the distance of intersection S2 of lines p and l2 to the point S is equal, SS2 = XY (equality of
oriented distances). Then the line l2, the circle k2 and the point Y determine the same conic.

As in the previous case, the point Y can be chosen in such a way that the points Y1 (axisym-
metric point with respect to the line l2) and Y2 (the inverse image of the point Y with respect
to the circle k2) are identical, i.e. Y1 = Y2 = F1. (To be exact: such a point always exists,
unless the point Y does not lie on the circle k2, in which case the focus F1 does not exist and
the locus is a parabola.) By this transformation the relative position of the point Y and the
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circle k2 is preserved. It means that the points Y lie either inside of the circles k2 in all of the
configurations or outside in all of them. So we have the following configuration: points Y , F1,
line l2 (symmetrical axis of the points) and the circle k2 with the property, that inverse image
of Y is F1 and vice versa. In this configuration the circle k2 and the line l2 are nonintersecting
and it is possible to show: If the point Y lies outside of the circle, the locus is an ellipse If it
lies inside, the locus is a hyperbola. We only sketch the proof. Let’s begin the proof with the
former case, Figure 7:

Figure 7: Directrix line and director circle in Chasles construction

We know, that |EP | = |PP2| and (in this configuration) E = F1, so |F1P | = |PP2|. From
the Figure 7 it is obvious that P lies always within the segment F2P2. Hence

Constant = |F2P2| = |F2P |+ |PP2| = |F2P |+ |F1P |,

which is focal definition of ellipse.
The case of a hyperbola is analogous with the exception that the labels of the points Y and F1 in
the Figure 7 are interchanged (since the point Y lies inside of the circle). Again |EP | = |PP2|,
E = F1 and |F1P | = |PP2|, but in this case, the point P lies outside of the segment F2P2.
Hence:

Constant = |F2P2| = |F2P | − |PP2| = |F2P | − |F1P |,

which is focal definition of the hyperbola. The exact proof why the point P lies in/out – side
of the segment in respective cases is left to the reader. It is not hard to show that in this
configuration the line l2 is the directrix line of the conic.
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ABSTRACT 

In compliance to DepEd Order No. 12, s. 2020, teachers are compelled to collaboratively design and implement 
performance tasks that integrate two or more competencies within or across subject areas called “Integrative 
Performance Output”. Correlational research method was used in order to determine the significant relationship of 
the performances of the learners among subjects utilizing integrative performance task/output.  
 
Research Paper was used as Integrative performance output for three integrated subjects. Teachers in the three (3) 
integrated subjects examined and combined their respective learning competencies to create an integrate performance 
output. Learners submitted their full research paper to their Practical research and Reading and writing teachers to 
assessed the overall content of the output while Chapter 4 was checked by the Statistics and Probability teacher. 
 
Using F-test value of 4.81 the claim was rejected and concluded that there is a significant difference among the 
students’ performances in three (3) subjects; Practical Research 1, Statistics and Probability and Reading and Writing 
using an integrative performance task.  
 
Likewise, using Pearson’s r of 0.89 and 0.82, it can be deduced that there is a high correlation between the students’ 
performance in Practical Research 1 and Reading and Writing and Statistics and Probability, respectively through the 
use of Integrative Performance Task/Output.  
 
This implies that the utilization of an integrative performance output helped the students to improve their academic 
performance by making connections among concepts and experience so that information and skills can be applied to 
novel and complex challenges. 
 

INTRODUCTION. 

The Department of Education issued DepEd Order No. 31 s. 2020 “Interim Guidelines for 
Assessment and Grading in Light of the Basic Education Learning Continuity Plan,” summative 
assessment shall continue in the form of written works and performance tasks. Basically, learners 
are expected to do four (4) performance tasks per quarter per subject area. However, because of the 
implications brought about by the Online/Modular Distance Learning Modality that the Schools 
Division of Mandaluyong is currently implementing, learners are having difficulty in complying 
with this requirement. Hence, teachers ensure Academic ease in assessing student learning through 
an Integrative Performance Output.  
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Integrative Performance Output involves a series of integrated learning competencies from 
a variety of subjects applied to a variety of tasks. It can be as simple as breaking down an 
assignment into stages or having a group of related summative tasks that work together to increase 
capacity for additional learning and strengthen judgment abilities. The process begins with the three 
communicative modes as a reference point, and then moves to the selection of a theme followed by 
the creation of tasks around that theme, which corresponds to the three modes [5].  

Teachers collaboratively design and implement performance tasks that integrate two or 
more competencies within or across subject areas. Observed that “complex learning is invariably 
slow learning, taking longer to grow than most modules last” [4]. Integrative assessment has the 
ability to lower the volume and stakes of summative assessments sooner in the learning process. 
This creates opportunities for students to learn from mistakes, to develop skills and understanding 
over time, and to generate dialogue between students and teachers about learning progress. 

Several learning competencies in three (3) senior high subjects were combined namely, 
Statistics and Probability, Reading and Writing, and Practical Research 1. The mastery level of 
these combined learning competencies is deliberately assessed through a “Research Paper”. 
Research paper is the integrative performance output utilized for this study which covers different 
content standards and performance standards in three integrated learning areas. The study aims to 
determine the efficacy of using integrative performance output to improve learners’ academic 
performances in the three integrated subjects and help them overcome the burden of accomplishing 
different tasks in this Pandemic. 

STATEMENT OF THE PROBLEM. 

 The study aims to determine the efficacy of an Integrative Performance Output in the 
academic performances of the STEM learners in three (3) SHS subjects. Specifically, it sought to 
answer the following questions; 

1. What is the performance level of the learners in terms of their performance task in the three (3) 
combined subjects through the Integrative Performance Output?    

2. Is there a significant difference among the performance of the learners in the combined subjects 
using an integrative performance output? 

3. What is the significant relationship between the performance of the learners in Practical research 
1 and Reading and Writing? 

4. What is the significant relationship between the performance of the learners in Practical research 
1 and Statistics and Probability? 

5. What continuous improvement program can be recommended in order to sustain the efficacy of 
the study?   

RESEARCH METHODOLOGY. 
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The researcher used a Quantitative research design which is an approach used to determine 
the level of performance of the learners after accomplishing the Integrative Performance Output of 
the three (3) subjects; Statistics and Probability, Reading and Writing and Practical Research 1. 
Correlational research method was used in order to determine the significant relationship of the 
performances of the learners among subjects utilizing integrative performance task/output. 

The respondents for the study were chosen using the purposeful sampling technique, which 
is a non-probability sampling technique. The study included thirty-four (34) STEM students 
enrolled in the same topics for the School Year 2020-2021. They were picked from among other 
STEM sections because they had the lowest mean percentage grade in the third quarter. Subject 
teachers in the three (3) integrated disciplines evaluated the potential of merging their different 
learning competencies to create an integrated performance output as illustrated in figure 1.  

Figure 1  
Integrative Learning Competencies of Three (3) Senior High School Subjects 

 

In examining the connections in curriculum, the evidence suggests that integrated 
assessment approaches are likely to improve the overall student experience by presenting 
curriculum as an integrated, holistic opportunity for students to engage with the overarching aims 
and intention of the programme. [3]. 
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Research Paper was the Integrative performance output used for this study. Learners 
submitted their full research paper to practical research and reading and writing teachers. While, 
Chapter 4 of their research paper was submitted to their statistics and probability teacher. The 
Teachers in Practical research and Reading and Writing used rubrics in assessing the research paper 
of the learners based on their learning competencies and the statistics and probability teacher 
checked the statistical treatment of data used by the learners.   

The scores of the students were recorded and tabulated to determine the level of 
performance of each learner in the three (3) subjects. Pearson Product-Moment correlation was 
used to determine the significant relationship between the performances of the learners in Practical 
Research 1 versus Reading and Writing and Practical Research 1 versus Statistics and Probability 
through an Integrative Performance Output. Likewise, F-test was used to determine the significant 
difference among three (3) subjects utilizing an integrative performance output. 

 

RESULTS AND FINDINGS. 

1. Performance Level of the learners in the three (3) combined subjects using the Integrative 
Performance Output 

Table 1 illustrates the performance of students in the performance task through the 
integrative performance task/output utilize by the three (3) subjects.    

Table 1 
Performance Level of the Learners in the Three (3) Subjects through Integrative 

Performance Task/Output 

Performance Task 
Statistics & 
Probability Reading & Writing Practical Research 

1 
f % f % f % 

Outstanding (90-100) 18 52.94 27 79.41 26 76.47 
Very Satisfactory (85-89) 16 47.06 7 20.59 8 23.53 
Satisfactory (80-84) 0 0 0 0 0 0 
Fairly Satisfactory (75-79) 0 0 0 0 0 0 
Did Not Meet Expectation 
(Below 74 0 0 0 0 0 0 

TOTAL 34 100 34 100 34 100 

OVERALL MEAN 
GRADE 

91                                       
OUTSTANDING 

92                                        
OUTSTANDING 

93                                        
OUTSTANDING 

 
Data showed that most of the learners performed “Outstanding” in the Integrative 

Performance Output in all the combined three (3) subjects. 18 or 52.94% performed “Outstanding” 
in Statistics and Probability, 27 or 79.41% of the learners in Reading and Writing performed 
“Outstanding” and 26 or 76.47% of learners performed “Outstanding” through an Integrative 
Performance Output (Research Paper).  
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Data showed that through an integrative performance output helped students in maintaining 
an excellent academic performance in the three subjects with the computed overall mean of 91% 
for Statistics and Probability, 92% for Reading and Writing and 93% for Practical Research 1.  

This implies that using an integrative approach in assessing the students’ performance 
greatly helped improve the overall student experience by presenting curriculum as an integrated, 
holistic opportunity for students to engage with the overarching aims and intention of the program. 
[3]   

 

2. Difference in the Performance Level of the learners in the three (3) subjects using the 
Integrative Performance Output 

Table 2 indicates the significant difference in the performance level of the learners on the 
three (3) subjects utilizing Integrative Performance Output. 

Table 2 
Difference in the Performance Level of the Learners in the Three (3) Subjects Using the 

Integrative Performance Output  

Performance Output Mean F-Value Remarks Decision 
Computed Tabular 

Practical Research 1 93 
4.81 3.702 Reject Significant Statistics & Probability 91 

Reading & Writing 92 
 

Based on the results of Analysis of Variance (F-test), the computed value of 4.81 is greater 
than the tabular value of 3.702 using 0.05 level of significance, the claim was rejected and 
concluded that there is a significant difference among the students’ performance in three (3) 
subjects; Practical Research 1, Statistics and Probability and Reading and Writing using an 
integrative performance task.  

Data implies that an integrative performance task of two or more subjects affects the 
students’ performance based on an integration of knowledge within and across learning areas, the 
provision of new information and a requirement to explain issues using a combination of 
knowledge from the learning competencies of the integrated subjects [1].  

 

3. Relationship between the performance of the learners in Practical research 1 and Reading 
and Writing using the Integrative Performance Output. 

Table 3 indicates the relationship between the performance of the learners in Practical 
research 1 and Reading and Writing using the Integrative Performance Output. 
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Table 3 
Significant Relationship Between the Performance of the Learners in Practical Research 1 

and Reading and Writing using the Integrative Performance Output. 

Research 
Output Mean Pearson's 

r Correlation t-statistics Remarks Decision 
Comp Tabular 

Practical 
Research 1 93 

0.89 High 
Correlation 11.04 0.339 Reject Significant 

Reading & 
Writing 92 

Based on the results of Pearson’s r of 0.89, it can be deduced that there is a high correlation 
between the students’ performance in Practical Research 1 and Reading and Writing through the 
use of Integrative Performance Task/Output. Furthermore, since the computed t-statistics of 11.04 
is greater than the tabular value of 0.339 using 0.05 level of significance, the claim was rejected 
and concludes that there is a significant relationship between the students’ performance in Practical 
Research 1 and Reading and Writing using an integrative performance task.  

Data implies that the utilization of an integrative assessment affects the students’ 
performance since similar learning competencies were integrated in these two subjects. Thus, 
students applied their knowledge in Reading and Writing subject in terms of technical and 
academic writing towards their research paper.  

 

4. Significant relationship between the performance of the learners in Practical research 1 
and Statistics and Probability using the Integrative Performance Output. 

Table 4 indicates the relationship between the performance of the learners in Practical 
research 1 and Statistics and Probability using the Integrative Performance Output. 

Table 4 
Significant Relationship Between the Performance of the Learners in Practical Research 1 

and Statistics and Probability using the Integrative Performance Output. 

Research Output Mean Pearson's 
r Correlation t-statistics Remarks Decision 

Comp Tabular 

Practical Research 1 93 
0.82 High 

Correlation 8.10 0.339 Reject Significant Statistics & 
Probability 91 

 

Based on the results of Pearson’s r of 0.82, it can be deduced that there is a high correlation 
between the students’ performance in Practical Research 1 and Statistics and Probability through 
the use of Integrative Performance Task/Output. Furthermore, since the computed t-statistics of 
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8.10 is greater than the tabular value of 0.339 using 0.05 level of significance, the claim was 
rejected and concludes that there is a significant relationship between the students’ performance in 
Practical Research 1 and Statistics and Probability using an integrative performance task.  

Data implies that the utilization of an integrative assessment affects the students’ 
performance in terms of Chapter 4. It shows that the students were presented and computed 
statistical treatment of data for their Research paper using their knowledge in Statistics and 
Probability. 

 

DISCUSSION. 

This paper demonstrated that when performance task of two or more subjects or learning 
areas were combined, it helped to improve overall student performance among the combined 
subjects. There integration is when students were able to connect what they are learning in one 
subject area to related content in another subject area.  John Dewey claimed that learning could be 
more meaningful if content areas are blended for curriculum and instruction. The use of unifying 
themes and real-life activities could lead to more relevant learning. The quality of learning 
outcomes is able to integrate information across disciplines instead of acquiring them in isolation. 

The study showed a significant relationship of performance of the learners in two combined 
subjects. In the subject Reading and Writing, learners were taught of formulating evaluative 
statements about a text they read, formulating assertions about the content and properties of a text 
read and literature review. These learnings were incorporated and used by the learners in writing 
their review of related literature in the subject Practical Research 2. Likewise, in Practical Research 
2, students were taught how to write chapters 1 to 5 of their research which the knowledge they got 
from Reading and Writing could be applied like identifying properties of a well-written text in 
terms of organization, coherence and cohesion, language use, and mechanics.  

The integrated approach of a performance task is a vehicle that allows teachers to design 
lessons and activities that meet practical knowledge for the students. In addition, with this study, it 
is clear that integrative learning brought by an integrative performance task is important to prepare 
students to deal effectively both with the complexity of every learning area and the challenges 
facing the broader society today and in the future. 

 

CONCLUSIONS. 

In this paper, through providing curriculum as an integrated, holistic chance for students to 
connect with the goals and intention of easing up student tasks, an integrative approach to evaluate 
students' performance dramatically improved the overall student experience. The students' 
performance is influenced by the integrative performance output of two or more subjects, which 
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includes the integration of knowledge within and across learning areas, the creation of new 
products, and the requirement to explain issues using a combination of knowledge from the 
integrated subjects' learning competencies. The use of an integrative output is important in assisting 
students in applying their knowledge from the Reading and Writing subject in terms of technical 
and academic writing to their research paper in the Practical Research subject. Likewise, by 
applying their knowledge in Statistics and Probability, students were able to improve their 
performance in Chapter 4 in terms of presenting and computing statistical treatment of data. 

Hence, in this pandemic, the integrative performance output contributed to the learners' 
academic performances in the three integrated disciplines and assisted them in overcoming the 
pressure of completing many activities. 

 

Research Output 

Integrative Strategic Testing and Reporting – (Project iSTAR) 

Background and Rationale: 

Through DO 12, s. 2012, assessment should be holistic and authentic in capturing the 
attainment of the most essential learning competencies. Assessment is integral for understanding 
student learning and development at the same time variations of assessment strategies   is   
necessary, with formative assessment taking priority to inform teaching and promote growth and 
mastery. 

Teachers need to be creative and flexible in assessing student learning, while still adhering 
to the principles of quality assessment practice. With safety, health, and well-being foremost in 
mind, assessment decisions must be made in the best interest of all learners, ensuring that all 
assessment activities align with the most essential learning competencies, should be reliable, valid 
and transparent. Assessment activities are fair, inclusive, equitable, practical and manageable for 
both learners and teachers. These assessment tasks should give learners arrange of ways to 
demonstrate their learning and provide timely and accurate information as basis for feedback. 

In compliance to this DepEd Order, the MPNAG SHS teachers introduce an Integrated 
Strategic Testing and Reporting for Mathematics and Research subjects or Project iSTAR.  
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Project iSTAR Framework 

 
Objectives. 
This project iSTART aims to: 

1. Develop a unified objective assessment (summative test) for SHS Mathematics and 
Research subjects. 

2. Encourage teachers to develop an integrative performance task activity for students in 
Statistics and Probability, Practical Research 1, III and all other subjects that have 
something in common. 

3. Provide scholarly reports on students’ assessment in a form of quarterly summative test. 

4. Use the summative test report for students’ intervention and teacher’s pedagogical 
improvement. 

 

Acknowledgements: The author would like to thank his colleagues for their valuable comments 
and input. 
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Abstract

Integer partitions is one of the main subjects in Mathematics and which is taught at various
levels in colleges and Universities. The subject was introduced by Leibniz and Euler. The chief aim
of this paper is to give the ideas about Euler generating function which is the main tool to learn
various properties of partitions of integers along with bijective function. Bijection is used to find
out various identities and it always helps to prove results. It is argued that Mathematica software
is important to learn and teach the subject. We give some applications of integer partitions in
graphs theory.

1 Basic concepts of Integer Partitions
A partition of a positive integer n is defined as a way of writing n as the sum of positive integers.
We denote the number of partitions of n by P(n). An explicit formula for P(n) valid for all positive
integers n was discovered by Rademacher in 1937 [1], but since it is a complicated infinite series
and is not needed for the purposes of this paper. The theory of integer partitions is a rich source of
identities, bijections, and interrelations at the confluence of number theory, combinatorics, algebra,
analysis, and the physical sciences. Let p = (p1 + p2 + p3 + ........pk) where p is any partition denote
a generic partition, with integer parts p1 ≥ p2 ≥ ......... ≥ pk ≥ 1. It is very interesting to overview
the concepts of Integer Partitions Function P(n). The integer Partition function P (n) is essentially the
quantity of all integer partitions of whole number n. The total number of integer partitions is finite and
n is always itself a partition. A PartitionFunction P (n) of integer n, n ≥ 1, is a non increasing
sequence {n1, n2, n3, n4, .....nk} such that P (n) =

∑k
j=1 nj = n, where nj is the part of the partition

P (n) and P (−n) = 0, P (0) = 1 by default and P (1) = 1.
There are two common diagrammatic methods to represent partitions: as Ferrer diagrams [2], named
after Norman Macleod Ferrers, and as Young diagrams [3], named after the British mathematician
Alfred Young. Both have several possible conventions. In the Figure 1, partitions of the integer 5 are
given with the corresponding Ferrer diagrams.
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5 4+1 3+2 3+1+1 2+2+1 2+1+1+1 1+1+1+1+1

Figure 1: Ferrer diagram for integer 5

We can use Mathematica to find different sets about Integer Partitions.
In[1]:IntegerPartitions[n] gives a list of all possible ways to partition the integer n into
smaller integers.
In[1]: IntegerPartitions[5]
Out[1]:{{5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1}, {1,1,1,1,1}}
In[2]:IntegerPartitions[n,k] gives partitions into at most k integers.
In[2]:IntegerPartitions[8, 3]
Out[2]:{8},{7,1},{6,2},{6,1,1},{5,3},{5,2,1},{4,4},{4,3,1},{4,2,2},{3,3,2}}
In[3]: IntegerPartitions[n,{k}]gives partitions into exactly k integers.
In[3]:IntegerPartitions[8,{3}]
Out[3]: {{6,1,1},{5,2,1},{4,3,1},{4,2,2},{3,3,2}}

1.1 Generating Function
There are many ways to formulate different properties in number theory, enumerative combinatorics
and in discrete mathematics but one of the ways is generating function which helps to give a precise
formula to various terms. Generating functions were first introduced in 1730 by Abraham de Moivre
to solve the problem of common linear repetition. In order to generalize a formal power sequence
to several asymmetric numbers, information about an infinite multidimensional array of numbers can
be encoded. Generating functions work better when a discrete sequence is known [7]. Any problem
which has a sequence in the result can be converted into a generating function. For this task, let us
say an infinite sequence {e0, e1, e2, e3, ..., er, ..} can be expressed as a function f(x) =

∑∞
i=0 eix

i or
f(x) = e0 + e1x + e2x

2 + ... + erx
r + ..., where er is number of ways to get r − objects. Any

finite sequence can be used in the same manners as {e0, e1, e2, e3, ..., er, 0, 0, 0} is a finite sequence
but can be expressed as infinite sequence. Every finite or infinite sequence can be expressed as a
generating function which gives a polynomial. Some sequences with their generating functions are
given in Table 1. Binomial theorem plays a huge role in the solving of any generating function which

Table 1: Some sequences with respective generating functions
Sequence Series

{1, 1, 1, 1, 1, ..., 1, ...} 1 + x+ x2 + x3 + ...
{0, 1, 2, 3, ..., n} 1 + x+ 2x2 + 3x3 + ...+ nxn

{0, 2, 4, 6, ...} 1 + 2x+ 4x2 + 6x3 + ...
{1, 3, 5, 7, ...} x+ 3x2 + 5x3 + 7x4...

{
(
β
0

)
,
(
β
1

)
,
(
β
2

)
,
(
β
3

)
, ...,

(
β
n

)
}
(
β
0

)
+
(
β
1

)
x+

(
β
2

)
x2 +

(
β
3

)
x3 + ...+

(
β
n

)
xn
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is stated as

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−i

which is the expansion of the function (x+ y)n and
(
n
i

)
’s are the coefficients of xi’s in it.

The generalized form of this theorem is stated as

(1±x)α = 1±αx+α(α− 1)

2!
x2±α(α− 1)(α− 2)

3!
x3+...+(−1)rα(α− 1)(α− 2)...(α− r + 1)

r!
xr...

where and y = 1. Using this theorem we can have many identities, some of them are given in Table 2.
The integer partitions function P (n) can be expressed using generating function.In this paper, there

Table 2: Some generating functions and there expansions
Generating Function Expansion

(1− x)−1 1 + x+ x2 + x3 + ...
(1− x)−2 1 + 2x+ 3x2 + 4x3 + ...

(1− x)−n 1 +
(
1+n−1

1

)
x+

(
2+n−1

2

)
x2 +

(
3+n−1

3

)
x3 + ...+

(
r+n−1

r

)
xr + ...

(1− xm)n
(
n
0

)
−
(
n
1

)
xm +

(
n
2

)
x2m −

(
n
3

)
x3m + ...+ (−1)r

(
n
r

)
xrm + ...

is a frequent use of generating function for understanding some complicated results.

2 Generating Functions and P (n)
Generating functions plays very important role in calculating of different identities of integer parti-
tions function P (n). There is a very efficient and popular generating function to find sequence for
integer partition function that is given in [10]. As we have discussed above the partitions of any in-
teger can be partitioned into to the positive integers less or equal to that integer. Each partition has
different parts of different sizes i.e 1′s, 2′s, and 3′s so on. For instant, 5 = 3+2 is partition of integer
5 with two parts of sizes 3 and 2. For the concept of generating function, we will use sizes of k parts,
that how many 1′s , 2′s, 3′s and so on are appeared in k parts of the partition n. The generating
function for the P (n) will be generated using the polynomial of all the sizes available in the integer
partitions of n, the polynomials for different sizes of parts are given in Table 3. Using the polynomials

Table 3: Polynomial corresponding to sizes of parts
Sizes Polynomial
Size 1 x0 + x1 + x2 + x3 + ...
Size 2 (x2)0 + (x2)1 + (x2)2 + (x2)3 + ...
Size 3 (x3)0 + (x3)1 + (x3)2 + (x3)3 + ...

... ...
Size k (xk)0 + (xk)1 + (xk)2 + (xk)3 + ...

from Table 3, we can combine all the factors, as all the factors are distinct so we can multiply them
to form a function. Such that

f(x) = (x0+x1+x2+x3+...)(x0+x2+x4+x6+...)(x0+x3+x6+x9+...)...(x0+xk+x2k+x3k+...)...

Proceedings of the 26th Asian Technology Conference in Mathematics

330



Using instantly Table2, we will get

f(x) =
1

1− x
.

1

1− x2
.

1

1− x3
...

1

1− xk
...

As we are working on integer partitions function P (n), let us assume f(x) =
∑∞

i=0 P (i)x
i, where

P (i) is total number of partitions of integer i. So that the generating function for integer partition
function is defined as

∞∑
i=0

P (i)xi =
∞∏
i=1

1

1− xi
(1)

In above the coefficients of xi indicate the value of P(i).
We can useMathematica to see the expansion of this generating function as it will be hard to expand
manually.
In[1]:Series[Product[1/(1-xk),{k,1,10}],{x,0,10}]
Out[1]:1+x+2x2+3x3+5x4+7x5+11x6+15x7+22x8+30x9+42x10+O[x]11

In which the coefficients of xi indicates the number of partitions of integer i i.e P (3) = 3, P (6) =
11, P (10) = 42 and P (19) = 490.

3 Some Identities of P (n)
There are so many interesting identities available in literature[6]. Euler was the one of the amazing
mathematicians who did different experiments on polynomials. His one of the interesting theorems
is on pentagonal numbers, known as ”Euler’s Pentagonal number theorem”. Pentagonal numbers
are the total polygon numbers which are generating recursively from a pentagon, see Figure 2. The

Figure 2: Recursive Pentagonal shapes starting from r = 1 then r = 2, r = 3, r = 4 and r = 5
respectively

sequence we get from recursive pentagonal shapes is 1, 5, 12, 22, 35, 51, 70.... This sequence is known
as ”Pentagonal numbers §(r)”. This sequence can be calculated using the formula

§(r) = r(3r − 1)

2
(2)

The generating function for this sequence is

x(2x+ 1)

(1− x)3
= x+ 5x2 + 12x3 + 22x4 + ... (3)

We can use software Mathematica [4] to find this sequence, the code is given as
In[2]:PolygonalNumber[5, Range[0, 15]]
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Out[2]:{0,1,5,12,22,35,51,70,92,117,145,176,210,247,287}
There is another beautiful sequence named ”triangular numbers” [11] which consists of the number of
dots used in the formation of a triangle. the structure is given in the Figure 3. The sequence obtained
from the shapes is 1, 3, 6, 10, 15, 21, 28, ..., which can be calculated using formula t(r) = r(r+1)

2
. The

Figure 3: Recursive triangular shapes starting from r = 1 then r = 2, r = 3, r = 4 and r = 5
respectively

”Euler’s Pentagonal number theorem” is stated as

Theorem 3.1 [6] Let E = P (n|even number of distinct parts) and

O = P (n|odd number of distinct parts)

then

|E| − |O| =

{
(−1)r n = r(3r±1)

2

0 otherwise
(4)

This theorem can be explained using triangular number, pentagonal numbers and ferrer diagrams. If
we rearrange the pentagonal numbers given in Figure 2, we can write them in dotes only, as shown
in Figure 4. The pattern in the rearranged pentagonal shapes is related to the triangular shapes, so the

Figure 4: Rearranging Pentagonal Shapes from r = 1 then r = 2, r = 3, r = 4 and r = 5 respectively

formula can be modified as

§(r) = r(r + 1)

2
+ r(r − 1) =

r(3r − 1)

2
(5)

Now again arrange the pentagonal numbers from Figure 4 in form of ferrer diagrams by converting
them into straight rows, shown in Figure 5. the partitions corresponding to the ferrer diagrams are
all distinct. Now we need to establish bijection between the even number of distinct parts and odd
number of distinct parts for the formation of Euler’s Pentagonal theorem. Let us take different ferrer
diagrams of distinct partitions, shown in Figure 6, and try to construct another corresponding ferrer
diagram by removing the smallest part and place all the dots of that part at the right side of the parts
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Figure 5: Rearranging Pentagonal Shapes from r = 1 then r = 2, r = 3, r = 4 and r = 5 respectively
into Ferrer diagrams, the partitions corresponding to the ferrer diagrams are: 1, 3 + 2, 5 + 4 + 3, 7 +
6 + 5 + 4, 9 + 8 + 7 + 6 + 5 respectively

from top to bottom. In the procedure, we see first two obtained diagrams are of again distinct parts, but
the third diagram won’t. Every ferrer diagram can be converted into other ferrer diagram of the same
integer and there are two type of situations we yield. First will be in the form of first two examples
in which parts of the obtained ferrer diagrams are less than or equal to the original diagram and the
second will be in the form of third example in which the parts in the obtained diagram is greater than
the original one. In the opposite direction, we will take a point from some large segments and create

Figure 6: Three examples with transformations

a new small row. A well-defined number of points to move will be the number of rows separated by
a single point, starting with the largest row. In other words, we will find the most accurate diagonal
of the Ferrer graph. Figure 7. Now we need to decide which transformation is used and when? for

Figure 7: Inverse transformations

this, we check if the rightmost diagonal is shorter than the last row? If it is, then move it otherwise
move the latter. The Ferrer graphs in the first case are the pentagons of size r(3r − 1)/2 dots that we
considered in the beginning of this section. here we say e(n) is added to make the theorem complete
for this case, so we have

n =
r(3r − 1)

2
(6)
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However, there is a case where the above modification does not create a valid Ferrer graph, i.e., when
the smallest row actually intersects the right diagonal in the lower right corner of the graph, and the
row is the same length or point longer than the diagonal, Figure 8. In the second case, the Pentagon’s

Figure 8: Inverse transformations

rectangular section contains an additional column, giving a total size of r(3r+1)/2 dots.We say e(n)
is added to make the theorem complete for this case, so we have

n =
r(3r + 1)

2
(7)

We have described a change that divides each partition n into an odd number of different parts and
even number of distinct parts except these pentagonal partitions. Therefore using equations 6 and 7,
we have

|E| − |O| =

{
(−1)r n = r(3r±1)

2

0 otherwise

where e(n) is 0 unless n = r(3r±1)
2

for some integer r, in which case it shall be 1 if the number of
parts is even and −1 if odd. This proves Euler’s pentagonal number theorem.

4 Application of P (n) in Graph theory
In the following, we give few results for the structural properties of graphs Gn , where Gn is defined
in [9] using integer partitions , see Figure 9(a), graph G3 is given for n = 3. Here we give some
theorems.

Theorem 4.1 For the graph Gn, the total number of vertices N(Gn) is given as

N(Gn) =
n∑
i=1

P (i), n ∈ Z+ (8)

where P (i) is the number of partitions of integer i.

Proof: We use mathematical induction to prove the theorem. It is trivial to see that N(G1) = P (1) =
1 Suppose that it is true for n = m. We have to show that the statement is also true for n = m+ 1.As

N(Gm) =
m∑
i=1

P (i),m ∈ Z+ (9)

N(Gm) + P (m+ 1) = P (1) + P (2) + P (3) + ...+ P (m) + P (m+ 1). (10)
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By using 1 in (10), we get

1∏
p=1

1

1− xp
+

2∏
p=1

1

1− xp
+ ...+

m∏
p=1

1

1− xp
+

m+1∏
p=1

1

1− xp
(11)

=
m+1∑
i=1

i∏
p=1

1

1− xp
=

m+1∑
i=1

P (i) (12)

Now, according to the graph in Figure 9(b)

1

1+1 2

1+1+1 2+1 3

(a) G3

Pm+1

N(Gm)

(b) Gm+1

Figure 9: Integer based graphs

=⇒ N(Gm+1) =
m+1∑
i=1

P (i)

This completes the proof.
Here is another result in the form of theorem.

Theorem 4.2 Let m(Gn) is the total number of edges of the graph Gn, then

m(Gn) = (n− 1)P (0) +
n−1∑
i=1

(n− i)P (i) (13)

where n ≥ 1 and P (0) = 1 by default.

Proof: Let m(P (i)) is the number of edges that can produce by P (i) , where P (i) is partition of
integer i, 1 ≤ i ≤ n. As the number of 1’s in all partition for the integer n is exactly same as
m(P (n− 1)). Let ψ(n) denotes the number of 1’s in all partition of n; n ≥ 2, then

ψ(n) =
n−1∑
z=0

P (z) = m(P (n− 1))

Here m(P (n− 1)) denotes the number of edges that are added in Gn−1 graph to produce Gn.

=⇒
n∑
k=2

m(P (k − 1)) =
n∑
k=2

k−1∑
z=0

P (z)
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=⇒ m(Gn) =
n∑
k=2

m(P (k − 1)) =
n∑
k=2

k−1∑
z=0

P (z)

So to prove given result we have to show that
n∑
k=2

k−1∑
z=0

P (z) = (n− 1)P (0) +
n−1∑
i=1

(n− i)P (i)

We use mathematical induction to prove this result. for n = 2,
2∑

k=2

k−1∑
z=0

P (z) = (2− 1)P (0) +
2−1∑
i=1

(2− i)P (i)

1∑
z=0

P (z) = P (0) + (2− 1)P (1)

P (0) + P (1) = P (0) + P (1)

Now for induction step, let us assume that the result is true for n = r.

=⇒
r∑

k=2

k−1∑
z=0

P (z) = (r − 1)P (0) +
r−1∑
i=1

(r − i)P (i)

We have to prove that it is also true for n = r + 1.

r+1∑
k=2

k−1∑
z=0

P (z) = (r + 1− 1)P (0) +
r+1−1∑
i=1

(r + 1− i)P (i)

r∑
k=2

k−1∑
z=0

P (z) +
r+1−1∑
z=0

P (z) = (r − 1)P (0) + P (0) +
r∑
i=1

(r − i)P (i) +
r∑
i=1

P (i)

=⇒
r∑

k=2

k−1∑
z=0

P (z) = (r − 1)P (0) +
r−1∑
i=1

(r − i)P (i)

. This implies that

m(Gn) = (n− 1)P (0) +
n−1∑
i=1

(n− i)P (i)

We give the relationship between the number of vertices and the number of edges.

Theorem 4.3 Let N(Gn) and m(Gn) be the number of vertices and edges respectively then

m(Gn) = m(Gn−1) +N(Gn−1) + P (0) (14)

Proof: Using (8) & (13), m(Gn−1) + N(Gn−1) + P (0) = (n − 2)P (0) +
∑n−2

i=1 (n − 1 − i)P (i) +∑n−1
i=1 P (i) + P (0)

=⇒ (n− 2 + 1)P (0) +
n−2∑
i=1

(n− i)P (i)−
n−2∑
i=1

P (i) +
n−1∑
i=1

P (i)

Proceedings of the 26th Asian Technology Conference in Mathematics

336



=⇒ (n− 1)P (0) +
n−1∑
i=1

(n− i)P (i)− (n− (n− 1))P (n− 1)−
n−1∑
i=1

P (i) + P (n− 1) +
n−1∑
i=1

P (i)

=⇒ (n− 1)P (0) +
n−1∑
i=1

(n− i)P (i)− P (n− 1) + P (n− 1) =⇒ m(Gn)

This completes the proof.

5 Conclusions
We have briefly reviewed the basic concept of integer partitions. The idea of generating function is
the basic tool to generate partitions of any finite integer. Another important topic which is covered
in the paper is the use of bijective techniques which helps to prove results in getting new results and
particularly identities for partitions of integers. At the end of this paper, we give a few new results
for the applications of the partitions and particularly P(n) which is used to find out the structural
properties of a family of graphs.
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Abstract: In order to investigate movement in the plane and congruent transformations, instead of traditional logic 
development, we can conveniently use intuitive involvement in the geometric ideas of ornaments with the dynamic 
geometry software GeoGebra and 3D software Tinkercad. In this paper, we will explore selected examples of 
ornaments and segmented geometric patterns. We bring up some ideas about what a teacher of mathematic can find in 
geometric patterns and how he can fit them into his teaching curriculum. In this paper, we present a few proposals of 
methodologies for teaching symmetry in the plane with digital technologies, manipulative activities, and controlled 
exploration. We also present the results of the research of this method. 

1. Introduction 

In math, finding patterns is extremely important. Patterns make tasks simpler because problems are 
easier to solve when they share patterns. Once we recognize a pattern, we can then use the same 
problem-solving solution wherever that pattern exists. 

In coding – like in math - patterns are made from ideas. Mathematicians and computer 
programmers use patterns to express themselves and to make their work more efficient. For 
example, they might use loops to allow for the repetition of a sequence of code multiple times. 

The highly symmetric ornaments from real-life provide interesting examples of geometric 
construction for use in the mathematics classroom. Symmetry is the basic concept of harmony in all 
cultures, found in churches, mosques, and minarets throughout the world. Understanding the 
mathematics behind the symmetry and construction of patterns is the key to then using these 
intricate patterns as motivational tools in the classroom.  

Geometric methods needed to construct the tiling have the potential of introducing students to 
traditional techniques of straightedge and compass constructions as well as modern geometric 
design with computer software like GeoGebra. By comparing the traditional with the modern, each 
student may be challenged to use their individual creativity to design their own pattern. 

2. Symmetry as a tool for improving picture perception and spatial ability 

Spatial ability is one of the most widely studied domains of cognitive ability. Broadly defined, the 
spatial ability comprises the processes involved in perceiving, memorizing, and manipulating 
mental representations of visual scenes, including two-dimensional and three-dimensional objects 
and the relationships between them (see [8] and [10]).  

Developing the spatial imagination of schoolchildren is an important task in the educational 
process, especially with regard to the practical application of acquired competencies in real life [8]. 
Some studies state that there are certain time periods that are particularly favorable for the 
development of spatial imagination. When these periods are missed, one loses the opportunity to 
develop his/her abilities to the level given by genetic predispositions (see [5], [10], and [11]). There 
are two periods in childhood, which are connected with the rapid and intensive evolution of spatial 
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abilities. The first of them is the period between 5th and 6th years of life and then, the second 
period occurs between 10–15 years, which is the second half of compulsory school education. 
While the first, pre-school period is the time of spontaneous manipulations with materials and tools, 
in the second, school plays the important role. This is the period of structured and knowledgeable 
growth, the period of evolution of the ability of synthesis and abstract deduction. It’s the optimal 
period in which to develop student’s spatial abilities and to stimulate and train their spatial 
imagination [3]. 

Investigation of ornaments and tessellations can help the students understand geometry terms 
like basic shapes, sides, vertices, and interior angles of a polygon. Tessellations introduce pupils to 
slightly advanced concepts like irregular shapes, their dimensions, surface areas of irregular 
polygons, and complementary shapes. Tessellations for kids are a way to make math easy. Because 
of repetition, patterns are usually easy to identify, but making a pattern – or even describing how it 
is made – requires a much deeper level of thinking. 

3. Using IT technology in geometrical education 

The use of digital technologies in solving and expressing problems allows us observe, explore, and 
formulate conjectures about possible suppositions, and verify those. While it is difficult to say 
which skills or concepts develop what aspect of computational thinking, it is not hard to see that 
these can lead to developing some of the useful habits. For instance, abstracting information and 
describing them as variables in a computer program helps develop one’s mind to think of factors in 
the real world as mathematical variables.  

Repetition in geometrical patterns is an opportunity for practicing for-loop control flow 
statement as well as block structure of the code. We’ll show how the geometric ideas of ornaments 
could be explored in the classroom with the dynamic geometry software GeoGebra and 3D 
software Tinkercad. Also, with the aid of modern tools students may gain further appreciation to 
what was accomplished by artists and geometers of bygone centuries who possessed the simplest of 
tools. 

Tinkercad codeblocks 
Tinkercad1 is free software that can handle the majority of situations that beginners would see in 
both modeling and 3D printing environments. An illustrative user interface with a limited toolbox 
makes Tinkercad more intuitive than SketchUp2 and easier to learn which is an excellent asset in an 
educational setting. Challenges in individual or group development to design a structure that can be 
printed in 3D play a noticeable role in the motivation of the students. Research [2] founded, that 
there was a positive relationship between pupil’s perception of Tinkercad and pupil’s 
computational thinking skills. 

Tinkercad Codeblocks coding graphical language is similar to Scratch3. Solid shapes can be 
stretched, reshaped, copied and pasted, grouped, and varying shapes can be connected to design 
new shape blocks. Blocks for basic generator shapes of an ornament give the readable structure of 
the code and push pupils to procedural thinking4. Moreover, we can have  library objects as an 

1 https://www.tinkercad.com 
2 https://www.sketchup.com/ 
3 https://scratch.mit.edu/ 
4 Tenedorio-Carty, K. (2019). Code-Generate patterns in Tinkercad, Hour of Code 2019, 
https://blog.tinkercad.com/hour-of-code-2019, available on Tinkercad for Education,  
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output of programs. Thus, if a student or teacher created a complex geometric object, anyone can 
reuse it in many other designs.  

This is what we often do while designing a complex pattern – draw a part of a construction, 
copy it on a separate paper and add to it some elements, then copy it again and add something else. 
If one of the steps is wrong, we can always go back to the previous drawing and start again.  

GeoGebra 
Dynamic software GeoGebra5 is a freeware software designed for primary education. Thanks to a 
long history of sharing materials on common space you are free to reuse or edit any project from 
the other teachers, students, or GeoGebra enthusiasts. Together with [3] and [7], we can conclude 
that GeoGebra is basic tool for developing digital literacy and computation thinking in 
mathematical middle school education. 
Benefits of using dynamic geometry tools in the classroom: 

• Saving a lot of time with precise drawing. 
• Deductions and creation of perceptions. Active cognition develops memory, understanding 

the context, constructive thinking, and motivation of the pupils. 
• Explaining and examining all possible relative positions of given elements. 

 
The geometrical patterns could be designed by using GeoGebra command sequence6 with 

arbitrary geometrical objects, such as polygon, spline, or conic. Command sequence returns list, 
that could be the new object for designing frieze, rosette, or wallpaper pattern. The code in Algebra 
View or in GGBScript is similar to the block structure in Tinkercad explained in the previous 
paragraph. As an example, we use the frieze on Figure 1. This symmetrical geometrical pattern is 
created by using the triangle ABC (name Triangle1) and vector u for translation. 

 
 

    
Figure 1 Two variants of frieze created from triangle by using the code 

Ornament = sequence(Rotate,(Triangle1,90°,B),i,1,4) 
   Frieze1 = sequence(Translate(Ornament, 2*j*u), j, 1,3) 

 
 

Moving with vertices of base triangle ABC helps to understand the geometry of the pattern. 
We could easily inspect the special position of the triangle (generator) with more global symmetries 
of the frieze. 
 

5 https://www.geogebra.org/ 
6 https://wiki.geogebra.org/en/Sequence_Command  
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4. Geometrical patterns and symmetry groups 

A mathematician while designing geometric patterns may use precise geometric constructions 
executed with a compass and ruler. He may also investigate shapes included in geometric patterns, 
proportions, and relations between particular elements of a pattern, symmetries global and local. In 
this case, we deal with classical constructive geometry and the tessellation theory [9].  

Analysis of a wallpaper pattern – or even describing the wallpaper symmetrical groups – 
requires knowledge of abstract algebra, experience, and perfect visual perception. The best 
introduction is to start with a simple ornament and its symmetry. We can take a star with 8 vertices, 
a square, a long kite, a pentagon, or a photo of symmetrical object. For instance, rosettes in Figure 2 
have rotation symmetry as well as mirror symmetry. Evidence of these invariants is necessary for 
further work. 

Rosettes 
Pattern with a central point, without any translations or glide reflections but, may have rotations 
about the central point or reflections in lines through the central point. Thus, rosettes fall into two 
major categories. These ornaments that contain only rotations form a cyclic group Cn and those that 
contain rotations and reflections are from dihedral group Dn. Index n denotes the number of 
symmetries.  

Rosettes are typical in gothic and Islamic architecture. Figure 2 shows hexagram in Spanish 
Synagogue in Prague with D6 symmetry and D12 rosette from the neo-gothic Catholic church in 
Prague. Is worth mentioning here that in our times, the gothic tracery is no longer developed while 
Islamic patterns are still used, and new patterns are still created [9]. 

 
 

 
Figure 2 left: hexagonal rosette in Spanish Synagogue, Prague (D6 symmetry); right: dodecagonal 

rosette on Church of St. Ludmila, Prague’s Vinohrady, 12 identical petals (D12 symmetry) 
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Frieze 
The pattern on a belt that is repetitive in one direction has symmetries from Frieze group. Such 
patterns occur frequently in architecture and decorative art. The study of frieze patterns reveals that 
they can be classified into seven types according to their symmetries. The notation Fij give us 
reference to type of mirroring line (horizontal, vertical, glide reflection) and presence of reflection 
in point. Another notation used the IUCr symbol for more complex wallpaper groups. Frieze on 
Figure 1 has only 2-fold reflection ad translation, which means F2 symmetry (UICr symbol p2). 
 
 

 
Figure 3 Frieze group F13- absence of reflection in point, glide reflection (p11g) 

 
 

Wallpaper pattern 
A wallpaper pattern contains translational symmetries in two independent directions. These patterns 
are classified by the smallest angle of rotation that appears in the pattern. By a property known as 
the crystallographic restriction, the only angles that may appear in rotations for these patterns are 
60°, 90°, 120°, 180°, or the pattern may have no rotational symmetry. If each of these patterns is 
considered to continue repeating in all directions then their symmetry groups are infinite. It can be 
shown that there are exactly seventeen symmetry groups for these types of patterns and they are 
referred to as the crystallographic or wallpaper groups [4].  
 
 

 
Figure 4 Fragment of the hexagonal tiling, pattern with symmetry group p6m, designed in 

Tinkercad 
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Hermann-Mauguin (also called IUCr) notation of the wallpaper group is given by appearance 
of the symmetry. It begins with either p or c, for a primitive cell or a face-centered cell. Digit n 
indicates the highest order of rotational symmetry: 1-fold (none), 2-fold (reflection in point) ... The 
next two symbols indicate symmetries relative to the main translation axis of the pattern. The 
symbols are either m, g, or 1, for mirror, glide reflection, or none. Many groups include other 
symmetries implied by the given ones7. 

One may notice that pattern in Figure 4 is the periodical repeating of one hexagonal 
ornament. Thus, to construct this pattern we need to construct the content of one tile and then use 
multiple copies of it. This way we can easily plan how a given space can be covered with this 
pattern. These polygons form a tessellation of the plane. Each of these polygons has the same 
symmetry lines as the pattern on it. This tessellation forms the hidden geometry of the pattern. As 
shown in [9] the same tessellation can be used to create a few different patterns and often the same 
geometric pattern can be created using two different tessellations. 

A geometric pattern may have global as well as local symmetries. We recommend starting 
with local symmetries of a tile and then investigate special points on the pattern where multiple 
symmetry lines cross or points that can be treated as invariant points for rotations.  

5. Education of geometrical pattern 

Some basics in geometry can be best understood with the help of tessellations. For kids, it’s simpler 
to grasp things when ideas are supported by pictures and models as examples. For example, it’s 
after they try to tile a surface with random shapes that they shall understand the considerations for 
irregular shapes to achieve a uniform tessellation [12]. 

Investigation of tessellation and geometric pattern has an educational benefit in a geometric 
competence in every level of mathematical education: 

• Geometric constructions – dividing angles and segments into equal parts, constructing 
perpendicular and parallel lines, constructing regular polygons and shields. 

• Polygons and tessellations – tessellations with regular or symmetric polygons and shields. 
• Symmetries – global and local symmetries of patterns and tessellations. 
• Transformations – translations, rotations, mirror reflections, dilations, and iterations. 
• Connection with technology – all examples discussed here can be developed using traditional 

drawing techniques with compasses and ruler, or they can be created with geometry software 
– Tinkercad, Geometer’s Sketchpad or GeoGebra.  

• Opportunities for students’ projects – individual or collective. 
 
The tasks are posed to the class along with a potential sequence of problems through which 

the class may be directed in solving the problem: 
• How should construction of the tiling begin? Is there a particular tile that may produce the 

overall tiling? Could you describe a strategy for constructing a pattern similar to it? 
• What are the symmetries of the tile? 
• What is the minimal tile that is needed to be able to reproduce the entire pattern? 
• How does the introduction of color affect the symmetry of the pattern? 
• Does your tiling contain the same symmetries as the original tiling? Can you find a different 

tiling that contains the same symmetries as your tiling? 

7 We recommend visual tools for symmetrical wallpaper patterns:  https://eschersket.ch/ or 
https://math.hws.edu/eck/js/symmetry/wallpaper.html (cit. 2021) 
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6. Experiment in the classroom 

The ideas for teaching symmetry were tested in two classrooms at the elementary school. Pupils of 
the 4th and the 5th grade were involved (the 5th grade is considered as a transitional grade between 
primary and secondary education). The activities took place during several classes and were 
focused mainly on programming in Tinkercad Codeblocks and GGBScript. Education was focused 
on constructivist principles. The tasks of activities were achieved in the dimension of cognitive 
process, understanding, application, analysis, and evaluation. During research, we used the 
methodology of qualitative research. 

Activity 1: Designing with Algorithm in Tinkercad 
The simple Codeblocks scripts will enable your students to create a rosette that includes text or 
scrawl that they can easily modify to personalize their design8. Encourage students to modify and 
remix the Codeblocks. 
 
 

    
Figure 5 Rosettes with C6 symmetry in Tinkercad, inspired by Tinkercad for Education 

 
 

In this lesson pupils will: 

• Discuss and debate an issue of human and computer interaction. 
• Recognize, define, and solve computational problems in a rosette design in order to modify it. 
• Explore the use of control structures to set parameters, allowing students to compute more 

design iterations quickly and efficiently. 
• Communicate and collaborate clearly and express themselves using simple code. 
• Make interesting, code-generated rosette or frieze designs that they can share through 3D 

printing. 
 

8 https://www.instructables.com/Designing-With-Algorithms-in-Tinkercad/  
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Activity 2: Drawing symmetric shapes in GeoGebra 
GeoGebra book “Symetrie ornamentu“ (Symmetry of Ornament)9 demonstrates finite symmetric 
groups C4, C6, D4 and D6. During activity, students were supposed to draw in shapes in GeoGebra 
on a cartesian and isometric grid and experiment with position and shape of the basic objects. This 
activity significantly motivated the students as they had immediate feedback. Even weak students 
solved the problems with enthusiasm and search another symmetrical picture on the web 
independently on the teacher. 
 
 

   
Figure 6 Ornament with 6-fold rotation and reflections in six lines (on the left). Regular hexagon 

(on the right), its symmetry and tilling with symmetry p6m. 
 

Activity 3: Construct your own pattern with a restricted family of transformation 
In this activity, we observed a significant difference between classes, especially in pace and skill. 
None of the students were able to determine how to construct the given wallpaper pattern without 
the translation.  

Survey research 
Research data were collected using information form, formative test, and pupil perception 
questionnaire about Tinkercad and GeoGebra software. The results are not truly comparable, 
because there were different forms of learning (present/online) and also different instructional 
models (transmission / constructivist). 

Not surprisingly, the survey shows that rosettes are more readable for all students: 75% find 
the symmetry in line, 43% of the pupils find the rotation symmetry. The wallpaper pattern p6m in 
Figure 6 were not fully recognized in the class without software. 
In addition, when looking at students' perceptions of Tinkercad, it was determined that they were 
highly motivated for interest and appreciation and found Tinkercad to be generally useful and easy 
to use. Pupils appreciated the export to .stl file for 3D print, because “the end result is a physical 
object”. 

9 https://www.geogebra.org/m/pzb5mfku, public GeoGebra book „Symetrie ornamentu“ (in Czech) 
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7. Conclusion 

The role of CAD and dynamic geometric software in the teaching of geometry is discussed for a 
long time. Could they contribute to the development of reasoning skills and spatial ability? Will the 
dissemination and accessibility of these tools mean that students will be no longer consider 
elementary geometry as the most relevant for their future career? It’s evident, that tablets and 
computers can’t substitute the manipulatives activity and compass and ruler constructions. On the 
other hand, there are a lot of problems, which could be educated more effectively with software by 
using different solving strategies. Some of the foreseeing changes could be similar to those that the 
emergence and dissemination of pocket calculators already implied for mathematics education, not 
only about how certain problems have to be solved, but, more generally, concerning what type of 
techniques and problems should be considered as the true objective of mathematics education. 

By introducing history, culture, and art into discussions in the classroom, students have an 
opportunity to see mathematics as a multidimensional embroidery woven across time and space [9]. 
It is indeed a stimulating exercise for students to attempt to understand the beautiful symmetry of 
geometrical pattern and learn the geometry required to reconstruct them.  
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Abstract: Statistics is kernel part of Mathematics designed to ease future research endeavors of students taking it. 

With its mastery, learners would be able to easily justify their research results in a manner that is not challenging to 

them at all. Traditionally, they are taught in a way that exhausting long computations take place so that each test 

statistic will be determined. Careful solving is necessary for them to achieve the correct values which will then affect 

the overall interpretation of the results. With such profound tasks, they tend to have very little confidence in achieving 

their understanding. This study is about shifting the mindset of learners in mastering statistics using free website 

called socscistatistics. This website can be easily accessed in any search engines and functions like Statistical Package 

for the Social Sciences (SPSS) but is more friendly to learners and start-up researchers. It employed the quasi-

experimental design. To determine the overall performance of students in statistics, a pre-test was conducted. Scores 

obtained are subjected to 3 levels namely Poor Level (0% to 70%), Good Level (71% to 85%) and Satisfactory Level 

(86% to 100%). This test was done after the full discussions of statistical tools such as mean, median, mode, variance 

standard deviations, correlation analysis, relationship tests and difference tests. Results of the tests were used as a 

basis in implementing the intervention called SITES or Socscistatistics Integration on Tests and Evaluation in 

Statistics. A post-test was then given after 2 months of utilizing the mentioned website. Results indicated a higher 

performance in posttest. Results were tested at 0.05 alpha level of significance using a t-test which indicated that there 

was a significant difference between the means of pre-test and post-test scores of the respondents. 

 

1. Introduction 
In the year 2012, the Department of Education of the Philippines implemented the K-12 

Curriculum also known as the Enhanced Basic Education Act of 2013 (Republic Act 10533). 

According to the then President Benigno Aquino III, this will pave the way to most Filipino 

students while providing basic education that is at par with international standards. This act 

created the now called “Senior High School”.  

In relation to this, Senior High School offers 5 tracks for which the students can choose 

from. Regardless of these tracks, students have “common” subjects which are called “Core 

and Applied Subjects”. Among these subjects is the Statistics and Probability which is a pre-

requisite for the Research subjects to be taken later on by these students.  

Statistics for a fact is simple. It uses simple operations from basic ones up to exponents 

and roots. Other than that, what makes it complicated is the thorough and step-by-step process 

for which the learners have to carefully do to arrive at the correct values they needed. With 

such delicate steps, several studies have been conducted to improve students’ performance in 

this particular subject. 

A study conducted by [4] indicated that the rapid development and growth of technology 

can be of great help in enhancing student’s academic performance specifically on statistics. 
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They attempted to determine the relationship between Information Technology (IT) 

capabilities, learning experiences and performance of teaching and learning Mathematics. 

Developing the application called Multimedia Probability and Statistics System (MMPASS), 

they have found that students’ learning experiences and performances of their academic 

achievement have been improved by using MMPASS. 

Another study was designed to improve student performance in statistics through the use 

of flipped classroom. [7] found that those taught using the flipped classroom approach 

perceived the module significantly more interesting and the proportion of students who 

perceived the module to be difficult was roughly half that under the traditional teaching 

approach.  Moreover, a study led by [2] revealed that peer-tutoring those students who have 

low performance in undergraduate statistics is another way of alleviating their statistics 

performance. In relation to this, [3] suggested that a mat word-problem a day improves the 

overall problem solving skills of students which is also another efficient way to deal with such 

research problem. 

This research is conducted to determine the level of academic performance of the selected 

Grade 11 students of Highway Hills Integrated School in statistics. Upon identifying certain 

problems about this case, the researcher will also attempt to apply Socscistatistics Integration 

in Tests and Evaluation in Statistics (SITES) strategy to upscale the academic performance of 

the selected respondents. 

2.  Conceptual Framework 
Statistics mastery is crucial in the future research endeavors of most studennts in senior 

high school. Without mastery on such subject, performance in research subjects will definitely 

be affected. Thus, resolving such problem is necessary.  

This study is anchored to the Behaviorism Theory of Thorndike. According to [6] 

behaviorists believe external encouragement influences one’s learning behavior, rewards and 

punishment can change one’s learning performance. Researchers and scholars confirmed that 

Behaviorism has greatly promoted and effectively implemented in programmatic instruction, 

and has strongly promoted and widely applied in computing-assisted-instruction and the 

development of educational technology.  

Also, the Theory of Diffusion of Innovations describes the steps of technology 

innovation, process and characteristics of accepting new technologies, as well as receivers’ 

role in the receiving process of technological innovation. Everett M. Rogers, its proponent 

groups people, according to the degree of acceptance of innovation, into various stages: 

innovators, early adopters, early followers, late followers and laggards. Understanding the 

trainees’ receiving capacities of new technologies can assist training institutions and trainers 

to design and deliver the training more effectively. 

  

In this regard, this study uses the IPO (Input-Process-Output) framework which shows 

the Grade 11 students’ statistics performance as the input, and the test scores before using the 

Socscistatistics Integration in Tests and Evaluation in Statistics (SITES) strategy. The process, 

was the administration of the pre-test, the implementation of the strategy for 2 months, the 

administration of post-test examination, and the computation for test for the difference 

between the pre-test and post-test scores. The output was difference between the test scores of 

Grade 11 students’ statistics performance and after using the SITES. Below is the Figure1. 

which presents the Paradigm of the Study. 
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Figure 1.Conceptual Paradigm of the Study 

 

3. Statement of the Problem 
 This research is conducted to determine the impact of Socscistatistics Integration in Tests and 

Evaluation in Statistics (SITES) in upscaling the performance on Statistics of selected Grade 11 students of 

Highway Hills Integrated School for the academic year 2020-2021.  

 Specifically, it aimed to answer the following questions: 

1. What is the level of performance on Statistics of Grade 11 students before the implementation of 

Socscistatistics Integration in Tests and Evaluation in Statistics? 

2. What is the level of performance on Statistics of Grade 11 students after the implementation of 

Socscistatistics Integration in Tests and Evaluation in Statistics? 

3. Is there a significant difference between the results of pre-test and posttest after employing the 

SITES strategy? 

 

4. Hypothesis 
The hypothesis stated that there is no significant difference between the results of the pre-test and post-

test of the Grade 11 students on their performance in Statistics through the use of Socscistatistics Integration 

in Tests and Evaluation in Statistics intervention at 0.05 alpha level of significance. 

 

5. Scope and Limitations 
This action research was limited to the one-hundred Grade 11 students of Highway Hills Integrated 

School for the school year 2020 - 2021. The respondents are composed of 55 males and 45 females. These 

students are given pre-test on Statistics after the discussion of descriptive statistics, and hypothesis testing 

and post-test after they have undergone the SITES intervention program for 2 months. 
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6. Research Design 
The researcher made use of the following research design and method; quasi-experimental design, and 

one shot pretest and posttest design. The researcher selected to use quasi experimental because the study 

wanted to determine the level of performance in Statistics of the respondents and the effects of the 

intervention after it was utilized. The study measured the significant difference between the two 

assessments. 

SITES is an intervention devised by the researcher to solve the said research problem. This intervention 

is done by utilizing the use of free site called socscistatistics to upscale the test scores of students on tests 

involving descriptive statistics, differences and relationship tests and interpreting results from hypothesis 

testing. This website functions just like an SPSS which when studied carefully on its usage, will allow 

easier interpretations on the part of students. Just like SPSS, its main functions include the requirement of 

just simple input of raw data and the rest of the work will be done by this site. Solving, interpreting and 

presenting results will be done and students will just have to arrange them in a manner expected by the 

statistics teacher. 

A pretest was conducted on Statistics after the discussion of descriptive statistics, and hypothesis testing 

and post-test after they have undergone the SITES intervention program for 2 months. Discussions on how 

to place inputs in each of statistical tools and tests was done. Practice exercises were given to test their 

mastery on usage of the website.  A monthly test to determine the state of students is then conducted to 

observe the impacts of the said intervention. 

 

7. Sources of Data 
The target-respondents were one-hundred (100) Grade 11 students who were enrolled in Highway Hills 

Integrated School during the school year 2020-2021. The respondents belong to the class of the researcher. 

There were 55 boys and 45 girls. The study was conducted from November 2020 to January 2021 before 

the start of daily discussions. 

 

8. Instrumentation and Data Collection 
 This study made use of quasi-experimental design, and one shot pretest and posttest design to gather 

the needed data. The researcher used the Socscistatistics Integration in Tests and Evaluation in Statistics 

(SITES) strategy to improve the performance on Statistics of the respondents. 

 The data is gathered by recording a weekly evaluation of the students tests in statistics. A table 

graph was used to determine if there is a certain trend on the pre-test and post-test results. This action 

research was conducted at Highway Hills Integrated School using the selected Grade 11 as respondents. 

 The researcher administered a 50-item pre-test on statistics after their discussion on descriptive 

statistics and hypothesis testing to determine the level of performance in statistics of the respondents. Then, 

an action research proposal was given to the principal of the school to implement the intervention program. 

After which, the socscistatistics website was thoroughly discussed to the students in terms of the “how to” 

of its usage. This was done per topic in statistics and after each discussion, a practical exercise was given 

for the respondents to do. After making sure that the respondents have mastered the use of the site, a 

formative assessment was given.  

A 50-item post-test composed of the same scope as the pre-test but of different variant was conducted 

after the implementation of the SITES Strategy. Both the two tests are designed by the researcher and are 

subjected to Cohen’s Kappa statistic to determine the inter-rater reliability. The supervisor in-charge in 

Mathematics was invited to rate the tests. It was found that the Kappa statistic is 0.89 justifying that there 

is a significant agreement between the raters signifying a satisfactory inter-rater reliability. 
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9. Tools for Data Analysis 
To provide valid and accurate findings from the generated data, appropriate statistical tools were 

employed by the researcher.  

For problem 1 and 2 

To determine the Grade 11 students’ level of performance in statistics the following formulae were 

used: 

  Academic Performance Level in Statistics = Number of correct answers x 100% 

                                                                    Number of questions 

 

 

 

Academic Performance Level of the Grade 11 students was classified as follows: 

 

Level              Level of Ability  

  Satisfactory               86%-100% 

  Good     71%-85% 

  Poor     70% below 

 

Note that these cut off scores are solely based on the assigned point system by the researcher 

considering the passing score of 75% and taking into account that using three scales results to 33.33% per 

scale and adjusting it to a more appropriate scale which is not that low and at the same time not that high. 

 

For problem 3 

 To determine the significant difference in the level of problem solving skills of the Grade 11 

students before and after the assessment, a pre-test post-test T-test was used. 

 

10. Results and Discussions 
 

Level of Academic Performance of the Grade 11 Students in Statistics Before the Use of SITES 

Strategy 

The researcher proponent administered a pre-test on statistics involving 100 Grade 11 students 

enrolled during the school year 2020-2021. The test aimed to determine the level of problem solving skills 

of the Grade 11 students. Based on the pre-test results, the students are classified into three (3) levels: 

satisfactory, good, and poor.   

Table 3.1 reflects the results of the pre- test and the performance level in statistics of the Grade 11 

students before the use of Socscistatistics Integration in Tests and Evaluation in Statistics (SITES) strategy. 

Table 1 

Result of the Pre-Test on Statistics 

Problem Solving Ability Frequency Percentage 

Poor 70 70% 

Good 23 23% 

Satisfactory 7 7% 

Total 100 100% 

Mean Score 22. 14  
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Mean Percentage Score 44.28%  

 

It can be seen from table 1 that out of 100 students, only 7 of them have Very Satisfactory Level in 

terms of their performance level in statistics. Also, it can be observed that 23 out of 100 or 23% of the 

students are at Good Level. Moreover, 70 out of 100 or 70% of the students are under the Poor Level with 

respect to their performance level in statistics subject. 

Moreover, it can be seen that there is a mean percentage score of 44.28 % (obtained from the mean 

score in pretest of 22.14) which is way below the passing rate of 75%. 

These results are analogous in the longitudinal study conducted by [5] which revealed that there is 

a significant projecting influence on later mathematics achievement for self-perceived competence. Also 

tenacity, attitude, and positive attributional dimension of internality have an additional significant 

contribution. 

 

Level of Academic Performance of the Grade 11 Students in Statistics After the Use of SITES 

Strategy 

 

Table 2 presents the level of performance of the Grade 11 students in statistics subject after the 

implementation of Socscistatistics Integration in Tests and Evaluation in Statistics (SITES) strategy. 

 

Table 2 

Result of the Post-Test on Statistics 

Problem Solving Ability Frequency Percentage 

Poor 13 13% 

Good 57 57% 

Satisfactory 30 30% 

Total 100 100% 

Mean Score 40.15  

Mean Percentage Score                                           80.3%  

 

 

It is remarkable that after employing the SITES strategy, it can be observed that 13% of the students 

are at the Poor Level of academic performance in statistics signifying a great decline. Also, 57% of the 

students are at the Good Level of performance in statistics. In connection to this, 30% of the students 

became to the Satisfactory level in terms of their performance in statistics. Moreover, it can be seen that the 

mean percentage score is 80.3% (obtained from the mean score in pretest of 40.15) which has significantly 

amplified compared to the pre-test mean percentage score. 

These results are similar on the publication of [1]  which claimed that the future of mathematics 

education after the COVID-19 pandemic is the one with which teachers use technology to teach students 

rather than reverting back to the old ways of teaching process. 
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Difference Between the Pre-Test and Post Test Results in Problem Solving 

 

Table 3 presents the difference between the pre-test and post-test results in level of performance in 

statistics of the 100 selected grade 11 students of Highway Hills Integrated School after the implementation 

of the Socscistatistics Integration in Tests and Evaluation in Statistics (SITES) strategy. 

 After the execution of the strategy, the scores on the pre-test and post-test results of 100 students 

were compared and analyzed to determine if there is a significant difference. T-test for two dependent 

means was used having 0.05 alpha level of significance and 99 degrees of freedom. Table 3 shows the 

significant findings of the inferential analysis.  

 

 

Table 3 

Difference Between the Pre-Test and Post Test Results in Statistics 

Category Mean 

Score 

Degrees of Freedom Computed t-value Critical 

t-value 

Interpretation 

Pre-Test 22.14 
99 5172.98 2.626 Significant 

Post-Test 40.15 

 

Based on these results, the null hypothesis which states that there is no significant difference 

between the results of the pre-test and post-test of the Grade 11 students on their performance level in 

statistics through the use of Socscistatistics Integration in Tests and Evaluation in Statistics (SITES) 

strategy at 0.05 alpha level of significance is hereby rejected. The rejection of the null hypothesis is due to 

the fact that the computed t-value of 5172.98 is higher than the tabular value of 2.626. 

Thus, there is a significant difference between the results of the pre-test and post-test of the Grade 

11 students on their performance in Statistics through the use of Socscistatistics Integration in Tests and 

Evaluation in Statistics intervention at 0.05 alpha level of significance. From these results, it could be 

deduced that the use of proposed SITES strategy enhanced/improved the performance on statistics of the 

respondents. Hence, employing such strategy would eventually upsurge the performance level of the 

students.  

 This result is the same with [8] which signified that integrating digital technology in mathematics 

education uplift the level of performance of the learners. It has been suggested that teachers should have 

efforts in showing and guiding students on how to effectively use the digital tools rather than just merely 

giving them these and letting them explore on their own. 

 

11. Conclusions 
 

In view of the findings, the following conclusions were drawn.  

1. There are 70 identified students under poor level of performance in statistics, 23 under good level 

and 7 under satisfactory level of students before the SITES intervention.   

2. There are 13 identified students under poor level of performance in statistics, 57 good level 

students, and 30 satisfactory level students after the SITES intervention.  
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3. At 0.05 alpha level of significance, there is a significant difference between the results of the pre-

test and post-test of the 100 selected Grade 11 students on their performance in Statistics through the 

use of Socscistatistics Integration in Tests and Evaluation in Statistics intervention. 

4. Socscistatistics Integration in Tests and Evaluation in Statistics can enhance level of performance 

in statistics of students through time. 

 

12. Recommendations 
 

With the above conclusion, the following recommendations are offered: 

1. Mathematics teachers shall use socscistatistics website in teaching statistics on a daily basis to 

improve the level of performance of the students. 

2.   The Socscistatistics Integration in Tests and Evaluation in Statistics (SITES) strategy shall be used 

as an intervention to improve the level of performance of the students under poor level. 

3. The school shall constantly monitor the level of performance of the learners and provide technical 

assistance on improving it. 

4. A similar study shall be conducted to ascertain the findings of this research. 
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Abstract 

Societies around the world are focusing in motivating scientific vocations in children. STEM education is a priority in 
many Governments’ education policies. Accordingly, actions should begin by improving pre-service teachers training, 
including the acquisition of skills in teaching methodologies and ICT tools, which will contribute to increase the 
motivation of students in STEM subjects. Among the most used methodologies for teaching STEM subjects, we consider 
the Problem-Based-Learning approach, because of its interdisciplinary vision and scientific working method, based on 
resolution of real situations. Aiming to improve STEM training in pre-service teachers, the authors conducted an 
experience in an initial-training mathematics teachers master course, where the pre-service teachers were asked to design 
an activity to be later addressed, with PBL methodology, by real students of a Madrid High-School. Considering the 
importance of improving teachers’ training in ICT tools, it was required, the inclusion of GeoGebra in the design of the 
proposed activity. The experience is evaluated in terms of analysis of the problems suggested by the pre-service teachers, 
and of the results of the in-depth interviews conducted with several of the involved master’s students, as well as with the 
teacher responsible for applying the problems in the High School. We appreciate that the inclusion, in the experience, of 
GeoGebra and other ICT tools within the PBL methodology approach, was a motivating element. Application of learning-
by-doing method, led the pre-service teacher to know better about PBL methodology and GeoGebra, increasing their 
skills and possibilities to apply both tools in their professional future. 

1. Introduction 
Science, Technology, Engineering and Mathematics (STEM) education is a key approach for an 
increasingly complex society based on knowledge, that is why it has become a priority for most 
Governments. STEM education should be addressed from an early age. It is at school that children 
must be motivated to learn Science, Technology, Engineering and Mathematics to lead them to 
become responsible, creative, innovative citizens, and to make them aware of the world around them, 
that they can contribute to improve [15]. In order to assure the best learning process for our students, 
pre-service teachers must have also the best training. This involves training them in theoretical, as 
well as in methodology and technology [12]. 

The philosophy of Problem-Based Learning is to respond to a situation-problem in a real context from 
an interdisciplinary point of view. This makes it an ideal methodology to address the study of STEM 
subjects, because it combines this global and practical vision of what scientific work entails [16]. 
PBL is an excellent methodology to be used in mathematics education, increasing student motivation, 
giving theoretical mathematics concepts a real context, and the possibility of analysing their 
applications. 
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Based on previous studies we present an experience in training pre-service teachers of Secondary 
Education level in problem-based learning. In a way of learning by doing, the pre-service teachers 
themselves prepare a Problem to be applied in a real class, so that they will be capable to repeat it in 
the future with their own students. As part of their training process, pre-service teachers had to 
develop not only the Problem (including context, mathematical concepts needed as a base, and those 
to be achieved, a guide to solve it, and a solution), but also how to evaluate the task, hypothetical 
mistakes made by the students and how to help and guide them.  

Information Technology and Communication (ITC) tools and GeoGebra, as well as the 
interdisciplinarity character of the proposal, were an important part of the learning and teaching 
process in this experience, both for pre-service teachers and for the students solving the problem.  

We will start the article giving a brief context to the experience, and setting some theoretical remarks, 
both in what Problem Based Learning means as methodology to be used in training teachers, and in 
educational uses of GeoGebra and ICT in STEAM education. Then, in the next Section, we will 
explain the experience, the way we developed it, details of the process and ICT tools employed, and 
an example of a pre-service teachers proposed problem. 

We finish, commenting the obtained results, in terms of the designed problems, and in the results of 
the in-depth interviews with several pre-service teachers, and with the school formal teacher. 

2. Conceptual framework  

1.1 Training pre-service teachers 

In order to assure a good education to our students, the best training must be assured to pre-service 
teachers [11]. As a matter of fact, teachers are the final responsible of the teaching process, and so, 
teachers training should be a priority in every country [1]; [4]; [6]. 

In Spain, the requirement of reviewing the actual model of initial teacher training to make it suitable 
to the European one, has been established. An appropriate training in didactics and pedagogy, in ICT 
applied must complement theoretical knowledge of every subject. 

In the case of secondary education in Spain (age 12-18), the model of pre-service teacher training is 
the “consecutive”. It is also applied in the surrounding countries as France, Italy, or Portugal, in it the 
training is centred in scientific knowledge acquired during the Bachelor degree obtained at the 
University [14], followed by a Master’s degree in education (in Spain, Master of Teacher Training in 
Secondary Education, is compulsory). 

Nevertheless, there exist a gap between the training received at the master’s in education, and the 
classroom reality. During the master, a practising period of 180 hours is done at a high school, where 
a formal teacher tutorizes the students. It is useful for pre-service teachers, but insufficient. 

In the case of mathematic learning, the problem is aggravated by the abstractness of the subject, which 
in many children is a lack of motivation and an obstacle to approaching the study of the subject 
successfully. 

For all the above, it is important to give future teachers the opportunity to collaborate in teaching 
practices that require the use of ICT and active participation in the classroom, and not only attend 
theoretical classes in which these teaching methodologies are explained without reaching practice. 
([2]; [3]) 
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1.2 Problem Based Learning in secondary education students 

Problem Based Learning (PBL) has proved to be a methodology specially issued to be used in the 
frame of STEM subjects [11].  

The term PBL has been taking on different meanings and uses, which usually include [2]:  

• Education takes place in the context of a situation or problem.  

• Key content is learned from context and performance.  

• It is part of a challenge or purpose shared by the students.  

This is a methodology based in active learning, in which the students play the principal role, and the 
teachers acts as guide of the teaching and learning process. Knowledge is acquired in the process of 
solving a problem or project, as a group of scientists in a research context, or engineers working 
together to develop a project. PBL take the most when is combined with cooperative learning, and is 
a great way to motivate students, because of the real context of the problem to be solved, the challenge 
of self-employment in groups [7] 

A problem posed in PBL for students from 12 to 17 years old, has the following common 
characteristics: real context, in which students feel involved; guide questions adapted to the age of 
the students and the educational stage, which helps students to identify the needs of the problem, the 
theoretical concepts to be applied, relevant data, and the search for accurate information to acquire 
them. 

The objective of the methodology is not so much to solve the problem posed, as the process carried 
out for it. In fact, many times problems have open solution, or even several solutions. The acquisition 
of knowledge occurs when detecting the needs of the problem, performing the search for information 
to perform the solution process.  

According to our experience in the use of this methodology with high school students, a student who 
approaches mathematical concepts through this system, not only assimilates them in a direct way as 
well (or better) than he would through a master class, but also develops other equally important skills 
([5], [15], [16]): 

• The student becomes more autonomous, since he has to face problems very close to real life , 
and has to "look for life" to be able to solve it using all kinds of "open" tools. Remember that 
a PBL does not have a single and guided solution but promotes the search for alternative 
solutions and the use of different tools. In addition, you must interact with real means: face 
problems that go beyond the merely mathematical, such as the organization of teamwork, 
decision-making, face technical problems (a file that is lost, a computer that does not work a 
colleague that does not come ...) 

• The student increases his digital competence, especially in relation to the search for 
information on the web and the use of ICT tools for problem solving. 

• The student becomes more collaborative. The problems presented are designed with such 
complexity that they require teamwork to be solved in a reasonable time. 

• During the process of solving the problem, the student observes different paths and different 
possible solutions to it. He must evaluate and decide the best way to obtain what he considers 
the most adequate solution, developing the learning-to-learn competency. 

Proceedings of the 26th Asian Technology Conference in Mathematics

358



• One of the deficits that students present historically in the learning of mathematics is that of 
the ability to face and solve problems, however simple they maybe. When facing these PBL 
more complex problems, whose resolution is not immediate, the student is taking an 
experience and confidence that will serve in the future to face simpler problems (the classic 
ones). A student who solves PBLs loses the fear of problems of immediate resolution, and 
even those apparently more complicated. 

1.3 GeoGebra and ICT in Problem Based Learning 

The PBL methodology supposes, as we have already established, a knowledge and skills in ICT of 
the students who face the resolution of the problem, and of the teachers who propose it. The search 
for information through Internet is fundamental in the resolution process; students will carry it out 
autonomously, guided to a greater or lesser extent according to their age by the questions included in 
the problem, and by the teacher himself. Looking for the necessary data and discarding the irrelevant 
ones, extracting the precise information, contrasting the materials obtained, means an important 
increase in digital competence for students. 

In the other side, the best training pre-service teachers received in ICT, the better teaching and 
learning process of our scholars. That was an important point of including specialized mathematical 
software in the experience we show here: Master’s students learned specialized in mathematical 
education ICT tools, making them capable to use its as teachers in the future. 

Introducing the use of specific software to solve the problem posed is not necessary in PBL 
methodology, but it is highly recommended, since it expands the range of skills acquired in the 
learning process, in addition to acting as a motivating element. 

There are many technology tools that can be included when considering a PBL to help in the 
resolution process. From the most basic such as scientific calculators, spreadsheets such as Excel, or 
the usual Word and Power Point (especially useful the use and learning of the Equation Editor that 
incorporate both applications), to more specific software such as the dynamic mathematics program 
GeoGebra, or Google Sketch-Up (free version). 

In the case of the experience presented in this article, we have chosen to introduce GeoGebra as a 
common element in the proposals that the master's students had to present. Based on previous 
experiences [8],[9],[14], students had to include questions whose resolution went through the use of 
GeoGebra (functions, geometry, representation). 

We consider that the use of freely available software GeoGebra is especially significant due its huge 
use in high schools and universities, and the millions of users all over the world [10]. On the other 
hand, it is important for us to transmit to pre-service teachers the spirit inherent in GeoGebra of 
sharing and contributing to improve for the good of the community, which we consider fundamental 
to be a good teacher.  
It is advisable to distinguish at this point the use of ICT tools from the point of view of the student 
who solves the problem, and from the teacher who proposes it. In the case of the experience we show, 
the master's students play both roles, because, as we will see, the task they developed was to propose 
a problem to use the PBL methodology in the classroom, and to develop a hypothetical solution given 
by the students who solved the problem.  

An important aspect to consider is the current situation arising from the COVID19 pandemic, which 
demands the use of collaborative remote work environments. In Spain there have been many students 
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of secondary education who have had part of their teaching remotely during the course 20-21, so that 
trying to bring active methodologies to distance learning is almost essential [3]. For this purpose, ICT 
tools for collaborative work such as MS Teams, Google Workspace, Nearpod, or the recent GeoGebra 
Classroom, are extremely useful. 

3. An experience in training pre-service teachers in STEM education 
3.1 Experience 

The experience we present here was developed during the course 2020-2021 in the frame of the 
subject Didactic of Mathematics of the Master in Secondary Teachers Training at Rey Juan Carlos 
University in Madrid. This is an annual subject, with a total of 90 hours in weekly sessions. It is the 
third course we apply the activity, introducing new elements every year. In the actual course, lessons 
were conducted in remote, due to pandemic situation. MS Teams platform was used during the 
sessions to that purpose, but tasks were attached in Rey Juan Carlos University (Moodle) virtual 
classroom platform. 

The number of students who participated in the activity was 33, working in group. There were seven 
groups of 4 students, one group of 3 students (in this case, there were partial time students who worked 
together in the activity out of the classroom), and one student with adapted evaluation who 
participated individually. 

The task consisted in proposing a problem within the methodology PBL to be solved by real students 
aged 15 years (Grade 10) from Montpellier School in Madrid. This is a charter school, located in the 
metropolitan area, with around 1500 students from middle and working social class. This school 
introduced the project “1x1” (one student, one computer) in 2008 in Grades 7 to 10, and its teaching 
and learning project is based on cooperative learning, and active learning methodologies.  

Formal teacher at Montpellier school sets the curriculum theme the problem must be related to, and 
the number of hours the students at school are able to dedicate to work in it. The proposed problem 
should contain the problem statement with the context, questions to guide its resolution, one solution 
of the problem, and hypothetical errors students form the high school were supposed to commit. This 
course we focussed our attention in GeoGebra, so that pre-service teachers had to include at least one 
question within the proposed problem to be performed using GeoGebra. They could ask the students 
at school to use GeoGebra also to present results (graphics, geometric representations, …), if needed. 

PBL methodology has been applied in this high school in mathematics learning for years, combined 
with cooperative learning. GeoGebra is used frequently in mathematics classes, every student has his 
own computer, as we mention above. A template is given to each group of children to guide them in 
the resolution of the problem. This template is provided to master’s students to be considered.  

The activity took place on November 2020. Pre-service teachers participated in three training session 
before designing the problem, two in GeoGebra, and one in PBL. During two more classroom session, 
they work in groups developing the task. As we mentioned above, this master course was in remote 
learning, and students collaborated doing the task with MS Teams, supervised by the university 
teacher. After that, they worked autonomous in the activity for two weeks. Feedback was given in a 
first stage by the formal teacher from the high school, who analysed the proposed problems from a 
didactic point of view, making recommendations to pre-service teacher, to make them able to be 
applied with his students at the high school. Students prepared the final version during Christmas 
holydays, considering the reviews proposed by the teacher. 
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When the application of PBL in the high school with the proposed problems has concluded, formal 
teacher provides final feedback to pre-service teachers with the results of the experience. Students at 
Montpellier school filled a form at the end of the activity, with questions about the level of difficulty 
of the problem, understanding of the problem statement, questions aimed at reflect on the problem, 
and a final open question about their personal opinion about the experience.  

3.2 Example of a proposed problem 

As an example, we consider the following problem proposed by a group of students (we summarize 
the statement). The topic was trigonometry, and the problem was posed to students ages 15-16:  

“Title: Repairing my sailboat. You have inherited the sailboat from your grandfather, but it needs 
several major repairs. You must change the forestay, mast, and jib of the ship. But beware, there are 
measures that you will not be able to take, you do not have such a high ladder! That is why we provide 
you with a map of the boat, and we ask you to measure the elements (angles and lengths) that are 
closest to the deck of the boat”. 

 
Figure 1: Map of the boat 

In order to repair the required ship parts, students must find: (1) Length of the forestay, (2) Mast 
height, (3) Dimensions of the jay (measurement of its sides) and its total surface (with the help of 
GeoGebra). In addition, students will be required to check the results by creating an scheme of the 
problem with GeoGebra, using the application's geometric tools. 

The most complex part is the measurement of the angles of the jay to obtain the area of fabric 
necessary to repair it. To solve the problem, once aware that the angle between the mast and the ship 
deck is 90º, students must take this data into account and apply their knowledge of trigonometry, in 
addition to a new theorem (sine theorem). In addition, they should use their knowledge of the 
GeoGebra tool to find the area of the bow sail (jay). Figure 2 shows an example of solving the problem 
using GeoGebra. You can also see it in https://www.geogebra.org/m/w4cnza5q. 
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Figure 2: Proposed solution of the problem given by a group of students 

3.3 Assessment 

Every proposed problem is evaluated by the school formal teacher (70% of the task score), 
considering the point of view of its application in his classroom, in terms of complexity, quality of 
the problem as PBL, adequate level, duration, etc.; and by the teacher at University (30% of the task 
score), attending if the problem followed the given recommendations, analyzing the proposed 
solution, the inclusion of GeoGebra, and the statement of the problem and the given solution from 
the didactic point of view. Not every proposed problems were applied at school, formal teacher chose 
the ones who better fitted with the characteristics of his students (level of difficulty, extension, hours 
to be dedicated…). 

4. Results 
Once the set of all the videos was available, a qualitative analysis of them was carried out in a 
discussion group moderated by a professor from the Rey Juan Carlos University and integrated by 3 
university professors from the area of Didactics of Mathematics, and 4 Grade 10 mathematics 
teachers. The discussion group held working meetings to analyze all the videos taking into account 
among other aspects if they conformed to the contents and learning standards for the stage, the 
curriculum approved in the legislation in force in Spain, and if they could be useful for the teachers 
of the subject [13]. 

Number of problems suitable to be used in the first 
stage (no revision needed) 1/9 

Number of problems with percentage of revision 
needed  

20%-30% 
revision 

30%-40% 
revision 

More than 80% 
revision 

5 2 1 
Number of problems suitable to be used in the 
second stage (after revision) 7/9 

Table 1: Number of problems suitable to be applied at high school in Grade 10 

Most of the reviews suggested by the teacher of the high school, were related to the level of difficulty, 
knowledge necessary to solve the problem, necessary information, type of guide questions (writing, 
number), context of the problem. 
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To analyse the opinion of the students after the activity, and the view of the teacher about the 
experience, in-depth semi structured interviews were conducted with seven students from different 
groups, and with the teacher. 

Some of the responses were: 

Question: What advantages do you think using PBL has for teaching mathematics in secondary 
education?  

"I think it is a great way to bring children closer to what they will find both in their studies at 
University, in the event that they take them, and in their day to day, both professional and personal" 

"When a problem is posed for us, we usually have the tools to find ways to solve it, but not directly 
how to solve it; with the PBL methodology, we work in the search for those ways to solve it, so I think 
it is a great enhancer of critical thinking and the autonomy of students". 

Question: What is your opinion of introducing this methodology as part of teacher training in STEM? 

"The work process to develop our PBL proposal has allowed me to better understand which teaching 
situations are appropriate for each age group. 

Question: Comment globally on your opinion about this activity (How do you value the possibility 
of carrying out with real students the proposed Problems? Has the feedback given by the teacher been 
important for you?). 

 “In my case, after all my years as a student, I think it is very interesting to know these methodologies 
and ICT tools, not so widespread and that can contribute a lot to the student". 

"It has changed my perception of teaching mathematics after working on this project" 

Teacher of the high school answered similar questions in another interview. Due the limitations of 
the article, we’ll just transcribe the answer to questions 2 and 3: 

Question: What is your opinion of introducing this methodology as part of teacher training in STEM?. 
“PBL learning cannot be conceived without the use of ICT tools. If only for the mere fact of having 
to search for information on the Internet (inherent in any PBL type problem), the use of this type of 
technology is essential. 

Beyond this, the environment that creates this method is ideal for the use of other ICT tools such as 
GeoGebra (especially in the areas of functions and geometry), Excel (in the management of tables, 
functions and statistics), Google Sketch-Up (for spatial geometry) or the usual Word and Power Point 
(especially useful the use and learning of the Equation Editor that incorporate both applications). 

Question Comment globally on your opinion about this activity. 

 “I have a positive opinion, no doubt. Historically, in all educational centers, the teachers of the 
science area have been the spearhead, both in the use of new technologies in the educational field 
and new teaching-learning methods. This is because of the very essence of STEM subjects, based on 
the scientific method, rigorous research, and the use of ingenuity to solve problems. What better for 
any subject in this field than to put students in simulated situations similar to those they will encounter 
in the future? 

I believe that every teacher in general, but in this area, must carry in "his curriculum" a training in 
this method of teaching and a willingness to put it into practice when exercising his profession. 
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5. Concussions and future work
The type of activities such as the one we present here, represent a significant improvement in the 
training of future teachers. After the experience, the students of the Master's degree learned about the 
PBL methodology, increasingly present in teaching STEM subjects, and received training in a 
fundamental tool for teaching mathematics, GeoGebra. The method of learning by doing was applied, 
proposing themselves a problem as a task with which to apply the methodology. We bring them the 
option to do it with real students, thus bringing the real practice in the classroom to the teachers in 
training. Finally, the participation of the high school teacher, who applied his professional criteria to 
correct the proposed problems and give us the feedback of the application in the classroom, was 
invaluable, being highly appreciated by the students. 

The success of the experience is also measured in terms of motivation. The students of the Master 
valued very positively the experience, as reflected in the responses of the interviews carried out to a 
sample of them. The common opinion is that this activity had allowed them to know and apply new 
methodologies and technology, permitting them to act as practicing teachers. In addition, five of the 
students continued with the research in PBL methodology, dedicating their Master thesis to this topic. 

An 89% of the problems proposed in this course 20-21 by the pre-service teachers, were considered 
suitable to be applied at Grade 10 mathematical classroom by the discussion group who analyzed the 
problems, as we presented in the results. The level reached of some proposed problems was so good, 
that the teacher included them in the library of PBL class, becoming part of the project of teaching 
mathematics of the high school. 

As proposals for improvement for later courses, we would like to introduce elements of GeoGebra 
Classroom to manage the resolution of the proposed problems, once modified with the indications of 
the teacher of the center. In this way, the students of the center could work on the resolution remotely, 
tutorized by the corresponding group of pre-service teachers, who would be supervised both by the 
teacher of the center and that of the university. In this way, we could incorporate direct feedback to 
the activity, making it even more real. 

The philosophy of sharing and collaborating in the educational community is present, so that another 
line of improvement in the future will be to publish the PBL made, together with the GeoGebra files 
and ICT tools used, so that they can be used and improved by other teachers, thus giving an 
unparalleled dimension to this type of experience. 
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Abstract:  The purpose of this study was to develop teaching materials for 6th-grade elementary school students 
in Japan, focusing on retroductive inference, to develop their statistical thinking and explain its use. Recently, 
MEXT (Ministry of Education, Culture, Sports, Science and Technology) has made “Programming Education” 
compulsory at elementary schools in Japan. The purpose of “Programming Education” in Japan is to develop the 
programming thinking of students based on their computational thinking and enhance their academic ability in 
teaching and learning a particular subject, rather than learn coding. However, few studies have been conducted 
on the development of programming thinking based on computational thinking, for enhancing the academic 
ability of students. “Retroduction” is effective in promoting computational thinking. Also, the development of 
mathematical and computational thinking is interacted by one another. Therefore, we developed a teaching 
material to enable the students to engage in retroductive inference. A context and situation setting were provided 
to them to make retroductive inferences. The results indicated that it seems reasonable to assume that the 
teaching material promoted their computational thinking and developed their statistical thinking by creating 
phases for retroductive inferences. 
 
1.  Introduction 
 

The development of student’s mathematical thinking through mathematics lessons is 
essential. To do so, the teachers need to give due consideration, not only to mathematics teaching 
materials but also to the lessons, keeping in mind the teaching-learning contents and the 
mathematical processes. 

Recently, MEXT (Ministry of Education, Culture, Sports, Science and Technology) has 
made “Programming Education” compulsory at elementary schools in Japan. The purpose of 
“Programming Education” is to develop the “programming thinking” of students, based on 
computational thinking, and enhance their academic ability in learning a particular subject, not 
learn to code [1]. It is necessary to develop their “programming thinking” based on their 
computational thinking and enhance their academic ability in mathematics education. However, 
surprisingly few studies (for example, [2] and [3]) have been conducted to develop the 
“programming thinking” of elementary school students based on their computational thinking and 
enhance their academic ability. 

It suggests that the development of mathematical thinking and computational thinking are 
interacted by one another [3]. Therefore, it is necessary to discuss whether the use of computational 
thinking in finding solutions to problems has any role in the development of mathematical thinking 
[3]. Therefore, we developed teaching materials that could aid in the development of mathematical 
thinking, particularly statistical thinking, by promoting their computational thinking. 

“Retroduction” is effective in promoting computational thinking [4]. Therefore, in this 
paper, we adopt “Retroduction” advocated by Charles Sanders Peirce.  
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The term “Retroduction” can be defined as “heuristic reasoning” and studying of facts for 
devising a theory, to explain the surprising fact observed [5, 6]. For example, students guess a 
relationship between times and water level is liner function while water is drained out from the 
bottom of a bottle full of water. However, they realize a relationship between these is a quadratic 
function if they carry out an experiment in which water is drained out from the bottom of a bottle 
full of water. In this experiment, the surprising fact observed by them is that the relationship 
between these is a quadratic function. If hypothesis the cause of what relationship between these is 
quadratic function is water pressure were true, what relationship between these is quadratic 
function would be a matter of course, hence, there is reason to suspect that hypothesis the cause of 
what relationship between these is quadratic function is water pressure is true. 

We focused on “Retroduction” advocated by Charles Sanders Peirce and developed 
teaching materials to promote the computational thinking of the students by creating phases on 
which the students were asked to draw retroductive inference, to develop their statistical thinking. 

The purpose of this study was to develop teaching materials and emphasize retroductive 
inference to develop the statistical thinking of students and discuss it. 
 
2.  Theory 
 

It suggests that the development of mathematical and computational thinking is interacted 
by one another [3]. Therefore, it is necessary to discuss whether one should make full use of 
computational thinking in locating and finding the solution to problems to develop mathematical 
thinking [3]. In pursuance of the aim, we developed teaching materials that could enable the 
development of mathematical thinking, particularly statistical thinking, by promoting 
computational thinking of elementary school students. 

According to Wing, computational thinking is analytical thinking and its essence lies in 
abstraction and automation [7, 8]. 

For example, students created programs by using Scratch developed by MIT (Massachusetts 
Institute of Technology), to construct an equilateral triangle (see Figure 1) by applying the facts 
that the lengths of the three sides of the triangle are equal and all interior angles are equal to 60° [4]. 
 

     
Figure 1  Program to Move A Character and A Movement of A Character 

 
At this juncture, students extracted specific elements (i.e., sides and angles of equilateral 

triangles) from a variety of elements (i.e., vertices, areas of equilateral triangles, etc.), and created a 
program to move the character. This is a process of abstraction and automation. 

However, if we look at this program (see Figure 1) which students created, we can see that 
it is not correct. Therefore, students considered improving the program, so that the character could 
be moved properly. Students repeated and refined the abstraction and automation by inferring why 
the character doesn’t move as expected in such a case (see Figure 1). This concerned drawing 
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inferences as to why things did or did not go as expected by observing the results, which promotes 
student’s computational thinking. 

Therefore, in this paper, we adopt “Retroduction” advocated by Charles Sanders Peirce to 
promote their computational thinking. The term “Retroduction” can be defined as heuristic 
reasoning and studying facts and devising a theory to explain the surprising fact observed [5, 6]. 
Drawing on the concept of Retroduction proposed by Pierce, the surprising fact observed by the 
students was that an equilateral triangle cannot be constructed using Scratch. Students formulated 
the following hypotheses: there is an error in setting the lengths of three sides; there is an error in 
setting interior angles, etc., to elucidate the reasons why they were unable to construct an 
equilateral triangle. Students found the right program by verifying the hypotheses they formulated, 
as “Retroduction” is effective in promoting computational thinking [4]. 

Based on the above example, it can be said that “Retroduction” works appropriately in 
promoting computational thinking. Therefore, we argue that “Retroduction” is a viewpoint to 
develop teaching material. Specifically, we created several phases which they inferred upon using 
retroduction. 
 
3.  Development of Teaching-Material 
 

We developed teaching material for learning and teaching statistics in mathematics for 6th-
grade elementary school students in Japan. 

As mentioned in the preceding section, the development of a viewpoint on the development 
of teaching material in the creation of several phases of retroductive inference by elementary school 
students involves computational thinking. Therefore, it is necessary to provide a context and 
situation so that students draw retroductive inferences, for example, why the automatic vending 
machine in Japan rejects coins put in the coin slot. 

The automatic vending machine in Japan accepts coins based on their weight, diameter, 
thickness, and quality of the material. The weight, diameter, and thickness of coins may be altered 
because of any flaw, soil, etc. Therefore, the automatic vending machine is expected to rarely reject 
coins dropped into the coin slot. 

To start the lesson, the teacher presents a picture to show how the automatic vending 
machine rejects coins put in the coin slot. The teacher asks the students, “why the automatic 
vending machine would reject coins put in the coin slot?” In an attempt to investigate why the 
automatic vending machine rejects coins, the students will draw a flow chart (see Figure 2) to 
elucidate its structure. 
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Figure 2  The processes of how the automatic vending machine recognizes coins 
 

Students will consider how to judge coins in “Which coin?” (see Figure 2). With regard to 
this teaching material, we assumed that students would solve the problem by laying particular 
emphasis on the weight of the coins. The teacher prepares ScoutTM Series Balanced-STX222JP of 
OHAUS (see Figure 3) if the students emphasized the weight of the coin for solving the problem. 
 

 
Figure 3  ScoutTM Series Balanced-STX222JP of OHAUS 

 

A coin is put in the coin slot for the automatic vending machine 

End 

Start 

Which coin? 

Reject a coin 

others 500 yen coin 100 yen coin 10 yen coin 50 yen coin 

Display 500 yen Display 100 yen 

Display 50 yen 

Display 10 yen 
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ScoutTM Series Balanced-STX222JP by OHAUS (see Figure 3) compares the weight of a 
sample against target limits and displays results as “Under”, “Accept” or “Over”. 

In Japan, the coins have fixed weights, for example, a 10 yen coin weighs 4.5 grams, a 100 
yen coin weighs 4.8 grams, and so on. Therefore, students are likely to consider that “Accept” will 
be displayed on the screen if the balance is set at 4.50 grams as “Over Limit” and a 10 yen coin can 
be put on the pan. However, this is not necessary as the weight of the coins might undergo changes 
depending on the flaw, soil, and so on (see Figure 4). 

Figure 4  The Screen Display of ScoutTM Series Balanced-STX222JP of OHAUS 

At this time, students might think why “Over” is displayed on the screen of the balance 
when they set “Over Limit” as 4.50 grams and put a 10 yen coin on the pan. Students will 
hypothesize that the weight of a coin put in the coin slot is different from the original one and 
attempt to solve this problem by using a frequency table, a histogram, a dot plot, and the 
representative values. 

4. Discussion

We discussed the teaching material developed in chapter 3 to promote computational 
thinking, by creating phases for retroductive inference by elementary school students and the 
development of statistical thinking by promoting computational thinking. 

4.1 Promoting Computational Thinking 

The essence of computational thinking is abstraction and automation [7, 8]. Therefore, it 
needs to be discussed whether repetition and refinement of abstraction and automation are 
promoted. 

By using the teaching material, elementary school students were able to observe that an 
automatic vending machine in Japan would reject coins. Students hypothesized by doing trial and 
error to elucidate why this would occur. For example, something is wrong with the automatic 
vending machine, the coin put in the coin slot is counterfeit money, the weight of a coin put in the 
coin slot is different from the original one, and so on. At this time, students created a flow chart of 
the processes by which the automatic vending machine recognized the coins (see Figure 2), 
repetition and refinement of abstraction and automation through inferring why the automatic 
vending machine would reject coins to verify if their hypotheses were correct. This was a process 
of abstraction and automation. 

For example, students extract a specific element (the weight of coins) from a variety (color, 
diameter, thickness of coins, etc.) and hypothesize that the weight of the coin that is put in the coin 
slot is different from the original one. This shows that students engage in abstract thought with 
regard to the rejection of the coins by the automatic vending machine. 

Over Accept Under 

Over Limit 
Under 
Limit 
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Creation of the flow chart to depict the processes involved in recognition of the coins by the 
automatic vending machine (see Figure 2) was done to elucidate how the automatic vending 
machine judges coins to automate its programs. 

From the above example, it can be assumed that setting a context and situation for 
retroductive inference promotes computational thinking in students. 
 
4.2 Development of Statistical Thinking 
 

To develop statistical thinking, it is important to solve problems and find new ones by 
employing statistical thinking in PPDAC (Problem, Plan, Data, Analysis, Conclusion) cycle [9]. 
Therefore, setting processes involving solving problems with statistical thinking through PPDAC 
cycle in mathematics lessons was to be explored. 

The students observed the surprising fact that “Over” was displayed on the screen when 
they set “Over Limit” as 4.50 grams and they put a 10 yen coin on a balance (see Figure 4). 
Students hypothesized after trial and error that the weight of a 10 yen coin that was put in the 
automatic vending machine is not 4.50 grams to elucidate why “Over” is displayed on the screen. 

The students investigated whether the automatic vending machine judges the 10 yen coins 
by their weight. This is the process of “Problem” step of PPDAC (Problem, Plan, Data, Analysis, 
Conclusion) cycle. 

We assumed that the students solved this problem by following the steps described below. 
Firstly, the students considered the data regarding weight (i.e., how many 10 yen coins 

should be collected ?; how to collect the weight data pertaining to the 10 yen coins? etc.) This 
comprised the process of “Plan” step of PPDAC (Problem, Plan, Data, Analysis, Conclusion) cycle. 

Secondly, students collected the weight data pertaining to 10 yen coins and organized them 
in a table (see Table 1). The weight data of hundred 10 yen coins collected by the author is depicted 
below. This was the process of “Data” step of PPDAC (Problem, Plan, Data, Analysis, Conclusion) 
cycle. 
 

Table 1  The Weight Data on A Hundred 10 yen Coins 
4.42 4.43 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.46 
4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.48 4.48 4.48 
4.48 4.48 4.48 4.48 4.48 4.48 4.49 4.49 4.49 4.49 
4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.50 4.50 4.50 
4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 
4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.51 4.51 4.51 
4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.51 
4.51 4.51 4.51 4.52 4.52 4.52 4.52 4.52 4.52 4.52 
4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 
4.52 4.52 4.52 4.53 4.53 4.53 4.53 4.53 4.53 4.55 

 
Thirdly, students illustrated the frequency distribution of the weight data of the hundred 10 

yen coins with the help of a frequency table (Table 2), histogram (Figure. 6) and the representative 
values (Table 3) for these data were calculated and the variations in these data were illustrated with 
the help of a dot plot (Figure 5). We assumed that the students used computers to express in a 
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frequency table, a histogram, and a dot plot of the weight data on a hundred 10 yen coins and 
calculated the representative values for these data. 
 

Table 2  A Frequency Table of The Weight Data on A Hundred 10 yen Coins 
Interval Frequency 

or higher    less than 
4.42 〜 4.44 2 
4.44 〜 4.46 7 
4.46 〜 4.48 8 
4.48 〜 4.50 20 
4.50 〜 4.52 36 
4.52 〜 4.54 26 
4.54 〜 4.56 1 

total 100 
 

Table 3  Representative Values of The Weight Data on A Hundred 10 yen Coins 
 (grams) 

Mean 4.4975 
Median 4.50 
Mode 4.51 

 

 
Figure 5  Dot Plot of The Weight Data on A Hundred 10 yen Coins 
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Figure 6  Histogram of The Weight Data on A Hundred 10 yen Coins 

The process of “Analysis” step of PPDAC (Problem, Plan, Data, Analysis, Conclusion) 
cycle is described below: 

Students found out what the frequency table, histogram, dot plot, and the calculated 
representative values represented, for example, they found what 10 yen coins weighing 4.53 grams 
should be ignored with the frequency table because a relative frequency of 10 yen coins weighing 
4.54 grams or higher but less than 4.56 grams was 0.001, they found what 10 yen coins weighing 
4.58 grams may be existed based on variations of the weight of 4.50 grams or less with the dot plot 
and so on.  

Finally, students evaluated the graphs to determine values for their adequacy so that they 
could set the weight of the coins, in grams, for “Over Limit” and “Under Limit” to find out the 
number of 10 yen coins which would be adequate. The students concluded that the weight of “Over 
Limit” should be set as 4.53 grams, the weight of “Over Limit” should be set as 4.58 grams and the 
weight of “Under Limit” should be set as 4.42 grams, etc. During the processes of setting the 
weight of “Over Limit” and “Under Limit”, students found that setting them with representative 
values was not adequate. 

Students must investigate not only the weight of the 10 yen coin but also the weight of 50, 
100, and 500 yen coins. They should not only determine the weight of the coins but also their 
diameter, thickness, and quality of the material of coins. For example, if a 100 yen coin weighing 
4.69 grams is put on balance, it could have been included in the “Accept” category, if they set the 
“Over Limit” as 4.70 grams. This was because the weight difference between a 10 and 100 yen coin 
was 0.30 grams (see Figure 7). The data collected by the author has been depicted in the dot plot. 
The process indicated above comprised the “Conclusion” step of PPDAC (Problem, Plan, Data, 
Analysis, Conclusion) cycle. 

Proceedings of the 26th Asian Technology Conference in Mathematics

373



 
Figure 7  Dot Plot of The Weight Data on Hundred 10 yen Coins and 

Hundred 100 yen Coins 
 

From the above process, it was expected that students set the problems, solve problems by 
employing statistical thinking and find new problems in the process during automation of programs, 
as to how the automatic vending machine judges the coins. Also, it was expected from the students 
that they validated their own judgment with the help of the frequency table, histogram, dot plot, and 
the representative values and reflect their essence. Therefore, it seemed reasonable to suppose that 
it is expected that promoting computational thinking develops statistical thinking. 
 
5.  Conclusion 
 

To conclude, we developed teaching material to emphasize retroductive inference for 6th-
grade elementary school students in Japan to promote their computational thinking and develop 
their statistical thinking and discussed it from the view of promoting their computational thinking 
by creating phases for retroductive inference by students. For example, a context and situation 
setting so that students inferred upon using retroduction why the automatic vending machine in 
Japan rejects coins put in the coin slot and development of their statistical thinking by promoting 
their computational thinking. 

The utility of the teaching material in promoting student’s computational thinking and 
development of their statistical thinking became evident. 

One of the challenges before us was to use the teaching material for classroom practice and 
analyze effect of the teaching material on promoting student’s computational thinking and 
development of their statistical thinking. 
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The article deals with the synthetic construction of specific planar curves which
are defined by geometric motions and with the modeling of these constructions in
GeoGebra dynamic system. We focus on the constructions of trajectories, envelopes,
and centers of curvature and osculating circles of specific curves. We present a par-
ticular construction of all centers of curvature of these curves, i.e. the construction of
the evolute of a curve. Our aim is to investigate the synthetic constructions without
the use of coordinates and formulate the proofs of them. We newly model selected
types of curves in GeoGebra dynamic system which is an additional output to our
theoretical conclusions and also a significant teaching aid at the same time. The con-
structions are meant to be dynamic and the curves are formed gradually as the traces
of points or curves. All examples presented in this article are intended to be used in
the undergraduate courses on kinematic geometry (mandatory courses for secondary
pre-service mathematics teachers who study teaching mathematics and descriptive
geometry). The synthetic constructions together with their proofs demonstrated in
GeoGebra dynamic system bring a new light into this area. It allows students to imag-
ine the main idea of the proofs of the constructions and to investigate the properties
of the curves more easily based on the pure geometry and visual aspects. Dynamic
constructions, i.e. the possibility of changing positions of points and curves play
the significant role here. GeoGebra offers also algebraic expressions which represent
another tool for students how they can study and manipulate with those curves.

Keywords: kinematic geometry, trajectory, envelope, centrode, synthetic construc-
tion, descriptive geometry, centers of curvature, osculating circles
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1 Introduction

This article addresses the study of specific planar curves which are defined by geomet-
ric motions. The properties of these curves are well known and were studied through
ages, in the 16th century and 17th century mainly. Let us mention several famous names
which are inextricably linked to this field of mathematics - Girard Desargues (1593-1662),
René Descartes (1596-1650), Pierre de Fermat (1601-1665), Johannes Kepler (1571-1630),
Isaac Newton (1643-1727), Blaise Pascal (1623-1662), François Viète (1540-1603) and many
more [5]. In this article we broaden the study of planar curves with another aspects -
the visualizations of all constructions in GeoGebra dynamic system. All examples and
constructions modeled in GeoGebra are used in the undergraduate courses on kinematic
geometry (mandatory courses for pre-service mathematics teachers who study teaching of
mathematics and descriptive geometry, i.e. the prospective secondary school teachers).
GeoGebra software helps students to investigate the properties of and the relationships
between points and curves through the observations and experiments based on basic con-
structions and characteristics of planar objects.

Information and communication technologies (ICT) became an inseparable part of
school instructions and learning processes [18]. If we focus on software in mathematics
education, dynamic software systems (DGS) and computer algebra systems (CAS) have
the great potential to be used in education process [19]. GeoGebra dynamic system be-
came widespread all over the world among teachers and students. Because of its popularity
GeoGebra is even further modifying and extending [10]. GeoGebra is so popular because
it is very easy to use even for the absolute beginner and it is open-source software.

Much of literature summarize that the integration of dynamic software into the edu-
cation process has a positive effect on better understanding, motivation of students, and
transformation of the school instruction [14]. Many researchers claim that GeoGebra and
its using at secondary schools and colleges support students’ discovering new mathematical
facts, their experimentation, and develop their own explanations [10].

I have a long-term teaching experience at the Faculty of Mathematics and Physics
(Charles University, Czech Republic) where I have been teaching geometric courses (Eu-
clidean, descriptive, computational, or kinematic geometry) over 10 years. Moreover, I also
started teaching mathematics instructions in the Grammar school in the Czech Republic
two years ago. At the faculty I work with pre-service mathematics teachers - students
who study the specialization of teaching mathematics and descriptive geometry, i.e. the
prospective secondary school teachers. The Grammar school where I also teach provides
upper secondary education. This perfectly complements one another. I prepare university
students for their future career in the secondary schools and I am also a secondary school
teacher. I am aware of students’ needs at university and for what they should be prepared
when they enter secondary schools and start teaching.

As it has been already pointed out, I will show the synthetic constructions of selected
planar curves defined by geometric motions and the use of GeoGebra for studying their
properties. The constructions modeled in GeoGebra were created with the intention to be
used in my university courses on kinematic geometry.

2
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2 Preliminaries and Terminology

Kinematic geometry in the plane is a field of Euclidean geometry describing the motions of
points, curves, and systems of points and curves without considering the forces that cause
them to move. Kinematic geometry studies the determination of motions, the principles
of planar mechanism, or the properties of curves given or determined by the motion.

We assume that the curves that we study are determined as trajectories of moving points
or as envelopes of moving curves in the plane. Usually, the tasks in kinematic geometry
are to determine a trajectory of a point or an envelope of a curve from the given inputs,
to find special points of curves such as cusps or inflection points, to construct centers of
curvature and osculating circles of curves or to demonstrate and to study the properties
and the underlying geometry of mechanisms such as gears, screw systems, robots [8], [11],
[16], [17], [20], [22].

Let us briefly introduce the basic terms related to kinematic geometry which will be
then used in the constructions.

A movable plane Σ slides over a fixed plane Π in an arbitrary direction [9]. The final
position of the plane Σ is obtained from the initial position by a continuous motion. A
movable plane Σ slides over a fixed plane Π and it is never ”turned over”. The plane Σ is
considered to be rigid during the motion and each of its points describes a trajectory (also
called a path) in the plane Π and each of its curves describes an envelope in the plane Π. A
trajectory of a point A will be denoted by τA and an envelope of a curve a by (a). We also
distinguish the individual discrete positions of the moving plane Σ and denote them by
Σ1,Σ2,Σ3, ..., analogically the positions of a moving point A are denoted by A1, A2, A3, ...,
and of a moving curve a by a1, a2, a3, ....

The simplest motions in the plane are the identity, translations (the points of the plane
move in the same direction and of the same distance) and rotations (the points of the plane
rotate by an angle about a fixed point). The trajectory of a point in translation is a line,
in rotation is a circle.

Figure 1: An ellipse (p) as an envelope of a moving line p.

To have a clear idea, an envelope of a moving curve a is a curve (a) which is tangent to

3
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the each curve a1, a2, a3... at some point, and these points of tangency together form the
whole envelope. Two examples of envelopes can be seen in Fig. 1 and 2.

Figure 2: Two concentric circles (k) and (k′) as an envelope with two branches of a moving
circle k.

Very special cases of trajectories and envelopes can occur during the motion. For
example, curves can even degenerate into points, let us mention a point envelope. We can
imagine a simple example when a line a is rotating around a point (a); then the point
(a) is the point envelope of the line a. I refer the reader to an interesting literature
on curves where other definitions are provided and special curves are studied [4], [7].
Curves of kinematic geometry can be studied also using the coordinate system and algebraic
expressions of curves, see [2].

2.1 Determination of Motions in the Plane

Now let us focus on more general examples of motions than identity, translation, or ro-
tation. It can be proved that the motion is completely determined by the form of two
trajectories of two distinct points, each on its trajectory, see Fig. 3. Another possibility is
the determination by the form of two envelopes of two distinct curves, each tangent to its
envelope, see Fig. 4. We can even combine it, it means that the motion is completely de-
termined by a trajectory of a point and by an envelope of a curve. The concrete examples
can be found in [15].

As has been already mentioned, when a movable plane Σ slides over a fixed plane Π
it remains of the same orientation (it does not ”turn over”). Then an arbitrary position
Σi of a movable plane Σ can be moved to another position Σj of a plane Σ using one
single translation or one single rotation. The proof can be found in [9]. This means that
every two positions of a moving object of a movable plane are congruent and of the same
orientation.

We can consider translations as rotation by a zero angle about a point at infinity. If the
positions Σi and Σi+1 are infinitely close we can construct the center of rotation Si about
which the position Σi is rotated to the positions Σi+1. This center of rotation is called

4
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the instantaneous center of the motion at the instant i (for the translation it is a point at
infinity) [23], [22].

Figure 3: The determination of the motion by two trajectories τA and τB of two distinct
points A and B.

Figure 4: The determination of motions by two envelopes (a) and (b) of two curves a and b.

A locus of the instantaneous centers at every moment of the motion is a curve in the
fixed plane Σ which is called the fixed centrode of the motion. The roles of the planes Σ
and Π can be interchanged and the inverse motion is obtained. It means that what was
moving in the original motion is fixed now and vice versa. A locus of the instantaneous
centers at every moment of the inverse motion is a curve in the plane Σ which is called the
moving centrode of the original motion. The fixed centrode of the original motion will be
denoted by p and the moving centrode of the original motion by h, the ith position of h will
be denoted by hi. The original and the inverse motion are given by each other. It can be
proved that the fixed centrode of the original motion is the moving centrode of the inverse
motion; analogically the moving centrode of the original motion is the fixed centrode of
the inverse motion. It implies that with interchanging the roles of centrodes of the original
motion we get the inverse motion. We defined the inverse motion so we could determine
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Figure 5: The determination of the motion by rolling the moving centrode h along the
fixed centrode p.

the moving centrode. From this moment on, we consider only the original motion and we
do not deal with the inverse motion.

Very important property of the instantaneous centers on the fixed centrode p is that
these points are the intersections of the normals to the trajectories at their points in the
particular position [12].

Considering the centrodes, we can add another possibility how to determine the motion.
When a moving plane Σ slides over a fixed plane Π the moving centrode h in the moving
plane Σ rolls (without sliding) along the fixed centrode p in the fixed plane Π. At each mo-
ment the centrodes are mutually tangent at the instantaneous center. Since the centrodes
roll along each other without sliding it implies that the arc bounded by any two points on
the fixed centrode p has the same length as the arc bounded by the corresponding points
on the moving centrode h. See Fig. 5 where the motion is determined by the centrodes.
For more detailed information regarding the basics of kinematic geometry see [3], [9], or
[21].

3 Constructions using GeoGebra Dynamic Software

In this section we will show synthetic constructions of trajectories, envelopes, and centers of
curvature and osculating circles of specific curves when some specific motion is given. The
motions in the plane can be categorized according to the types of trajectories, envelopes
or centrodes which determine them. The motions can be also sorted according to the
types of curves which are created during the motion. We omit the categorization here and
limit ourselves only on several examples. The categorization of motions and some other
constructions are presented online and are accessible from [1].

All the constructions are newly modeled in GeoGebra dynamic software to demonstrate
the motions in real time and to show the specific properties which can be hardly seen in
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the static pictures. I am using these constructions in my university courses on kinematic
geometry.

We can even draw the constructions by hand and GeoGebra software use as the control
aid. I am also practicing hand-drawn constructions with my students.

I also refer the reader to other literature which deals with the constructions of trajecto-
ries, envelopes, evolutes, and many other types of curves using dynamic software systems
[6], [13].

3.1 Construction of a Trajectory

Let us consider the motion is determined by two straight line trajectories τA and τB of
two distinct points A and B, see Fig. 6. We can construct a circle determined by three
points A, B, and O (the intersection of the trajectories τA and τB). The points A and
B are considered in an arbitrary position. It is obvious that the instantaneous center S
constructed for this concrete position also lies on this circle. Let us denote this circle h
and its radius r. We construct the circle p with a center O and the radius 2r. It is easy to
prove that the circle p is the fixed centrode and the circle h is the moving centrode which
is depicted in one concrete position.

Figure 6: The trajectories of the elliptic motion.

The trajectories of points on the moving centrode h are segment lines - diameters of
the fixed centrode p. It is clear that points A and B are moving on theirs trajectories τA
and τB, if the point C is a point on the moving centrode h distinct from A and B then
the length of an arc BC is the same in every position, thus the size on an angle ∠BOC is
constant. One ray τB of this angle is fixed, thus the second ray is fixed too. That is why
the trajectory τC is the diameter of the fixed centrode p. The trajectory τOh

of the point
Oh, the center of the moving centrode h, is the circle with the center O and the radius r.
Finally, the trajectory τD of every other point D is an ellipse which is the reason for the
name of this motion - the elliptic motion. A line DOh intersects the moving centrode h in
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points X and Y which have straight line perpendicular trajectories τX and τY . Thus, the
trajectory τD is an ellipse with the axes τX and τY and the semi-major axis of the length
DX and the semi-minor axis of the length DY . This is a known construction of an ellipse
called - the paper strip method or the trammel method [15].

From these observations implies that the elliptic motion can be determined by two
circles as centrodes i.e. the moving circle h rolls on the inside of the fixed circle p with
double the radius. That is the elliptic motion is a special case of the hypocycloidal motion
[15].

We can also construct trajectories synthetically point by point using the observations
that the moving plane Σ is rigid, i.e. the distances between points in the moving plane Σ
are preserved during the motion. We obtain the trajectory as the locus of all the positions
of a moving point.

3.2 Constructions of Centers of Curvature and Osculating Cir-
cles

A suitable aid how to precisely describe the shape of the curves is to construct the centers
of curvature and osculating circles. The center of curvature of a curve can be defined as
the intersection point of two infinitely close normal lines to the curves [15]. The evolute
of the curve is the locus of all its centers of curvature. The original curve is called the
involute [15]. We can also say that the evolute is the envelope of the normals to the curve.
The evolute of the involute is the original curve.

Let us consider the cycloidal motion is given, i.e. the moving circle h with the center
Oh and the radius rh rolls on the fixed straight line p (we can consider the straight line p
as a circle with the center at infinity). The moving circle h is given in the initial position.
We shall determine the trajectory τC of a point C of the moving circle h, that is a cycloid,
and the center of curvature and the osculating circle in each point of the trajectory τC ,
see Fig. 7. To find all centers of curvature of the trajectory τC actually means to find the
evolute of this trajectory.

At each moment of the motion, the fixed centrode p is the tangent line to the moving
centrode h at the instantaneous center S, i.e the ith position of h and the fixed centrode
p are mutually tangent at the instantaneous center Si. As has been already pointed out,
the instantaneous center on the fixed centrode p is the intersections of the normals to the
trajectories at their points in the particular position. Thus, we can construct the normal
nC to the trajectory τC at the point C, i.e. nC = SC. The tangent line tC to the trajectory
τC at the point C is perpendicular to the nC . We construct the point C ′ on the circle h
opposite to the point C. The trajectory τC′ of the point C ′ is a cycloid in the fixed plane
Π which is congruent to the cycloid τC just moved by π · rh in a direction of the fixed
centrode p. The tangent line tC′ to the trajectory τC′ at the point C ′ is perpendicular to
the normal nC′ where nC′ = SC ′. It is obvious that nC ‖ t′C . A segment line TS where
T is the intersection of tC and h determines the direction and the distance of translation
which moves the tangent line tC′ to the normal nC . It implies that an envelope of nC (i.e.
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Figure 7: The center of curvature SC of the trajectory τC at the point C of the moving
circle h together with the osculating circle kC .

an evolute of the τC) is the cycloid e congruent to τC′ . The points of tangency on τC′ and
e correspond in the same translation. It means that the intersection SC of a straight line
l, l ‖ TS,C ′ ∈ l and nC is the center of curvature of τC at C. The circle kC with the center
SC and the radius |SCC| is the osculating circle.

Analogically, we could describe the construction for the epicyclodial or hypocycloidal
motion, i.e. the motion where the moving circle h rolls on the outside of the fixed circle p
or where the moving circle h rolls on the inside of the fixed circle p.

4 Conclusion and Future Work

We showed several synthetic constructions of trajectories, envelopes, and centers of cur-
vature and osculating circles of specific curves when the geometric motion in the plane is
given. We modeled all examples of constructions in GeoGebra dynamic software to demon-
strate the properties of curves. The categorization of motions and some other constructions
are accessible online [1].

I am using GeoGebra applets in my kinematic geometry lessons at university. The
pre-service mathematics teachers who attend my courses on kinematic geometry will not
teach kinematic geometry in secondary schools. My aim is to show them that even such
a complex issue as kinematic geometry can be taught in an exploratory and experimental
way. They can apply this approach in mathematical topics which are included in secondary
school mathematics. This will be demonstrated during the presentation with examples on
the inscribed and central angles that subtend the same arc on the circle (the inscribed angle
theorem). The special case when the inscribed angle is a right angle will be considered too.

Regarding the future work I plan to extend the database of examples and study also
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another types of curves and their synthetic constructions. My aim is to describe the
constructions of special points of trajectories and envelopes such as cusps or inflection
points.
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Abstract

This contribution is inspired by the lecture “The Motion of Planets around the Sun”
given by Richard Feynman, American physicist and Nobel Laureate, in 1964, namely by
steps of Feynman’s geometrical proof of the law of ellipses, which was based on Isaac
Newton’s approach to the problem. The contribution focuses on selected passages of this
proof, interprets them using the program of dynamic mathematics GeoGebra and offers
their use in the form of activities that can be implemented at different levels of mathematics
curriculum of lower and upper secondary school. The activities presented in the paper
are suitable for the implementation of the STEM approach to mathematics education as
they combine the topics of the mathematics and physics curriculum, in addition against
the backdrop of the captivating story of discovering the essence of the functioning of the
universe.

1 Introduction

This study presents several specific educational activities which, at various levels of school
mathematics and with significant use of the dynamic mathematics software GeoGebra [3], are
focused on the selected properties of the ellipse with emphasis on the role of this curve as the
trajectory of the motion of planets around the Sun.

One of the ambitions of this work is to show how the use of GeoGebra, with its respective
geometric, algebraic and numerical capabilities, will enable educators to bring the subject of
ellipses and the physical laws of planetary motion closer to pupils at different levels of school
education and to make meaningful use of their school knowledge of mathematics and physics,
such as geometry of the triangle, properties of an axial symmetry, definition of conic sections,
Kepler’s laws of ellipses and of equal areas and Newton’s laws of motion and of gravity. The
presented materials are primarily intended for secondary school pupils and for students of the
teaching of mathematics. The aim of their presence is to show how GeoGebra allows students
not only to understand the meaning of the properties discussed, but also to practice their
knowledge of the specific content of the school curriculum.
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The activities we present are suitable for STEM (Science, Technology, Engineering, and
Mathematics) education [19]. They appropriately combine the educational content of mathe-
matics, geometry and physics, plus they reflect the history of the evolution of the knowledge
of the universe and the principles on which its functioning is based. All materials created
in GeoGebra are available online through the links featured in this text. Together they are
available in the GeoGebra Book Geometry of planetary motion [7], based on the first version
[8] presented at the Global GeoGebra Gathering in Linz in 2015, but which has not yet been
mentioned in any publication.

The main inspiration for this study is the lecture The Motion of Planets around the Sun by
American physicist, Nobel laureate, Richard Feynman, as recorded and further explained and
illustrated in detail in the book Feynman’s Lost Lecture. The Motion of Planets Around the
Sun [4].

In 1964 Richard Feynman (1918 – 1988) gave a guest lecture titled The Motion of Planets
around the Sun to the Caltech freshman class in order to introduce them to geometric proof
of the elliptical motion of planets around the Sun. Inspired by Newton’s geometric way of
proving Kepler’s laws of planetary motion, which he presented in his famous work Philosophiæ
Naturalis Principia Mathematica [17] published in Latin in 1687 (For English translation, see
e. g. [18]), Feynman created his own geometric proof using only elementary knowledge of plane
geometry and the selected statements of Newton’s laws of motion and gravity. As a result
of the temporary disappearance of its records this lecture became known as Feynman’s Lost
Lecture. After the finding of it among other documents at the Physics Department of Caltech
a number of years after the lecture was given it was professionally and literally edited by David
and Judith Goodstein and published as an above mentioned book [4] in 1996.

For the sake of completeness, it should be noted that Richard Feynman addressed different
approaches to the derivation of Kepler’s laws of planetary motions applying Newton’s laws of
motion and gravity in his texts. In addition to the aforementioned purely geometrical method
presented in his Lost lecture, which we will address further in this text, a method of numerical
approximation, based on iterations recorded using a table, was published in the famous three
volume book Feynman’s Lectures on Physics, first issued in 1964, specifically in its first volume
[5], Chapter 9, pages from 6 to 9 (alternatively the online [6], Chapter 9). The application
of this method in GeoGebra and its use to represent the trajectory of both planets and other
bodies, namely that of the peregrine falcon are presented in papers [9] and [10].

The standard method of proving the validity of Kepler’s laws from Newton’s laws of motion
and gravity, presented in contemporary publications, employs an advanced calculus. Such proof
of Kepler’s Laws in a comprehensible and clear manner is presented, for example, in [20].

2 Related topics from school curriculum

As mentioned above, the activities presented in the paper cover a number of topics from the
mathematics and physics curriculum. In this section we will mention the most important of
them.
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2.1 Area of a triangle

The area of a triangle is equal to one half its base times its altitude. Therefore, two triangles
with a common base and the same altitude have the same area, regardless of the difference in
their shapes, see Fig. 1.

Figure 1: Triangles with a common base (b) and the same altitude (a) have the same area

2.2 Definition of an ellipse

An ellipse can be defined in various ways, see [2]. Here we use the definition of an ellipse as a
locus of points, common in upper secondary school mathematics: Given two points F and F ′,
called foci, and a distance 2a greater than the distance |FF ′|, the ellipse is a locus of points P
such that the sum of the distances |PF | and |PF ′| is constant and equal to 2a.

Figure 2: e = {P ∈ E2; |PF |+ |PF ′| = 2a}

Without using the equation, this definition of an ellipse is already being introduced to lower
secondary school pupils, often even to primary school pupils, in the form of the so-called
“gardener’s construction of an ellipse” (i. e. elliptical bed): At two points, drive the pins into
the ground, tie a rope longer than their distance to them, fix a pole into it and then, while
keeping the rope taut, you carve an ellipse on the ground with this pole.

GeoGebra has a command LocusEquation that allows the given definition to be used to
construct an ellipse, and will also determine its equation. Its syntax corresponding to this
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purpose, specifically for the configuration shown in Figure 3, is as LocusEquation(f + g == 8,

P).

Figure 3: An ellipse determined from the definition using the LocusEquation command

2.3 Heron’s shortest distance problem

Given two points A and B on one side of a straight line, to find the point P on the line so
that |AP | + |PB| is as small as possible [1]. It is a typical task, which illustrates the use and
properties of axial symmetry for lower secondary school pupils, and in addition, the use of the
triangle inequality in proving the correctness of its solution.

Figure 4: Heron’s shortest distance problem

Using GeoGebra we can take advantage of its dragging function. It allows us to illustratively
prove the solution of Heron’s problem by contradiction, applying the triangle inequality theorem.
See Fig. 4, where obviously |AP |+ |PB| = |A′P |+ |PB| = |A′B|; |AQ|+ |QB| = |A′Q|+ |QB|,
while according to the triangle inequality is |A′Q|+|QB| > |A′B|. Consequently |AQ|+|QB| >
|AP |+ |PB|.
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2.4 Focal properties of an ellipse

A typical feature of the ellipse explored with pupils already at lower secondary school is its
reflective property: All the light rays starting at one focus will be focused to a point at the other
focus. This property is equivalent to the fact that the tangent of the ellipse bisects the outer
angle of the focal radii of its point of tangency.

Proof of it by using the triangle inequality belongs to the high school mathematics curricu-
lum, solved by applying the same principle as in the case of solving the Heron’s problem. See
Fig. 5. If the line t is the angular bisector of the focal radii of P , in particular that one which

Figure 5: Tangent line t bisects the outer angle of the focal radii of its point of tangency P

does not intersect the segment FF ′, then the reflection G of the focus point F in t lies on the
ray F ′P . Consequently |PG| = |PF |, hence

|F ′G| = |F ′P |+ |PG| = |F ′P |+ |PF | = 2a. (1)

It is therefore sufficient to prove that each point Q of the line t different from P lies outside
the ellipse, i.e. |F ′Q| + |QF | > 2a. However, the latter inequality always pays, thanks to the
triangle inequality applied to the triangle F ′GQ. The line t is therefore the tangent of the
ellipse e.

As an advanced problem to solve, related to above mentioned properties, an upper secondary
school math textbook on analytical geometry [14] presents the following task: Show that all
reflections of one focus point of an ellipse through all its tangent lines form a circle centered in
the other focus point. Determine the radius of this circle. The circle in question is known as
a circular directrix related to the focus of an ellipse, its radius is 2a, see Fig 6. Its existence is
justified by (1).

2.5 Kepler’s laws of planetary motion

Kepler’s three laws [11], which describe the motion of planets around the Sun, belong to the
usual secondary school curriculum. Johannes Kepler (1571−1630), German mathematician
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Figure 6: Circular directrix related to the focus F of the ellipse e

and astronomer who spent a significant part of his life in Graz and Linz in Austria, and in
Praha in Bohemia, published the three laws over a period of time in two books. His findings
were based on observations of the Danish astronomer Tycho Brahe (1546−1601). First, in 1609
in Astronomia nova [12], Kepler published two statements that are known as his 1st and 2nd

laws of planetary motion, according to their focus as the law of ellipses , and the law of equal
areas , respectively, then, in 1619 in Harmonices mundi [13], he added the 3rd law, the law of
harmonies :

The law of ellipses: Orbits of all the planets are ellipses with the Sun at one focus.

The law of equal areas: A line segment from the Sun to a planet sweeps out equal areas in equal
time.

The law of harmonies: The orbital period of a planet is proportional to the three-halves power
of the size of the semi-major axis of its orbit.

2.6 Newton’s laws of motion and gravity

Isaac Newton (1643−1727), English physicists and mathematician, published three laws of
motion [15] and the law of gravity [16] in 1687 in his work Philosophicae Naturalis Principia
Mathematica [17]. Although Newton in this work also developed a mathematical method that
enabled him to derive Kepler’s laws as consequences of his (Newton’s) laws, as we know, instead
of this he provided geometric proof of Kepler’s laws in the Principia. We are particularly
interested in Newton’s 1st and 2nd laws of motion, the law of inertia and the law of force and

Proceedings of the 26th Asian Technology Conference in Mathematics

392



acceleration, respectively, and in his law of gravity, often descriptively referred to as the inverse
square of the distance law of gravity :

The law of inertia: An object keeps its state of motion, i.e. a rest or a motion at a constant
speed in the same direction, unless an external force is impressed on it.

The law of force and acceleration: The change in motion is proportional to the motive force
impressed; it is made in the direction of the straight line in which that force is impressed.

The inverse square of the distance law of gravity: The force of gravity diminishes as R-2, where
R is the distance from a planet to the Sun.

3 Proof of the 2nd Kepler’s law

The geometric proof of the second Kepler’s law, the law of equal areas , presented by Richard
Feynman corresponded to the proof which was published by Isaac Newton in his Philosophiæ
Naturalis Principia Mathematica (usually referred to as the Principia), 1697 [17]. Feynman
used an almost identical illustration to the original one by Newton, see [17], page 32.

This geometric proof is based on the elementary properties of a triangle, particularly the
determination of its area, combined with the Newton’s laws of inertia and gravity. Its partial
steps can be interpreted as a pair of consecutive exercises, the solution of which is the application
of relevant topics from the school curriculum of mathematics and physics as mentioned in the
previous section 2.1.

Exercise 1 Given triangles SAB, SAC, SBC and SBD (D is movable along p), see Fig. 7,
so that B is the midpoint of the segment AC and p is parallel to SB. Determine the relations
of areas of all the given triangles. Justify your claim.

Figure 7: What are the relations between the areas of the displayed triangles?

Exercise 2 See Fig. 8. Points A, B, C, D and E are the successive positions of a planet
in its orbit around the Sun (point S) at equal intervals of time, assuming gravitational action
between the Sun and the planet only at the end of each interval. The change in position due to
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gravity is represented by vectors pointing from each of these points to point S. Then, due to the
law of inertia |AB| = |Bc|, |BC| = |Cd| and |CD| = |De| (Explain why!). In accordance with
statement of the 2nd Kepler’s law (the law of equal areas) it follows that the areas of triangles
SAB, SBC, SCD and SDE are equal. Prove it! You can do it gradually, using triangles SBc,
SCd and SDe. Be aware that cC, dD and eE are parallel to BS, CS and DS, respectively.
Use the knowledge from the solution of the previous exercise.

Figure 8: Newton’s geometric proof of the law of equal areas

The principle of geometric proof of Kepler’s second law is evident from several successive time
intervals, as shown in Fig. 8, and as Newton also stated in his work [17]. With sufficient
patience, however, we can draw, at least approximately, the whole ellipse of the trajectory of
an imaginary planet, as shown in Fig. 9. The Kepler’s law of equal areas thus appeared to be a
consequence of the Newton’s law of inertia and the fact that changes in motion of planets are
caused by the gravitational force directed toward the Sun.

4 Proof of the 1st Kepler’s law

The answer to the question of what causes the elliptical shape of a planet’s orbit provides the
proof of the Kepler’s first law, the law of ellipses . This property arises from Kepler’s 2nd and
3rd laws and from the fact that the gravitational force diminishes as R−2, i. e. from the inverse
square of the distance law of gravity.

4.1 The property of reflection of an ellipse

First of all Feynman was to prove that the property of reflection from one focus to the other
of an ellipse is equivalent to the property that the sum |F1P |+ |F2P | is constant for any point
P on the ellipse, using arguments analogous to those presented in section 2.4. Again, instead
of proving it directly, we assign two consecutive exercises of the same nature.
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Figure 9: A line segment from the Sun to a planet sweeps out equal areas in equal time

Exercise 3 See Fig. 10. Sort by size the following lengths: |F1P | + |PF2|, |F1R| + |RF2|,
|F2P | + |PG|, |F2R| + |RG|. Then move the line p to align point R with point P of the
ellipse and make a conjecture about the relationship between the line p and the ellipse in this
configuration.

Figure 10: The property of reflection of an ellipse

Exercise 4 An ellipse is given by its two foci and by the length of its major axis, see Fig. 11.
Without drawing the ellipse, using the available tools construct its movable point and the tangent
of the ellipse passing through this point.
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Figure 11: Using the available tools, construct an ellipse given F1, F2 and a (GeoGebra with
the selected tool menu)

4.2 Feynman’s proof of the law of ellipses

The ongoing steps of Feynman’s geometric proof of Kepler’s first law are quite complex and
require a detailed description. For that, we refer the reader directly to [4]. Here we will only
briefly describe these steps. All dynamic applets are available in [7].

First, Feynman proved that equal angles correspond to equal velocity changes. He illustrated
this property by two diagrams: an orbit diagram and a velocity diagram. From the construction
and from the relevant physical laws it follows that the velocity diagram is always the shape of
the regular polygon, see Fig. 12.

Figure 12: An orbit diagram and a velocity diagram

Then, he found the geometrical correspondence of these two diagrams based on the equality of
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the angle swept by a planet with the relevant central angle in the velocity diagram, see Fig. 13.

Figure 13: Geometrical correspondence of two diagrams

Rotating the velocity diagram and using the properties of ellipse that we mentioned above
(section 2.4 or exercise 4) he finally proved that the shape of a planet’s path is an ellipse, see
Fig. 14. Of course, its size does not fit, it is only a proof of the shape of the trajectory.

Figure 14: The shape of a planet’s path is an ellipse

5 Conclusions

The aim of the paper was to show the classical secondary school geometric problems solved
in the context of a physics, moreover in connection with the stories of the discovering of the
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physical nature of the universe and of the life of Richard Feynman, Nobel Laureate. We will
be happy if the reader tries out the presented exercises in her teaching practice and provides
us with feedback.
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Abstract

Groundwater pollution is a general concern in countries using pumping wells for water
consumption. Also, the determination of protected zone around pumping wells is a prac-
tical concern. The delineation of this zone is frequently obtained using numerical models
such as MODFLOW and or FEFLOW. In this contribution we derived the equation of
the plane curve of the protected zone using a steady state solution of the groundwater
flow equations and the theory of envelopes. Cassini ovals appear in some particular cases,
providing new applications of these plane curves. A Dynamic Geometry System, such as
GeoGebra and/or Desmos, is used to explore the protected zone. A Computer Algebra
System may be used for the computations, in particular to characterise the delineation
curves for the zones of influence for wells.

1 Introduction

Protection of pumping wells from pollution is one of the most important concerns in the modern
management of water resources. In Israel, where almost seventy percent of the available water
comes from groundwater, the protection of production wells against dissolved pollutants is of
critical concern. In the past, well protection techniques have focused on the delineation of
zones of influence of pumping wells using advanced modeling tools. The aim of this paper is to
develop a new approach, based on analytical derivation of the sensitivity of the well locations
to the zone of influence of a series of wells. Figure 1 shows a standard situation with different
kinds of wells.

Inside the zone of influence of a pumping well a particle of polluted species will flow through
the well. On the opposite, a particle of polluted species outside the zone of influence will not
reach the pumping well. Also, in the case of recharging wells the zone of influence of these
wells corresponds to the zone of depollution. For example, in the pump and treat strategy
for depollution of groundwater aquifers, the zone of depollution corresponds to the zone of
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Figure 1: Acquifer and wells

influence of the recharge wells. When remediation design of a groundwater site is performed,
the optimal locations of the pumping recharge wells and the pumping rates are certainly the
significant parameters in the design. Therefore, a precise determination of the zone of influence
with respect to the pumping rates and the distance between wells is needed for well design. A
classical approach to delineation of pollution has been to use conceptual groundwater models
such as MODFLOW or FEFLOW; see the USGS webpage devoted to Groundwater Modeling .
These models are based on the analysis of geological, geophysical and geochemical data, without
consideration of groundwater flow. Selection of an appropriate conceptual geohydrological
model, based on hydrodynamics, requires the use of a calibrated three-dimensional flow and
transport simulation for each conceptual scenario. This task, however, is time consuming and
requires rather detailed knowledge of the model’s input parameters. For this reason, a simplified
and less computer-intensive model is useful in providing a good first assessment of the zone of
influence of a polluted well [1].

This is precisely the situation that arises in the observation of source locations of saliniza-
tion in many of Israel’s deep aquifers. When many of the aquifer parameters are unknown or
unavailable, the problem becomes one of identifying a conceptual model based upon the infor-
mation that is available. Measurements, such as wellhead, well concentration, well pumping
rate and the location of the wells must therefore be used to recover more knowledge of the
contaminant transport characteristics.

We explore graphically the influence zones of the wells, using a Dynamic Geometry System,
such as GeoGebra or Desmos. The curves which appear in this exploration are a parameterized
family, containing Cassini ovals as a subfamily. Some envelopes and offsets of these curves
have been studied by in [5]; in the present paper, these ovals are themselves the requested
envelope, but with regards to another definition, as described in Section . The equations have
to be transformed into polynomial equations. For this purpose, the algebraic computations are
performed either with the CAS implemented into GeoGebra, or with another CAS. For this,
we used Maple.

2 Flow equations

Tracing the movement of the elemental area over time, as determined by the flow field, then
generates the particle paths. Because the concentration of the source, denoted by , in the
Lagrangian interpretation of advective transport, is associated with a single particle and equals
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that of a particle emerging from the source, it must not change over time. It is therefore easy
to see that the equation for advective transport in the form

DC

DT
=
qs
θ

(Cs − C)

simplifies to become
DC

DT
= 0.

Plainly stated, in purely advective transport the concentration associated with a fluid particle
does not change with time as the particle moves along its path line. Therefore, in a series of
wells, the pollution arrives to the well only when the particle flow through the well inside a
zone of influence of the wells.

2.1 Generation of Flow Field

We begin first with the generation of the flow field from which particle tracking will be com-
puted. Flow fields can be generated either by exact analytical solutions or through the use
of numerical approximations. In the case of two-dimensional flow in a homogeneous single
aquifer of idealized geometry, the solution of steady state flow may be derived analytically
using the potential flow theory as described in [12, 17]. Although analytical techniques have a
greater degree of accuracy, they lack the flexibility to model irregular boundaries and compli-
cated boundary conditions. For irregular boundaries, realistic aquifer geometries and aquifers
with heterogeneous properties, numerical methods are generally used to solve the flow and
transport equations. This document will focus on the combination of analytical and numerical
techniques, or semi-analytical solutions, which are sometimes referred to in the literature as
Analytical Element Methods (AEM).

2.2 Numerical solutions

The two most common numerical techniques for solving groundwater flow equations are the
finite difference (including integrated finite difference of constant volume methods) and finite
element methods [11]. These methods use a series of nodes or elements to solve the governing
equations of groundwater flow and transport. The most significant restriction in numerical
methods is the need to discretize the domain into a three-dimensional network of nodes or
elements. This type of limitation can be lessened by solving regional Dupuit-Forchheimer flow
through superposition of analytic elements, as proven in [16, 9].

In the case of finite differences, the error introduced is that identified with the Taylor
series approximation and will be affected by the size of the discretization and the behavior of
the function being approximated. While finite elements allow slightly more flexibility when
dealing with boundaries and have a similar degree of numerical accuracy, they require more
computational effort and therefor more computer time.

2.3 Analytic solutions

In analytical modeling the flow field is generated by utilizing formal mathematical closed-
form solutions to generate the appropriate flow field. Analytical solutions are restricted to
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simple geometries, but provide an extremely accurate way to study the behavior of groundwater
flows under hypothetical conditions. The analytic element method, as developed in [17] for
groundwater flow, uses the method of images and the principle of superposition to produce
flows associated with various aquifer features.

2.4 Steady flow

In the analytical element method, simulation of regional flow is accomplished by using super-
position to combine the equations for the fluid potential for each feature, or element. Features
such as injection wells and pumping wells are simulated by using the equation describing the
fluid potential in an infinite domain for a straight-line source [17] and the method of images.
Derivation of the solution of a straight-line source with a given strength is obtained from the
integration of a point source along a prescribed length. Aquifer heads and flow velocities may
then be obtained by combining the equations of potentials for all of the prescribed elements.

In order to then transform the domain from an infinite region to one that adheres to the
specified boundary conditions, the method of images is used [17]. The method of images
consists of locating image conditions such that the combination of an aquifer feature and its
image produces the desired equipotential. Aquifer heads and flow velocities are, consequently,
obtained by combining the equations for the potentials and the images for all of the prescribed
elements. For features located on the boundary, such as areas of infiltration, special analytical
solutions are used. For example, the modeling of an area of infiltration can be simulated
analytically using the potential for a circle derived by Haitjema [8] or through the use of the
potential for a rectangle derived by Steward [15].

Closed form solutions for circular and rectangular surfaces exist in the form of specified
constant discharges with varying heads. When closed form solutions are not available, one
must apply the boundary element method [11]. The boundary element method combines a
discretized numerical solution on the boundary, with an analytical solution inside the domain,
to model more complicated boundary conditions when combined with general geometries.

3 Definition of the zone of influence

3.1 General setting

Before the pumping starts, the hydraulic head is at a level let say . After the pumping starts
around each pumping well, the drawdown due to the pumping from a groundwater level may
be expressed as in [17]: ∣∣Drawndown∣∣ = |φ(x, y)− φw|

where |Drawdown| is the hydraulic head at a point M(x, y) . The zone of influence of a given
well may be defined as the zone of very small perturbation from the initial groundwater level.
Therefore, the zone of influence or and/ or the envelop of the disturbed zone may be expressed
as: {∣∣∣Drawdown∣∣∣ = |φ(x, y)− φw| < ε

ε� 1
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Analytical formula for the computation of the formula is difficult and we propose to use a
Computer Algebra System (CAS) to derive this zone.

3.2 Conceptual Model of the Aquifer

The model developed for identifying salinization sources comprises the following steps and
simplifying assumptions:

(i) The aquifer is modeled as one homogeneous unit of constant thickness with parallel vertical
planar boundaries (box like). Constant head or given flow rates on the boundaries are
selected.

(ii) The wells are represented by singularity lines of known strength while the pollutant source
is represented as an area of given water flux (which may be small). To account for
boundary conditions, appropriate images are added.

(iii) A mean, effective, value of the hydraulic conductivity for the formation is determined by
calibrating computed heads against measured heads at a few points, while also taking into
account that the hydraulic conductivity can be expressed as the ratio between the specific
discharge potential and the pressure head.

(iv) The velocity field is determined analytically by differentiation of the potential and division
of the result by the effective porosity. A simple algorithm leads to the velocity values at
each selected point.

The aquifer to be modeled is considered fully-saturated, confined and incompressible. It is
presumed to be at steady state with a homogeneous hydraulic conductivity. The aquifer is of
constant thickness and contains two impervious boundaries formed by planar surfaces on the
top and the bottom.

3.3 Specific cases

3.3.1 Two wells cases

Derivation of the flow field around a well by analytical methods originates with the solution of
the potential in an infinite domain for a straight-line source [17, 12]. Wells are treated as lines
with a given strength derived from the integration of a point source along a prescribed length.
Consider a two dimensional infinite confined aquifer of transmissivity T and two pumping wells
separated by a distance x0.

1. Same rates:The first well is located at the origin of the coordinates system and both
wells are pumping with the same rate Q. The drawdown due to the pumping from a
groundwater level φw is given by the following equation [17]:

φ(r)− φw =
Q

2πT
ln
R

r
+

Q

2πT
ln
R

r1
,
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where R is the radius of influence of both wells, r =
√
x2 + y2 and r1 =

√
(x− x0)2 + y2.

One may express the drawdown as:

φ(r)− φw =
Q

2πT
ln
R2

rr1
.

The zone of influence of the wells corresponds to the domain where φ(r) − φw 6= 0.
Therefore, the boundary of the zone of influence is given by the following equations:{

φ(r)− φw = Q
2πT

ln R2

rr1
= 0

R2 = rr1 =
√

(x2 + y2)((x− x0)2 + y2)
(1)

The last equation defined a family of surfaces with a parameter :

F (x, y, x0) =
√

(x2 + y2)((x− x0)2 + y2)−R2. (2)

2. Different rates: The drawdown due to the pumping from a groundwater level φw is given
by the equation [17]).

φ(r)− φw =
Q1

2πT
ln
R

r
+

Q2

2πT
ln
R

r1
,

One may express the drawdown as:

φ(r)− φw =
Q1

2πT
ln
Rq+1

rrq1
, where q =

Q2

Q1

.

Therefore, the boundary of the zone of influence is given by the following equations:{
φ(r)− φw = Q1

2πT
ln Rq+1

rrq1
= 0

Rq+1 = rrq1 = (x2 + y2)(1/2) ((x− x0)2 + y2)q/2.
(3)

The last equation defined a family of surfaces with two parameters :

F (x, y, x0, q) = Rq+1 − (x2 + y2)(1/2) ((x− x0)2 + y2)q/2.

3.4 A line of wells

Consider a two-dimensional infinite confined aquifer of transmissivity T and a line of n pumping
wells separated by a distance X0. The first well is located at the origin of the coordinates system
and both wells are pumping with the same rate Q. The drawdown due to the pumping from a
groundwater level φw is given by the following equation [17]:

φ(r)− φw =
Q

2πT

n−1∑
i=0

ln
R

ri
,

where R is the common radius of influence of all the wells. We have:

ri =
√

(x− ix0)2 + y2, i = 1...n
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One may express the drawdown as follows:

φ(r)− φw =
Q

2πT

n−1∑
i=0

ln
Rn

n−1

Π r1
i=0

The boundary of the zone of influence is given by the equation:φ(r)− φw == 0

Rn =
n−1

Π r1
i=0

√
(x− ix0)2 + y2.

(4)

The last equation defined a family of surfaces with a parameter x0:

F (x, y, x0) =
n−1

Π r1
i=0

√
(x− ix0)2 + y2 −Rn. (5)

3.4.1 Computation of the zone of influence

With this simplified approach, the optimal design for a remediation using pump and treat
system will correspond to the design that assures a total recover of the zone of influence.
Mathematically speaking, it corresponds to an envelope, in the sense of Definition 4 in next
Section, of the parameterized families of surfaces (either with one or two parameters) given by
the functions in Equations (2) or (5).

4 Different definitions of envelopes of 1-parameter fam-

ilies of plane curves

Envelopes of 1-parameter families of plane curves have been studied for a long time, but there
exist 4 different definitions of this kind of objects. Kock [10] gives 3 different definitions of an
envelope of a 1-parameter family of plane curves:

Let {Ck} be a family of real plane curves dependent on a real parameter k.

Definition 1 (Synthetic) The envelope E1 is the union of the characteristic points Mk, where
the characteristic point Mk is the limit point of intersections Ck ∩ Ck+h as h → 0. In other
words, the envelope E1 is the set of limit points of intersections of nearby curves Ck.

Definition 2 (Impredicative) The envelope E2 is a curve such that at each of its points, it
is tangent to a unique curve from the given family. The locus of points where E2 touches Ck is
called the characteristic point Mk.

Definition 3 (Analytic) Suppose that the family of curves is given by an equation F (x, y, k) =
0 (where k is a real parameter and F is differentiable with respect to k); then an envelope E3 is
determined by the solution of the system of equations:{

F (x, y, k) = 0
∂F
∂k

(x, y, k) = 0

i.e., the envelope is the projection onto the (x, y)−plane of the points in the 3- dimensional
(x, y, k)−space, belonging to the surface with equation F (x, y, k) = 0.
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Simple examples are given in [7]. With other notations, Bruce and Giblin ([3], Chap. 5),
show that E1 ⊂ E3 and E2 ⊂ E3, and give several examples. They add a 4th definition, different
from the previous three.

Definition 4 The envelope E4 is the boundary of the region filled by the curves Ck.

Among the above definitions, the only one which is easily computable is Definition3. This
is the only definition given by Berger [2](sections 9.6.7 and 14.6.1). Examples for Definition
4 have been studied in [4, 5]; in this 1st paper in reference, the question was related to the
determination of a safety zone around a mobile device. This is the meaning of an envelope that
interests us in what follows to determine zones of influence of wells.

5 Some case studies

5.1 Two wells

For two wells, one at the origin (0, 0) and another one at the position (a, 0). The drawdown of
the head for steady state solution of the flow equation for a confined aquifer is given by:{

h(x, y) = φ(x, y) = h0

φ(x, y) = Q1

2πKb
ln r0√

x2+y2
+ Q2

2πKb
ln r0√

(x−a)2+y2

where h0 denotes the initial head before pumping, K the hydraulic conductivity, b the depth
of the aquifer, Q1 the pumping rate of the 1st well and Q2 the pumping rate of the 2nd well.
A simple way of building the zone of protection is to compute the zone determined by the
equation φ(x, y) = 0. This equation is equivalent to the following:

ln

(
r0√
x2 + y2

)(
r0√

(x− a)2 + y2

)q

= 0,

where q = Q2

Q1
.

Finally the equation
[x− a)2 + y2]q/2[x2 + y2)1/2] = rq+1

0 (6)

defines the curves of delineation of the zone of influence of the two wells. It depends on three
parameters:

• the ratio between the pumping rates: q = r = Q2

Q1
;

• The distance between the two wells: a=L;

• The radius of the well: r0 = p.

It is important to understand the engineering aspects of these three parameters.

• q = r = Q2

Q1
described the effect of the pumping rate on the zone of influence;

• a = L analyses the effect of the distance between the wells on the zone of influence;
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• r0 = p analyses the effect of the well design of the singular well on the zone of influence.
Depending on the internal radius of the well the the well has a ” potential radius of
influence” r0.

In the following figures, obtained with Desmos,for Q1 = Q2 we present three different types
of graphs. These graphs show three cases of ”zone of influence”.

a. Two separate zones of influence; see Figure 2.

Figure 2: Equal pumping; r = 1, L = 10, p = 2.3

b. A narrow zone of influence, as illustrated un Figure 3.

Figure 3: Equal pumping; r = 1, L = 10, p = 2.6

c. A large zone of influence, as shown in Figure 4.

The equations appearing in the figures have been written in a simplified form, suitable for
the specific cases, namely: √

x2 + y2 ·
√

(x− L)2 + y2
r

= pL. (7)

Consider the particular case for which r = 1. Squaring both sides of Equation (7), we obtained
a quadratic equation

(x2 + y2) · ((x− L)2 + y2)) = p2L2. (8)

The delineation curve is now a bicircular quadratic of a specific kind1

1Recall that a complete catalog of quadratic curves exists; as soon as a plane algebraic curve is of degree 4,
it is easy to determine which kind of curve it is.
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Figure 4: Equal pumping; r = 1, L = 10, p = 4.8

Proposition 5 For r = 1, the delineation curves are Cassini ovals.

Proof. Denote F1(L/2, 0) and let r = 1. Now look at the equation
√
x2 + y2

√
(x− L2 + y2 =

pL which appears in the algebraic window of Figures 2, 3 and 4. It describes the geometric
locus of points M(x, y) such that OM · F1M = pL , i.e. the given curve is a Cassini oval with
foci O and F1.

We can see that also by an algebraic computation. Apply the change of coordinates (x, y) =
(X + L/2, Y ) . Then we have:√

x2 + y2 ·
√

(x− L)2 + y2 = pL

i.e. √(
x+

L

2

)2

+ y2 ·

√(
x− L

2

)2

+ y2 = pL.

Squaring both sides and expanding them, we have:

(X2 + Y 2)2 − 1

2
L2X2 +

1

2
L2Y 2 +

1

16
L4 − p2L2 = 0,

which is easily identified as the equation of a Cassini oval; see [5] and the references there.
Recall that, even if the plot shows two components, the polynomial is irreducible and the curve
is irreducible. This is easy to check with the factor command of any CAS. The more the wells
are distant, the more the curve shows points of inflexion, until it has two components, shaped
as loops. This is illustrated in Figure 5.

Here are a few rows of Maple code for Figure 5.

restart:with(plots):setoptions(scaling = constrained):setoptions(thickness = 2);

F := (X^2 + Y^2)^2 - 1/2*L^2*X^2 + 1/2*L^2*Y^2 + 1/16*L^4 - p^2*L^2 = 0;

p := 4.8;

for k from 10 by 2 to 16 do

implicitplot(subs(L = k, F), X = -15 .. 15, Y = -15 .. 15);

end do;

Remark 6 Cassini ovals are defined by equations whose general form is (x2 + y2)2 + ax2 +
by2 + c = 0, where a, b, c are real numbers. They may have one or two components, which are
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(a) L = 6 (b) L = 16 (c) L = 20

Figure 5: The influence of the distance between wells

not distinguished by factorization of the polynomial. Another description of Cassini ovals is as
the intersection of a torus with a plane parallel to the torus axis. The general setting in the
literature is with a regular torus. Equations as above describe sometimes the intersection of a
self-intersecting torus with a plane parallel to the axis; in such a case, the intersection may have
two components, one inside the other. Details are explained in see [6], where Cassini ovals are
called by their other name: spiric curves. The physical meaning of the question under study
here is enough to understand why such a situation does not occur here and we don’t have a
component in the interior of the other one.

The influence of the parameters p and L can be explored separately, using the following
rows of Maple code:

• For the influence of L (note that here the value of F is fixed, but this can be easily
changed, even introduced in a for loop):

plots[animate](implicitplot, [subs(p = 4.8, F) = 0, X = -20 .. 20,

Y = -10 .. 10], L = 0 .. 20);

• For the influence of p (with a similar remark as above, this time regarding the value of
L):

plots[animate](implicitplot, [subs(L = 3, F) = 0, X = -20 .. 20,

Y = -10 .. 10], p = 0 .. 10);

For other values of the parameter r, other shapes are obtained, and have to be studied
separately. Figure 6 shows an example with r = 2. If r = 2 the obtained delineation curve is as
sextic2. For such curves, no complete catalog exist, but an algorithm is available3, to determine
the topology of a given sextic. The website Mathcurve presents rational sextics and a few non
rational ones. A list of 64 cases is given. The pear-shaped curve which we obtained here does

2An algebraic curve of degree 6.
3Developed in 2021 at Max Planck Institute for Mathematics in the Sciences, and implemented in Mathe-

matica
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Figure 6: Inequal pumping; r = 2

not appear in the list, and checking whether this curve is rational or not is beyond the scope
of the present work. See also [13] (the classification is performed for sextics over C, which is
not exactly our concern here) and the references there.

Figures 7 and 9 corresponds to r = 3 and r = 4 respectively. Here too, it is possible to derive
from the data a polynomial equation for the delineation curve. Of course degrees are higher,
making the identification with a classical curve harder, if possible. A general exploration of these

Figure 7: Inequal pumping; r = 3,L=10,p=4.8

sextics with similar code as above shows that for pL close to 0, the curves are convex, then have
two disjoint components, then have one component with points of inflexion (shaped somehow
like cougurds), and again tend to convex shapes. See Figure 8. This surprising behaviour from
a single component to a single component and in-between cases with two components is not
intuitive. It reinforces the need to make a computerized exploration for different values.

Similar exploration can be performed for any value of the parameter r.

6 Conclusions and directions for future work

Starting from the end, we wish to emphasize the importance of finding Cassini ovals. Jean-
Dominique Cassini (8 June 1625 – 14 September 1712), an Italian and French naturalized
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(a) pL = 0.6 (b) pL = 1.6 (c) pL = 2.6 (d) pL = 9.6

Figure 8: The influence of the distance between wells - sextics

Figure 9: Inequal pumping; r = 4, L = 10, p = 4.8

mathematician and astronomer conjectured that the planetary orbits around the Sun were the
ovals which will be later called after his name. After Kepler proved that these orbits were
actually ellipses (1st Kepler law), Cassini ovals seemed to have lost of their importance and
some mathematicians considered them as a nice topic in mathematics and not more. Actually,
Cassini ovals appear in electrostatics and to describe some magnetic fields. A mathcurve page
is devoted to numerous properties of these ovals. We describe here another application of
Cassini ovals and of some of their generalizations. For a reader non familiar with Cassini ovals,
a GeoGebra applet is available to check the various possible shapes, according to the choice of
the foci and of the parameter..

Regarding the contents of the work above, we wish to make the following (not so) final
remarks:

1. One can compile easily using a CAS the zone of influence of a series of wells.

2. We present the different solutions for the 2 wells problem with constant pumping wells.
This can be generalized to any number of wells in a line. Subsequent work will address
the issue of non aligned wells.

3. Parameters such as distances between wells are also considered. Here we did not analyse
this effect available for at least three wells.
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4. More work is needed for the analysis of the well design of each singular well on the zone
of influence. We focused on the distance between wells. The other parameters encode
the volume of pumping per time unit, whose influence deserves a separate amelioration
of our model.

5. More work is needed for understanding the influence of different pumping rates and well
design. In particular, we discovered through a CAS assisted dynamical exploration that
for a fixed rate and different values of the distance, very different shapes for the influence
zone are obtained. This can have very important consequences in the field, for actual
wells connected to the aquifer.

With our approach, it will be possible to analyze the optimal location of the wells.
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Abstract

In many jurisdictions globally, voting is done not by individuals, but by blocks of vot-
ers. Examples are the American Electoral College, the International Monetary Fund, the
European Parliament, and the houses of parliament or of congress in many national leg-
islatures. Voting is thus done by blocks: state, country, or political party; each member
of which casts the same vote. It is tempting to assume that a block with the most votes
is the most powerful, and has the greatest chance of influencing the outcome of the final
ballot. As with so much else in voting theory, this is quite incorrect, and it is often the
case that a minor block can have an influence entirely out of keeping with its size. There
are various different methods of determining the relative power of each block, and allo-
cating a numerical measure of power; these values are called “power indices”. Some of
these methods can be computationally intensive, and it took several years after the initial
definition to compute power indices for the American Electoral College, with its 50 states.
In this paper we explore a unified method for computing different power indices using the
theory of polynomial rings. This allows not only a relatively simple computation, but one
which can be adjusted to consider “coalitions” (two or more blocks which band together
to increase their power), and “quarreling parties”, where two blocks refuse to agree on
any vote.

1 Introduction

Although power indices had first been defined and discussed in the mid 1940’s [8], it was really a
paper in 1965 which started to bring the notion into prominence. The lawyer John Banzhaf [1]
was asked to mediate in a discussion of the fairness of voting allocation in Nassau County, New
York state, which had been made as shown in table 1.

There were thus 30 votes in total, of which 16 (a majority) were required for any motion
to pass. To determine if power was correlated with votes, Banzhaf made a list of all possible
combinations which could win; that is, sum to 16 or greater. In each such combination, he then
determined if a particular block was necessary for that win.
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Municipality Number of votes
Hempstead (No. 1): 9
Hempstead (No. 2): 9
North Hempstead: 7
Oyster Bay: 3
Glen Cove: 1
Long Beach: 1

Table 1: Nassau County voting allocations

For example, one winning combination would be Hempstead (No. 1), Hempstead (No. 2),
Oyster Bay, and Glen Cove, for a total of 22 votes. However, both the Hempsteads are necessary
for this combination, because if either withdrew their support, the votes would drop from 22
to 13. And neither Oyster Bay or Glen Cove are necessary, since if either or both withdrew
their support, the total votes would drop to no lower than 18, which is still enough for a win.
A necessary voting block in a winning combination is also called a “swinging” block.

Banzhaf identified 32 different winning combinations, and with them 48 different possible
swings, with numbers as shown in table 2.

Municipality Number of swings
Hempstead (No. 1): 16
Hempstead (No. 2): 16
North Hempstead: 16
Oyster Bay: 0
Glen Cove: 0
Long Beach: 0

Table 2: Nassau County necessary votes

It can be seen then that in spite of their different voting numbers, Hempstead 1, Hempstead
2 and North Hempstead are all exactly equal in their abilities to influence a vote; conversely
Oyster Bay, Glen Cove and Long Beach have no power at all : it doesn’t matter how they vote,
because in any combination which reaches a winning value, none of their votes are actually
necessary.

The conclusion was that the original voting allocation was manifestly unfair, and some other
allocation was required so that the smaller blocks had non-zero power. As Banzhaf said in the
article: “It is hard to conceive of any theory of representative government which could justify
a system under which the representatives of three of the six municipalities ”represented” are
allowed to attend meetings and cast votes, but are unable to have any effect on legislative
decisions. Yet this is exactly what occurs now in Nassau County.”

Although Banzhaf had in a sense reinvented a method original proposed by Lionel Pen-
rose (and that had gone completely unnoticed), it was again reinvented in 1971 by James
Coleman [3]. These indices are thus known as the Banzhaf, or the Banzhaf-Coleman, or the
Penrose-Banzhaf-Coleman, power indices. In this article the term Banzhaf power index will be
used.

Preceding Banzhaf by over 10 years, in 1954 the economists Lloyd Shapley (who would win
the Nobel Prize in 2012) and Martin Shubik developed a power index now known by their
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names. To compute the power index, every possible permutation of the voting blocks is listed,
and reading from left to right, a block is said to be pivotal if it changes a hitherto losing
combination to a winning one. For instance, with the Nassau County municipalities, one of the
6! = 720 permutations is given in table 3.

Municipality Votes Cumulative Sum
Glen Cove: 1 1
North Hempstead: 7 8

Hempstead (No. 2): 9 17
Oyster Bay: 3 20
Long Beach: 1 21
Hempstead (No. 1): 9 30

Table 3: A permutation with its pivotal block

We see that in this permutation, Hempstead 2 is pivotal. The Shapley-Shubik index
counts the number of times each block has been pivotal. (There are better ways of com-
puting this than enumerating all permutations.) For this example they can be computed to
be (240, 240, 240, 0, 0, 0); so as for the Banzhaf indices: the top three municipalities have equal
power, and the lower three have no power. We note that by definition the sum of these indices
must be n!, where n is the number of voting blocks.

It is more convenient to scale indices so that their sum is one; in this instance then both
the Banzhaf and Shapley-Shubik indices return (1/3, 1/3, 1/3, 0, 0, 0). Although the two indices
can agree, they are generally different.

2 Formal definitions

A weighted voting game consists of a sequence of weights wi for 1 ≤ i ≤ n and a quota q. The
quota represents the number of votes needed for a win, hence it must be less than or equal to
the sum of all the weights. Such a game is notated as

[q;w1, w2, . . . , wn].

The Nassau County issue discussed in the introduction would thus be notated as

[16; 9, 9, 7, 3, 1, 1].

A coalition is any non-empty set of weights, and a winning coalition is a coalition whose weights
sum to q or more. In a winning coalition, voter i is pivotal or necessary if the removal of i from
the coalition reduces the sum to below the quota.

2.1 Computation of power indices

We have seen in the introduction that the Banzhaf power indices require consideration of all sub-
sets of voters, and the Shapley-Shubik power indices require consideration of all permutations of
voters. In either case, the computation is exponential in terms of the number of voters. Efficient
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computation is therefore a major consideration. For example, if we consider the American Elec-
toral College as a weighted voting game with 51 voters (50 states plus DC) where the weights
are the number of electors in each state1, we would require 251 = 2, 251, 799, 813, 685, 248 com-
putations, and for the Shapley-Shubik indices we would need 51! ≈ 1.55× 1066 computations.

Banzhaf power indices

We can of course compute these by simply enumerating each subset S ⊆ {1, 2, 3, . . . , n} and if
it is a winning coalition, determining which voter is necessary. But a neater polynomial method
was developed by Brams and Affuso in 1976 [2], and for demonstration we shall consider the
voting game

[39; 34, 33, 7, 1, 1].

This games represents the Australian Federal Senate, or upper house, in 1985. The parties are
Labor (34), Liberal/National (33), Democrats (7), Nuclear Disarmament (1), Independent (1).

To determine the power of voter k, first create the formal polynomial

pk(x) =
n∏

i=1
i6=k

(1 + xwi)

so that for the first voter above,

p1(x) = (1 + x33)(1 + x7)(1 + x)(1 + x).

Then the coefficient of xj in this polynomial is the number of ways all the other voters can
combine to form a coalition with j votes. Expanding the polynomial:

p1(x) = x42 + 2x41 + x40 + x35 + 2x34 + x33 + x9 + 2x8 + x7 + x2 + 2x + 1

shows that there are two ways, for example, of obtaining a total of 41 votes (voters 2, 3, and 4,
or voters 2, 3, and 5). For the votes already above the quotient of 39, the addition of the new
voter won’t make any difference; the voter cannot be necessary. Voter k becomes necessary
only for those votes with a sum less than the quotient q, but not less than q − wk. The latter
restriction is necessary because if a sum is less than q−wk, then the addition of the weight wk

cannot produce a sum equal to or greater than the quotient. This means that the number we
want is the sum of coefficients of all powers xm for which q − wk ≤ m < q, so that the k-th
Banzhaf index, bk can be computed as

bk =

q−1∑
j=q−wk

cj

where cj is the coefficient of xj in the polynomial.
In our example, given p1(x) above, we look at coefficients of powers xm for which 39− 34 ≤

m < 39:

x35 + 2x34 + x33 + x9 + 2x8 + x7

and there are six such terms with coefficients summing to 8. Thus the Banzhaf power index
for the first voter is 8.

This can be easily implemented in Python using the SymPy library as shown in Listing 1.

1The situation is slightly muddled in actuality in that two states: Maine and Nebraska, allocate their electoral
votes at least partially according to the popular vote. In all other states it’s “winner take all”.
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> import sympy as sy

> x = sy.Symbols(’x’)

> def banzhaf(q,w):

for k in range(n):

qe = sy.prod([(1+x**w[i]) for i in range(n) if i != k]).expand()

b[k] = sum(qe.coeff(x,m) for m in range(q-w[k],q))

return(b)

> banzhaf(39,[34,33,7,1,1])

[8,8,8,0,0]

Listing 1: Computing the Banzhaf power indices using polynomials

The output, showing the Banzhaf indices, indicate that the three largest parties in the
Senate have equivalent power, in spite of one being very much smaller than the other2, and
the two small parties have no power at all. As mentioned above, the “raw” indices can be
normalized to sum to one.

Shapley-Shubik indices

The use of polynomials here predates the work of Brams and Affuso; in fact Shapley himself,
working with Irwin Mann, produced a polynomial computation in 1962 [7]. However, before
introducing the polynomials, we shall see how the Shapley-Shubik indices can be determined by
a method very similar to the Banzhaf indices. Suppose that voter k is necessary in a coalition
S, being a subset of V = {1, 2, 3, . . . , n}. Consider the two sets Sk = S−{k} and V −S. Then
k is pivotal in any permutation of the form:

[any permutation of the elements of Sk], k, [any permutation of V − S].

If S has r members, then the number of such permutations is (r− 1)!(n− r)!. This means that
the Shapley-Shubik index for a voter k can be calculated as∑

S

(|S| − 1)!(n− |S|)!

where the sum is taken over all coalitions in which k is necessary. For the Australian Senate
example, the first voter is necessary to the coalitions

{1, 2}, {1, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 4, 5}, {1, 3, 4}, {1, 3, 5}, {1, 3, 4, 5}

and hence its power index will be

1!3! + 1!3! + 2!2! + 2!2! + 3!1! + 2!2! + 2!2! + 3!1! = 40.

2This smaller party, the “Australian Democrats” was created precisely for this purpose, to maintain a
“balance of power in the Senate” and in the words of its founder: “to keep the bastards honest”. In spite of
small numbers, the Democrats were a significant player in Australian politics for over a decade.
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To use polynomials here, we need—as well as knowing when a voter k is necessary for a
coalition—to know the size of the coalition. This is easily done by introducing a new variable
y which will act as a counter:

pk(x) =
n∏

i=1
i6=k

(1 + xwiy).

For the first voter in the Senate example,

p1(x, y) = (1 + x33y)(1 + x7y)(1 + xy)(1 + xy)

= x42y4 + 2x41y3 + x40y2 + x35y3 + 2x34y2 + x33y + x9y3 + 2x8y2

+ x7y + x2y2 + 2xy + 1.

This shows, for example, that a coalition with combined weight 41 can be obtained with 3
voters in 2 ways. For the Banzhaf example, we knew that coalitions of weight 41 could be
obtained in two ways, but the polynomial did not include the information about the numbers
of voters.

As with the Banzhaf indices, to obtain a coalition in which k is necessary, we add the
coefficients of xiyj for which q − wk ≤ i < q. For p1(x, y) above, this produces

x35y3 + 2x34y2 + x33y + x9y3 + 2x8y2 + x7y

and adding the coefficients of the powers of x produces

2y3 + 4y2 + 2y.

In this last polynomial in y, the powers are the sizes of the winning coalitions.
This means that the Banzhaf procedure given in Listing 1 can be used as the basis for a

very similar procedure for computing the Shapley-Shubik indices; this is given in Listing 2.
This procedure can be easily adjusted to return the normalized values of [1/3, 1/3, 1/3, 0, 0].

2.2 Deegan-Packel and Holler indices

More recently, some other power indices have been proposed. In 1978, Deegan and Packel [4]
proposed an index based on minimal winning coalitions, abbreviated as MWCs, which are
coalitions in which every party is critical. For example, with w = [15, 12, 7, 4, 3, 2] and q = 22,
then (15, 4, 3) is a minimal winning coalition, as is (12, 7, 3). However, (15, 12, 4) is a winning
coalition, but it is not minimal, since 4 is not needed. Let W be the set of all such minimal
winning coalitions, and let Wi ⊂ W be those that contain voter i. Then the Deegan-Packel
power index is defined as

di =
∑
S∈Wi

1

|S|
.

For example, with the Nassau County example, the MWCs are

(91, 92), (91, 7), (92, 7).
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> import sympy as sy

> x = sy.Symbols(’x’)

> def shapley_shubik(q,w):

n = len(w)

ss = [0]*n

for k in range(n):

pe = sy.prod([(1+x**w[i]*y) for i in range(n) if i != k]).expand()

py = sum(pe.coeff(x,m) for m in range(q-w[k],q))

ss[k] = sum(sy.factorial(m)*sy.factorial(n-1-m)*py.coeff(y,m)\

for m in range(n))

return(ss)

> ss(39,[34,33,7,1,1])

[40,40,40,0,0]

Listing 2: Computing the Shapley-Shubik power indices using polynomials

where we have distinguished the two largest voters with subscripts. Since each voter is a
member of exactly two of these three coalitions, each one has the index 1/2 + 1/2 = 1. As
with the Banzhaf and Shapley-Shubik indices, the top three voters have equal power; the lower
three none at all.

Using MWCs only accords with Riker’s size principle, that “parties seek to increase votes
only up to the size of a minimum coalition” [6]. This makes political sense, and hence winning
coalitions that include non-critical parties may be considered as irrelevant to voting power (if
the size principle is assumed).

Holler’s public good index [6] is obtained by normalizing the values of |Wi| for each voter.
Since these values are (2, 2, 2, 0, 0, 0), then the public good indices are (1/3, 1/3, 1/3, 0, 0, 0) as
they are for all the other indices.

Although the different indices return the same values for the Nassau County example, this
is not normally the case. For example, with w = [28, 16, 5, 4, 3, 3] and q = 30, the various
normalized indices are:

Banzhaf :

[
3

4
,

1

20
,

1

20
,

1

20
,

1

20
,

1

20

]
≈ [0.75, 0.05, 0.05, 0.05, 0.05]

Shapley-Shubik :

[
2

3
,

1

15
,

1

15
,

1

15
,

1

15
,

1

15

]
≈ [0.67, 0.067, 0.067, 0.067, 0.067, 0.067]

Deegan-Packel :

[
5

12
,

7

60
,

7

60
,

7

60
,

7

60
,

7

60

]
≈ [0.42, 0.117, 0.117, 0.117, 0.117, 0.117]

Holler :

[
1

3
,

2

15
,

2

15
,

2

15
,

2

15
,

2

15

]
≈ [0.33, 0.133, 0.133, 0.133, 0.133, 0.133]

Although all indices give the same smaller value to the five smaller parties, the relative weight-
ings are different.
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> q = 30

> w = [28,16,5,4,3,3]

> n = len(w)

> xs = sy.var(’x0:%d’%n)

> pr = sy.prod([1+xs[i]**w[i] for i in range(n)]).expand()

> pa = pr.args

> pw = [x for x in pa[1:] if sum(sy.degree_list(x)) >= q]

Listing 3: Using multivariate polynomials

The Deegan-Packel indices are non-monotonic; in that it is possible for a smaller party to
have a greater index. For example (the values are approximate only):

[51; 35, 20, 15, 15, 15]⇒ (1.5, 0.75, 0.92, 0.92, 0.92)

and we see that a party of size 15 is assigned a greater voting power than a party of size 20.
Holler’s public good index conforms with Riker’s size principle, but is also non-monotonic. The
difference between the Deegan-Packel and Holler indices is that Deegan-Packel gives higher
weight to coalitions with smaller numbers: a party that can influence an MWC of two members
only is seen to have greater power than one which requires three or more members before it
can be critical; Holler simply counts the number of MWCs for which a party is critical.

3 Working with multivariate polynomials

In order to deal with “coalitions” (when two or more parties join together), or with “quarreling”
parties (who never agree), it will be convenient to use a different symbol for each party. Listing 3
shows how this can be done using SymPy.

In this script, the fourth line creates a list (named “xs”) of the variables

x0, x1, . . . , xn−1

and the next line creates the polynomial

pr =
n−1∏
i=1

(1 + xwi
i ).

The next two lines first break the polynomial up into its monomials, and then selects those for
which the degree sum is not less than q. In this case there are 28 of them. These monomials
correspond to all the winning coalitions. We shall call this polynomial the encoding polynomial
of the winning coalitions.

To obtain the minimal winning coalitions, what we need to do now is to sieve out all those
monomials which are multiples of another one, and we can write a recursive function to do this.

The idea is that at the beginning of the sieving routine, t is an empty list, and p consists of
all the monomials. As the function works through its iterations, t picks up the “lowest” values
from p, while p is reduced by multiples of the elements of t. For example:
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def sieve(t,p):

if len(p)==0:

return(t)

else:

for x in p[1:]:

if sy.rem(x,p[0]) == 0:

p.remove(x)

return(sieve(t+[p[0]],p[1:]))

Listing 4: A sieve function to remove polynomial multiples

> pw2 = pw.copy()

> pws = sieve([],pw2)

> pws[
x28
0 x16

1 , x28
0 x5

2, x28
0 x4

3, x28
0 x3

4, x28
0 x3

5, x16
1 x5

2x
4
3x

3
4x

3
5

]
The sum of these monomials will be a polynomial which, as before, can be referred to as the

encoding polynomial of the MWCs. To obtain (for example) the Deegan-Packel power indices,
we can work with in dictionary whose keys are the variables, and whose values will be increased
by 1/k where k is the number of variables in each monomial:

> dp = {xs[i]:0 for i in range(n)}

> for p in pws:

pv = p.free_symbols

pm = len(pv)

for x in pv:

dp[x] += sy.Rational(1,pm)

> dp{
x0 :

5

2
, x1 :

7

10
, x2 :

7

10
, x3 :

7

10
, x4 :

7

10
, x5 :

7

10

}
and this can be normalized to add to one:

> dpn = {xs[i]:0 for i in range(n)}

> s = sum(dp.values())

> for z in dpn.keys():

dpn[z] = dp[z]/s

> dpn{
x0 :

5

12
, x1 :

7

60
, x2 :

7

60
, x3 :

7

60
, x4 :

7

60
, x5 :

7

60

}
As a proof-of-concept of the use of such polynomials, we’ll consider the Banzhaf power

indices for [16; 10, 9, 6, 5]. We start as above by creating four variables xi and computing the
product

> q, w = 16, [10,9,6,5]

> p = \prod_{i=0}^3(1+x_i^{w_i}).
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This is done exactly as in Listing 3 and the polynomial returned is

x10
0 x9

1x
6
2x

5
3 + x10

0 x9
1x

6
2 + x10

0 x9
1x

5
3 + x10

0 x9
1 + x10

0 x6
2x

5
3 + x10

0 x6
2 + x10

0 x5
3 + x10

0 + x9
1x

6
2x

5
3

+ x9
1x

6
2 + x9

1x
5
3 + x9

1 + x6
2x

5
3 + x6

2 + x5
3 + 1

To find the i-th power index, we reduce the polynomial modulo xwi
i , and add up the coefficients

of those monomials whose degree sum is between q − wi and q. The reduction can be done
either with a polynomial division or using Groebner bases; for this simple operation a division
is adequate:

> i = 0

> quo, rem = sy.div(p,xs[i]**w[i])

and the remainder (which is what we want) is

x9
1x

6
2x

5
3 + x9

1x
6
2 + x9

1x
5
3 + x9

1 + x6
2x

5
3 + x6

2 + x5
3 + 1.

We can find the coefficients and degree sums, and add the appropriate coefficients:

> m = list(rem.args)

> cs = [Poly(rem).coeff_monomial(x) for x in m]

> ds = [1] + [sym(sy.degree_list*x( for x in m[1:]]

> sum(x for x,y in zip(cs,ds) if (y >= q-w[i]) and (y < q))

These last scripts can be placed in a loop to run through all values of i.
Clearly this method is overkill for the computation of the Banzhaf indices: as we have

seen earlier working with a univariate polynomial is quite sufficient. However, that polynomial
cannot indicate which parties have met to form each coalition.

With the voting game [16; 10, 9, 6, 5] the products of all of (1 + xwi) except for each term in
turn are:

x20 + x15 + x14 + x11 + x9 + x6 + x5 + 1

x21 + x16 + x15 + x11 + x10 + x6 + x5 + 1

x24 + x19 + x15 + x14 + x10 + x9 + x5 + 1

x25 + x19 + x16 + x15 + x10 + x9 + x6 + 1

In the i-th polynomial, we then have to see which of the terms when multiplied by xwi will
push the degree from under to at or over the quota q.

Using different variables, we can first find the product of (1 + xwi
i ) and eliminate all terms

with a degree sum less than q. This leads to the encoding polynomial:

x10
0 x9

1x
6
2x

5
3 + x10

0 x9
1x

6
2 + x10

0 x9
1x

5
3 + x10

0 x9
1 + x10

0 x6
2x

5
3 + x10

0 x6
2 + x9

1x
6
2x

5
3

and we can see immediately which parties have met to form which coalition. The encoding
polynomial thus does encode all the individual winning coalitions.

An alternative approach is to start with the encoding polynomial, and for the i-th party,
take the quotient when divided by xwi

i . The number of monomials in the quotient with degree
sum less than q will be the i-th Banzhaf power index.
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4 Quarreling parties

These are parties who—either temporarily or permanently—refuse to vote together. This might
be a matter of principle, or of irreconcilable political differences. If the j-th and k-parties are
quarreling, then the polynomial

∏
(1 + xwi

i ) must be reduced modulo xjxk. In other words, we
remove all monomials which include both xj and xk.

As an example, we consider the 2021 composition of the Australian Federal Senate:

Party Support & Ideology Numbers
Coalition Liberal Business & economy, right wing 31

National Primary Producers, right wing 5

Opposition Labor Workers, centre left 26

Cross-bench Greens Environment & sustainability, left 9
One Nation Anti-immigration, far right 2
Centre Alliance Centrist 1
Lambie Network Populist 1
Patrick Team Regional 1

Table 4: Australian Federal Senate, 2021

Confusingly, the Liberal3 and National parties are separate political entities, but for the
purposes of obtaining the numbers needed to form a government, have an alliance known as
“The Coalition”. And “cross-bench” simply means that the senators in those parties are not
bound by coalition or opposition party lines, but can vote according to their consciences. As
of late 2021, the Coalition are the governing body in Australia.

As a majority is required to pass any motion, the voting game is thus

[39; 31, 5, 26, 9, 2, 1, 1, 1]

but given the Liberal-National coalition, this is better expressed as

[39; 36, 26, 9, 2, 1, 1, 1]

The Banzhaf, Shapley-Shubik, Deegan-Packel indices with their normalizations, and the Holler
index, are respectively:

[52, 12, 12, 10, 4, 4, 4]⇒ [0.531, 0.122, 0.122, 0.102, 0.041, 0.041, 0.041]

[2616, 684, 684, 516, 180, 180, 180]⇒ [0.519, 0.136, 0.136, 0.102, 0.036, 0.036, 0.036][
9

4
,
11

10
,
11

10
,
8

5
,
59

60
,
59

60
,
59

60

]
⇒ [0.25, 0.122, 0.122, 0.178, 0.109, 0.109, 0.109]

1

16
[3, 2, 2, 3, 2, 2, 2] = [0.1875, 0.125, 0.125, 0.1875, 0.125, 0.125, 0.125]

Suppose that Labor and the Coalition are quarrelling; and will not vote together. We can
encode this by determining the encoding polynomial modulo x0x1. We can start by creating the
polynomial

∏
(1 + xwi

i ) as shown in Listing 3, and from that obtain the encoding polynomial:

3Note that “Liberal” here has a very different meaning to that in America; Australia’s Liberal Party is a
right-wing conservative party.
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bsq = [0]*n

for i in range(n):

Gi = sy.groebner([xs[i]**ws[i]],xs)

quo_i, rem_i = Gi.reduce(rem)

mn = Poly(quo_i[0],xs).monoms()

bsq[i] = len([x for x in qi if sum(x) < qs])

Listing 5: Computing the Banzhaf indices in the case of a quarrel

> pmn = Poly(pr,xs).monoms()

> pmnw = [x for x in pmn if sum(x) >= qs]

> p_enc = sum([sy.prod(x**y for x,y in zip(xs,p)) for p in pmnw])

and then reduce it:

> Gs = sy.groebner([xs[0]*xs[1]],xs1)

> quo,rem = Gs.reduce(p_enc)

> display(rem)

x36
0 x9

2x
2
3x4x5x6 + x36

0 x9
2x

2
3x4x5 + 24 terms omitted + x26

1 x9
2x

2
3x4x6 + x26

1 x9
2x

2
3x5x6

We can now compute the Banzhaf power indices by seeing to which winning coalitions party
i is necessary. We can do this by finding the quotient modulo xwi

i and determining the number
of monomials whose degree sum is less than q. This is shown in Listing 5 and the index list,
with its normalization, is:

[24, 4, 12, 10, 4, 4, 4]⇒ [0.387, 0.065, 0.194, 0.161, 0.065, 0.065, 0.065]

Comparing these values with the previous (non-quarreling results) we see the Liberal/Na-
tionals (the first term) have decreased in power slightly, Labor (the second term) has decreased
in power drastically, and the loss is distributed among the other parties. The lesson here is that
it would be very unwise for Labor to adopt a permanent quarrelling stance with the Coalition.

Suppose that the Greens and One Nation are quarrelling (which is a very reasonable as-
sumption, given their respective ideologies); this requires reducing modulo x2x3. The resulting
encoding polynomial has 40 terms, and the Banzhaf indices can be found to be

[40, 8, 7, 6, 2, 2, 2]⇒ [0.597, 0.119, 0.104, 0.09, 0.03, 0.03, 0.03]

and so this particular quarrel has the effect of increasing the power of the Coalition.
A diagram of the quarrels and their effects on the normalized Banzhaf indices is given in

Figure 1. One counter-intuitive result is that a quarrel may increase the power of the non-
quarreling parties.

Clearly the method outlined can be used for multiple simultaneous quarrels.

5 Conclusions

Assessing the power of a voting body in weighted voting is a fundamental aspect of modern
decision making; we expect and assume that voting power will be roughly proportional to the
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No quarrels

Coalition and Labor quarrel

Greens and One Nation quarrel

Coalition Labor Greens One Nation

Figure 1: Effects of quarreling

voter’s weight. However, this is rarely the case. Over 60 years of investigation into power indices
have resulted in many different methods of assigning power, each with particular strengths and
weaknesses. And there is now a sizable literature into axiomatic power indexing: what are the
basic axioms we would expect a power index to satisfy, and can they be made consistent? And
if not, what properties are we prepared to forsake? As we have seen, monotonicity may be a
desirable property, which is not satisfied by either the Deegan-Packel or Holler indices. Power is
thus a vital topic in decision theory, and such relatively recent upheavals as Brexit may require
voting weights to be reassigned so that no country increases power at the cost of another [5].

This means that the computation of voting power indices is also an important topic, and
polynomials and various combinatorial algorithms are still popular. We have shown how stan-
dard polynomial methods can be enlarged and deepened, using the theory of ideals, can provide
a highly general approach that can also deal with quarrels.
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	Abstract:  In the Philippines, the performance task is one of the major summative assessments in the K to 12 curriculum. This paper discusses how performance tasks may utilize mathematical apps within the context of blended learning. Guidelines on des...
	1.  Introduction
	The Covid19-pandemic has driven a shift of modalities in teaching and learning in schools worldwide. In the Philippines, the Department of Education has called for a blended learning modality for schools in lieu of face-to-face instruction in 2020. Th...
	There is already a wealth of strategies for using technology in formative assessments even prior to the pandemic [2-7]. However, new schemes for summative assessments remain to be a key challenge for teachers, especially if these are to be done on...
	In the Philippines, one mandated summative assessment is in the form of a performance task, which comprises 40% of students’ final grade [10]. This paper reports on the design and construction of sample performance tasks on numbers, algebra, geome...
	2.  Performance Tasks
	Philippine policy guidelines [10] define performance tasks as tasks that allow students to demonstrate their knowledge in various ways. These are typically done over a period of time and the purpose is to provide students the opportunity to integrate ...
	The assessment guidelines were refined in response to the pandemic [1]. Assessment exemplars and rubrics were provided, together with suggestions for students with low, medium, or high access to technology. For mathematics, suggested performance t...
	Wiggins and McTighe’s GRASPS model [11] is a recommended guide in carrying out performance tasks. This model is applicable when the performance task involves a real-life situation. GRASPS stands for: Goal (a task must state the problem or challeng...
	3.  App-based Performance Tasks
	The performance tasks in this section utilize apps that are part of Mathplus resources (mathplusresources.wordpress.com), which are products of an ongoing government supported project “Technology Innovations for Mathematical Reasoning, Statistical Thi...
	3.1 Grades 1 to 6
	A divisibility rule is a shorthand way of discovering whether a given number is divisible by a fixed divisor without performing the division, usually, just by examining its digits. Knowledge of divisibility and factoring rules can facilitate compu...
	Integrating technologies into learners’ activities has the potential to keep them more engaged in studying divisibility rules and factoring. Hence, the assessment activities and performance tasks on divisibility and factoring enumerated in this se...
	One app designed to facilitate learning number sense is the Divisibility Game. Students may choose which divisibility rules they want to practice on and then either play to gain mastery, increase speed in answering questions, or simply engage in d...
	For example, in Figure 3.1 (b), among the numbers, which are divisible by 3? Students may also choose to play with 12 four-digit items such as in Figure 3.1 (c) or with 16 four-digit items such as in Figure 3.1 (d).
	Another app is the Factor Game. Through the game, students demonstrate understanding of prime and composite numbers. The game addresses the need for the students, from various grade levels, to identify factors and multiples of a given number. Stud...
	In preparation for the performance task, a series of informal activities and formative assessments may be performed. Students may initially explore each game option in the app in a form of free play. At this point, the idea is to engage the studen...
	Students can also perform more structured activities. As a first activity, students can perform a “Shading Activity” using the divisibility rule.  Given a grid of numbers, students are asked to shade all numbers divisible by 3 as in Figure 3.3 (a)...
	A sample performance task related to this, is one where the teacher asks the students to design their own puzzles. A student creates a puzzle by filling-up the grid (Figure 3.4 (a)) with two-digit numbers so that the numbers in the shaded squares ...
	A variation to this task requires students to create a puzzle by designing their own image, for example, an arrow, animal, or any object so that when students shade the correct squares with numbers divisible by their chosen number, the students wi...
	Another activity is the “Fill in the Blanks Activity” where students fill in the blanks with numbers that will satisfy the given conditions on divisibility. For example, students fill in the blanks so that the 4-digit number is divisible by 9 as i...
	3.2 Algebra
	Addition and subtraction of integers and polynomial expressions are fundamental algebraic skills that students need to master. Different models have been utilized to represent the concepts underlying integer operations [13, 14]. However, there see...
	To facilitate the operations, students use the different buttons found on the left and right panels of the screen to construct the expressions. For example, Figure 3.6 (a) illustrates the addition problem of (-2) + 5. It is represented by two red ...
	Performance tasks are usually open-ended and often yield more than one correct answer. This characteristic is manifested in the following task:
	Students are to construct different situations where the sum of the balloons is the same as the given diagram. The diagram shows two green balloons plus two green balloons (or 2x + 2x) and three green apples plus two red apples (or 3x - 2y). The d...
	Indeed, the task involves providing different values of a, b, c, and d that satisfy the equation ax + by + cx + dy = 4x + y.  As such there will be numerous responses that students can provide satisfying the equation. Additional constraints on the ...
	In consideration of guidelines for assessment, this performance task can involve competencies in another subject area. For example, the student's output requiring creative storylines and visual representations of the polynomials can be used competenci...
	The use of AlgeOps in designing the performance task provides a digital medium that replaces the usual pen and paper format of assessment. The generation of unique exercises to students illustrates its efficiency and the animation of the neutraliz...
	3.3 Geometry
	One of the advantages afforded by technology in performance tasks in geometry is the dynamic geometry environment [9]. As will be discussed here, a digital geometry environment in assessment can develop mathematical and technological competencies ...
	One example of a performance task for Geometry in Grade 7 employing the GRASPS model is a real-life application in which students gain experience and discover the significance of triangle centers such as the centroid, incenter, circumcenter and or...
	The GOAL of the performance task is for the students (their ROLE as a research team) to present and discuss a proposal to the Chief Executive Officer (AUDIENCE) of a local amusement park, Enchanted Kingdom, regarding the best possible location of ...
	The performance task is divided into four parts.
	1. Students will work in groups. To get students to start thinking about this task, some questions posed could be: “Have you ever visited the amusement park?”, “What was your experience in getting a snack in between rides?”, “Where would be a location...
	2. In order to be guided with regards to the strategic location of the stall in the park, explorations on the definition and properties of the various four (4) centers of a triangle will be carried out using the Geogebra app “Bisectors of Triangles” (...
	3. For the discussion/analysis part, students will consider the four different types of circle centers when solving this task. They will also need to clearly establish the assumptions that are necessary in order to come to a solution, i.e., how did yo...
	4. Students will then find evidence of the distance between the food stand and the three rides using Google Earth (see Figure 3.9) or some other application.
	For the STANDARDS part of the GRASPS framework, the following criteria may be used: i) data/assumptions used to arrive at the location of the stand (survey, geometric explorations using the app), ii) geometric principles used to arrive at locatio...
	3.4 Statistics
	The role of context in learning and teaching statistics has consistently been emphasized in the literature. For instance, according to Cobb and Moore [19, p. 801], “Statistics requires a different kind of thinking, because data are not just number...
	SEP is “an online platform for gathering, storing, and accessing readily available and relatable data for learning and teaching statistics” [22, p. 174]. It is a web application patterned after CensusAtSchool, which was first established in the UK...
	It is anticipated that students’ use of data from the SEP database in performance tasks can increase their engagement and interest as “the sense of belonging that participating pupils feel, purely because they know their own responses will become ...
	The performance task From SEP to Infographic discussed below recognizes the aforementioned role of context and adapts the GRASPS model. It addresses the following Grade 7 Statistics competencies in the Philippine K-12 curriculum [12, pp. 229-230]:...
	The task involves the creation of an information graphics or infographics, which has become more common in recent years. These infographics, which are visual representations of information, are mainly used to present complex data in a form that is...
	The students are given the following setting and instructions for the performance task: “In this task, you will play the ROLE of a researcher and writer for a social media page that mainly posts interesting information (e.g., their hobbies, activi...
	As one of the researchers and writers, you are now faced with the following tasks (SITUATION):
	1. Determine a suitable topic of the infographics based on the available data in the SEP database.
	2. Process and organize the data into graphs or charts.
	3. Analyze the data and the graphs/charts.
	4. Design and create an infographic, with the graphs/charts integrated in a creative or meaningful way, that presents clear, concise, and interesting information on the chosen topic.”
	The students are also given the following criteria for grading (STANDARDS): i) topic of the infographic, ii) correctness of graphs or charts, iii) organization of the infographic, iv) design and creativity.
	The performance task using the SEP platform offers a number of advantages. First, since the SEP database contains a large amount of readily available and varied data, students are given more space to think creatively in deciding the topic and dire...
	Given sufficient time, students will also be able to create multiple infographics, from which they can choose their best work for submission. With the SEP database, this is possible for them without having to repeat the data collection process. Fi...
	Moreover, conforming to one of the thrusts of the Department of Education’s Order No. 31 s.2020 [1], the performance task can integrate competencies in other subject areas. For example, the students may be asked to accompany their infographic with...
	The SEP database naturally leads to a number of performance tasks. The infographics task is suitable for Grade 7, but more tasks can be designed to assess more advanced statistical concepts. For example, in Hypothesis Testing Using SEP Data, whic...
	Finally, the use of SEP in performance tasks offers a possible avenue for doing effective online assessment. In addition to the elements mentioned above, these performance tasks can be easily implemented in an online setting. Teachers can easily ...
	4.  Conclusion and Future Direction
	Designing mathematics performance tasks for summative assessments must be adapted to the changes brought by the shift to a blended learning modality of education. The summative assessments in the form of performance tasks described in this article wer...
	This study presented the design of mathematics performance tasks that creatively make use of mathematical apps to support student learning. The sample tasks address the need of making assessments in four key content areas: Numbers, Algebra, Geomet...
	While these apps were designed to help students gain more insight and develop stronger mathematical skills, this paper described how the apps can also be integrated into performance tasks that teachers can assign their students. The performance ta...
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