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Introduction

The main part of my lecture is based on a recent paper with prof. W.
Cieślak

W. Cieślak, W. Mozgawa, On curves with circles as their isoptics,
Aequat. Math. (2021)
https://doi.org/10.1007/s00010-021-00828-4

The final part is based on

Mozgawa, W., Mellish theorem for generalized constant width curves,
Aequat. Math. 89, 1095–1105 (2015)
https://doi.org/10.1007/s00010-014-0321-3



Introduction

In this talk we consider the family M of all simple closed convex plane
curves of class C 2 which will be called ovals. We take a coordinate system
with origin O in the interior of C . Let p(t), t ∈ [0, 2π], be the distance from
O to the support line l(t) of C perpendicular to the vector e it = cos t +
i sin t. We call the function p(t) a support function of the curve C ∈ M
with respect to the origin O. It is well-known that the parametrization of
C in terms of p(t) is given by the formula

(1) z(t) = p(t)e it + p′(t)ie it .

Note that the support function p(t) can be extended to a periodic function
on R with the period 2π.



Now we want to define the notion of isoptics.

Definition 1.

Let Cα be a locus of vertices of a fixed angle π − α, where α ∈ (0, π),
formed by two support lines of the oval C . The curve Cα will be called
an α-isoptic of C .



Introduction

It is convenient to parametrize the α-isoptic Cα by the same angle t so
that the equation of Cα takes the form

(2) zα(t) = p(t)e it +

(
−p(t) cotα +

1

sinα
p(t + α)

)
ie it .



Introduction

In the further part of the talk we will need the curvature kα of the α-isoptic
Cα. Thus we introduce the notation q(t, α) = z(t) − z(t + α),

and with the aid of this vector we have that the curvature is given by

(3) kα =
sinα

|q(t)|3
(
2|q(t)|2 − [q(t), q′(t)]

)
,

where [ , ] denotes the determinant of the arguments.



Some property of ellipses

With each curve C ∈ M we associate a certain family C∗ consisting of
lines constructed in the following way.
We fix a chord of the curve C such that its tangents at points A,B ∈ C
intersect. Let us denote by U the intersection point of these tangents and
by S the midpoint of the segment AB. The line passing through U and S
belongs to the family C∗. Moreover, given an angle α ∈ (0, π) denote by
C∗
α the subfamily of C∗ such that ∡AUB = π − α.



Some property of ellipses

In the first part of the talk we give the following characterization of ellipses.

Theorem 1

Let α ∈ (0, π) be a fixed angle such that α
π is a rational number and

α ̸= π
2 . A curve C ∈ M is an ellipse if and only if all lines from C∗

α are
concurrent.

The simple part of the above theorem, namely:

If C is an ellipse then all lines of the family C∗ intersect in the center of
this ellipse.

follows from the properties of affine transformations since the ellipse C can
be transformed into a circle and for the circle the mentioned property is
evident.

Now, we will deal with the second part of the above theorem, namely:

If C ∈ M and all lines of the family C∗
α are concurrent then C is an ellipse.



Some property of ellipses

The proof of this fact is divided into steps.
Step 1. Let C ∈ M and all lines of the family C∗

α be concurrent. This
common point O we take as the origin of the coordinate system and the
support function p in the equation (1) is determined with respect to this
point. Each point zα(t) of a fixed α-isoptic determines a chord of the
curve C joining the points z(t) and z(t + α). The midpoint of that chord
we denote by s(t). The formula (1) yields

(4)

2s(t) = z(t) + z(t + α) =

= (p(t) + p(t + α) cosα− p′(t + α) sinα)e it+

+ (p′(t) + p(t + α) sinα + p′(t + α) cosα)ie it .

Figure: Points z(t), z(t + α), zα(t), s(t)



Some property of ellipses

From our assumptions the points O, s(t), zα(t) lie on the same line, that
is we have

(5) det[s(t), zα(t)] = 0.

Thus substituting the formulae (2) and (4) into (5) we get the following
equation for the support function p, namely

(6) (p2(t +α)−p2(t)) cosα− (p(t +α)p′(t +α) + p(t)p′(t)) sinα = 0.

Substituting p =
√

f we get a simpler condition for f than (6)

(7) 2(f (t + α) − f (t)) cosα− (f ′(t + α) + f ′(t)) sinα = 0.



Some property of ellipses

Now, we develop the function f in the Fourier series. Let

(8) f (t) =
a0

2
+

∞∑
n=1

(an cos nt + bn sin nt).

Hence we get

f (t + α)− f (t)

=
∞∑
n=1

[(an(cos nα− 1) + bn sin nα) cos nt + (−an sin nα+ bn(cos nα− 1)) sin nt] ,

f ′(t + α) + f ′(t)

=
∞∑
n=1

[n(−an sin nα+ bn(1 + cos nα) cos nt − n(an(1 + cos nα) + bn sin nα) sin nt] .



Some property of ellipses

The above relations substituted into (7) yield the following system of equa-
tions{
[2(cos nα− 1) cosα+ n sin nα sinα]an + [2 sin nα cosα− n(1 + cos nα) sinα]bn = 0

[n(1 + cos nα) sinα− 2 cosα sin nα]an + [2(cos nα− 1) cosα+ n sin nα sinα]bn = 0.

Since the determinant of this system is equal to

[2(cos nα− 1) cosα+ n sin nα sinα]2 + [2 sin nα cosα− n(1 + cos nα) sinα]2,

for the existence of a non-zero solution, the following system of equations
must be satisfied{

2(cos nα− 1) cosα+ n sin nα sinα = 0,

2 sin nα cosα− n(1 + cos nα) sinα = 0.



Some property of ellipses

Hence

(9)


cos nα =

4 cos2 α− n2 sin2 α

4 cos2 α + n2 sin2 α
,

sin nα =
4n sinα cosα

4 cos2 α + n2 sin2 α
.

Now, we prove that f has only the coefficients a0, a2 and b2. From the
first equation of (9) we obtain that

n sin nα sinα = 2(1 − cos nα) cosα,

2n sin
nα

2
cos

nα

2
sinα = 4

(
sin

nα

2

)2

cosα,

which gives

(10)
n

2
tanα = tan

nα

2
.

Now, we will prove that there is no integer number n > 2 such that the
equation (10) is fulfilled. In order to do this, we shall prove two lemmas.



Some property of ellipses

The first lemma below is inspired by Lemma 3 in J. Jerónimo-Castro,
M. A. Rojas-Tapia, U. Velasco-Garćıa, C. Yee-Romero, An isoperimetric
inequality for isoptic curves of convex bodies, Results Math. 75, 134
(2020), https://doi.org/10.1007/s00025-020-01261-w

Lemma 1

Suppose α ∈
(
0, π

2

)
∪
(
π
2 , π

)
. If there exists a natural number n > 2 such

that the equation
n

2
tanα = tan

(nα

2

)
is satisfied then

(n + 2) sin
(n − 2)α

2
= (n − 2) sin

(n + 2)α

2
.

Proof.
We know that for any complex number z ∈ C \

{(
k + 1

2

)
π : k ∈ Z

}
, it

holds that

tan z = i
e−iz − e iz

e iz + e−iz
.



Some property of ellipses

By the assumptions of the lemma tanα and tan nα
2 are simultaneously

finite. The condition of the lemma in these terms is

e−i n2 α − e i n2 α

e i n2 α + e−i n2 α
=

n

2
· e−iα − e iα

e iα + e−iα
.

From this equality, after some simplifications, we obtain

(n + 2)
(

e i( n−2
2 )α − e−i( n−2

2 )α
)

= (n − 2)
(

e i( n+2
2 )α − e−i( n+2

2 )α
)
.

Since sin z = 1
2i

(
e iz − e−iz

)
, we have

(n + 2) sin
(n − 2)α

2
= (n − 2) sin

(n + 2)α

2
.

□



Some property of ellipses

Next, we need the following lemma is due to V. Cyr, A number theoretic
question arising in the geometry of plane curves and in billiard dynamics,
Proc. Amer. Math. Soc., 140, 2012, 3035-3040.

Lemma 2

If α ∈
(
0, π

2

)
∪
(
π
2 , π

)
is such that α

π is a rational number, and k and m
are integer numbers such that sin mα ̸= 0 then

sin kα

sin mα

is either −1, 0, 1 or irrational.

Using last two lemmas we prove the following lemma inspired by Lemma
5 in J. Jerónimo-Castro, M. A. Rojas-Tapia, U. Velasco-Garćıa, C. Yee-
Romero, An isoperimetric inequality for isoptic curves of convex bodies, Re-
sults Math. 75, 134 (2020), https://doi.org/10.1007/s00025-020-01261-w



Some property of ellipses

Lemma 3

If α ∈
(
0, π

2

)
∪
(
π
2 , π

)
is such that α

π is a rational number then there is
no integer number n > 2 such that

n

2
tanα = tan

nα

2
.

Proof. Suppose α
π is a rational number and there is an integer number

n > 2 such that n
2 tanα = tan nα

2 . This condition implies, by Lemma 1,
that

sin (n−2)α
2

sin (n+2)α
2

=
n − 2

n + 2
.

From this condition we have that sin (n+2)α
2 ̸= 0. Moreover, since n > 2,

we have that the fraction
n − 2

n + 2
is different from −1, 0, 1, hence by Lemma

2 we have that
sin (n−2)α

2

sin (n+2)α
2

must be an irrational number, which is a contradiction since n−2
n+2 cannot



Some property of ellipses

be an irrational number. We conclude that there is no integer number
n > 2 such that n

2 tanα = tan nα
2 if α

π is a rational number.
□

Now, if α
π is a rational number (different from 1

2 ), from Lemma 3 we have
that there is no integer number n > 2 such that n

2 tanα = tan nα
2 . It only

remains to analyze the cases n = 1 and n = 2. When n = 1, the only
solution of the equations (9) is α = 0, which is not a permitted value. For
n = 2, the equations (9) become identities and so a2 and b2 can be chosen
arbitrarily. Finally, the function f must be of the following form

f (t) =
a0

2
+ a2 cos 2t + b2 sin 2t,

where a0 > 2
√

a2
2 + b2

2, since it has to have a positive value.
The case α = π

2 will be analyzed in next theorem below.



Some property of ellipses

Step 3.
We consider the function

(11) p(t) =

√
a0

2
+ a2 cos 2t + b2 sin 2t,

such that

(12) a0 > 2
√

a2
2 + b2

2.

First we note that the condition (12) guarantees that a0

2 + a2 cos 2t +
b2 sin 2t > 0. On the other hand we have 4p3(p+p′′) = a2

0−4a2
2−4b2

2 > 0.
The condition p + p′′ > 0 guarantees that p is a support function. Next,
after some straightforward calculations we show that the function p is a
support function of an ellipse with its center at the origin of the coordinate
system and rotated about this point.
Thus support functions given by the formula (11), where a0 > 2

√
a2

2 + b2
2

describe only ellipses. □



Curves whose orthoptics are circles

In this part of my lecture we will consider a subfamily M
(
π
2

)
of the family

M defined as follows

(13) M
(π

2

)
= {C ∈ M : Cπ

2
is a circle}.

Let a curve C ∈ M
(
π
2

)
be given by (1). We denote by s(t) the midpoint

of the segment with ends at z(t) and z
(
t + π

2

)
. We present here a certain

geometric characterization of the family M
(
π
2

)
.

Theorem 2

A curve C ∈ M belongs to M
(
π
2

)
if and only if for each fixed t the

points s(t), zπ
2

(t) and the origin O lie on the same line.



Curves whose orthoptics are circles

Proof. Note that

2 det[zπ
2

(t), s(t)] = det
[
zπ

2
(t), z(t) + z

(
t +

π

2

)]
= p(t)p′(t) + p

(
t +

π

2

)
p′

(
t +

π

2

)
=

1

2

(
p2(t) + p2

(
t +

π

2

))′
=

1

2

(
|zπ

2
(t)|2

)′
,

i.e.

(14) 4 det[zπ
2

(t), s(t)] =
(
|zπ

2
(t)|2

)′
.

From (14) it follows that s(t), zπ
2

(t),O lie on the same line if and only if
the orthoptic is a circle. □



Curves whose orthoptics are circles

Let us consider a class F of all positive valued Fourier series of the form

(15)
a0

2
+

∞∑
k=0

[a2+4k cos(2 + 4k)t + b2+4k sin(2 + 4k)t].

We recall that the support function p of C ∈ M
(
π
2

)
satisfies the following

equation

(16) p2(t) + p2
(

t +
π

2

)
= r 2,

where r is the radius of the orthoptic, see A. Miernowski, Parallelograms
inscribed in a curve having a circle as π

2 -isoptic, Ann. Univ. Mariae Curie-
Sk lodowska, 62, 2008, 105–111.
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We develop the function p2 in the Fourier series

(17) p2(t) =
a0

2
+

∞∑
n=0

[an cos nt + bn sin nt].

Using the calculations from Step 2 we get

p2(t) + p2
(
t +

π

2

)
= a0+

+
∞∑
n=0

[(
an
(
cos

nπ

2
+ 1
)
+ bn sin

nπ

2

)
cos nt +

(
bn
(
cos

nπ

2
+ 1
)
− an sin

nπ

2

)
sin nt

]
.

Hence we have r 2 = a0 and
nπ

2
= π + 2kπ, that is n = 2 + 4k for

k = 0, 1, 2, . . . Finally, the Fourier series of p2 belongs to F .



Curves whose orthoptics are circles

Figure: Circle of radius
√
45 is the orthoptic of the curve C with

p(t) =
√

45
2
+ cos 6t
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On the other hand with respect to (16) we may take p(t) = r cos h(t)
and p

(
t + π

2

)
= r sin h(t). These formulas imply that the Fourier series

of the function h belongs to F , where a0 = π
2 . We note here that J. W.

Green in Sets subtending a constant angle on a circle, Duke Math. J.,
17, 1950, 263–267 introduced a curve C ∈ M with the support function
p(t) = cos

(
π
4 + k sin 2t

)
where k is sufficiently small. We will develop

this idea in a general setting in the next part of this talk. From the
above considerations it follows that all curves of the family M

(
π
2

)
can

be constructed using the Fourier series of the class F . To this aim we
formulate the following theorem.

Theorem 3

Let f ∈ F . Each function

1 p(t) =
√

f (t),

2 p(t) = cos f (t),

3 p(t) = sin f (t),

such that p(t) > 0 and p(t) + p′′(t) > 0 is a support function of some
curve C ∈ M

(
π
2

)
, and conversely.



Curves whose isoptics are circles

In this part of my talk we extend the results from the previous section to
the general case. Our goal is to describe all curves C ∈ M possessing a
circle as one of its isoptics. Such curves are called curves of generalized
constant width and we will talk about them at the end. Now, we will
consider a subfamily M(α, r) of M defined as follows

(18) M(α, r) = {C ∈ M : Cα is a circle of radius r}.

We fix a curve C ∈ M(α, r). From Theorem 3.1 of W. Mozgawa, Mellish
theorem for generalized constant width curves, Aequationes Math., 89, 4,
2015, 1095–1105, we know that the Steiner centroid O of C and the center
of the circle coincide. Thus we assume that the origin of the coordinate
system is chosen at O, so the center of this circle is (0, 0). Taking formula
(2) into account we see that there should be

(19)

p(t) = r sin h(t),
p(t + α) − p(t) cosα

sinα
= r cos h(t),

for some non-constant 2π-periodic function h.
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Thus substituting the first formula into the second one we get

sin h(t + α) = sin(h(t) + α).

Thus either h(t + α) − h(t) = α or h(t + α) + h(t) = π − α. The first
case is impossible since the Fourier expansion of the left hand side has
no constant term and this implies α = 0. If we substitute the Fourier

expansion of h(t) = a0

2 +
∞∑
n=0

[an cos nt + bn sin nt] into the second formula

then we obtain

a0+
∞∑
n=0

[(an cos nα+bn sin nα+an) cos nt+(bn cos nα−an sin nα+bn) sin nt] = π−α.

Then we have

(20) a0 = π − α

and

(21)

{
(cos nα + 1)an + sin nα · bn = 0,

− sin nα · an + (cos nα + 1)bn = 0.
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The determinant of this system of equations is equal to 2(1+cos nα). Thus
in order to have the non-zero solutions cos nα should be equal to −1, so
α = 1+2k

n π, for a natural k , such that 0 < 1+2k
n < 1. Thus the possible

angles α are rational multiples of π, and α = l
j π, where l , j = 1, 2, . . .,

l < j and l is odd. Then summing up our considerations we have the
following theorem.

Theorem 4

Let α = l
j π be an angle, where l is odd, l and j are relatively prime, l < j

and l , j = 1, 2, . . .. Then each function
(22)

p(t) = r sin

(
π − α

2
+

∞∑
k=0

(aj(1+2k) cos j(1 + 2k)t + bj(1+2k) sin j(1 + 2k)t)

)
,

such that p(t) > 0 and p(t) + p′′(t) > 0 is a support function of some
curve C ∈ M(α, r), and conversely.



Curves of generalized constant width

In 1931 a paper Notes on differential geometry, Ann. Math. (2) 32,
181-190 (1931), was published containing some fragments found among
the papers of an early deceased Canadian mathematician, Arthur Preston
Mellish (June 10, 1905 – February 7, 1930). His ideas influenced many
interesting papers and are fairly far from being exhausted. The paper we
are speaking about begins with some considerations about ovals, where
the author gives the following fascinating theorem.



Curves of generalized constant width

Theorem 5 (Mellish)

The statements;

(i) a curve is of constant width;

(ii) a curve is of constant diameter;

(iii) all the normals of a curve (an oval) are double;

(iv) the sum of radii of curvature at opposite points of a curve (an oval)
is constant;

are equivalent, in the sense that whenever one of statements (i− iv)
holds true, all other statements also hold.

(v) All curves of the same (constant) width a have the same length L
given by

L = πa.



Curves of generalized constant width

To understand this theorem we need to introduce a few definitions and
notations. For C ∈ M we consider two support lines (tangents) at points
z(t) i z(t + π) and note that from the definition of a support function we
have that these lines are parallel. We denote by d(t) the distance between
these lines and by D(t) the distance between the normal lines at these
points. Recall that

q(t) = z(t) − z(t + π).

C

q

dHtL

eit

zHtL

DHtL

ieit

ei Ht+Π Liei Ht+Π L

zHt+Π L
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Definition 2

A curve C ∈ M is said to be the curve of constant width if the distance
d is constant for each direction t ∈ R. The number d is called a width of
the curve.
A curve C ∈ M is said to be the curve of constant diameter if the length
|q| is constant for each direction t ∈ R. The number |q| is called a
diameter of the curve.

Note that d(t) = p(t) + p(t + π), D(t) = −d ′(t) and d(t) = |q(t)| =
R(t) + R(t + π).

Figure: Curve (oval) of constant width for p(t) = 10 + cos 3t
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Figure: Church of Our Lady, Bruges, Belgium
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Figure: Triangle Tower, Köln, Germany
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Figure: manhole cover, LA, USA
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Figure: Wankel engine in Mazda RX-8
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Principle of operation of the film projector

This mechanism pushes the film forward by stopping for the moment when
the shutter opens.

index888.html
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Coins 20 pence and 50 pence have a shape of curves of a constant width



Curves of generalized constant width

But most spectacular is the ability to drill square holes.

Drilling square holes 1 Play

Drilling square holes 2 Play

Drilling square holes 3 Play



Curves of generalized constant width

As we have seen in the begining of this talk an isoptic is formed as the locus
of vertices of a fixed angle π − α, formed by two tangents to the curve
C . On the other hand, one knows that a constant width oval of width
a can be freely rotated in a strip of width a. This means that parallel
tangents to such oval intersect ”at infinity” giving the ”π-isoptic”. In this
talk we would like to bring together the concept of constant width and the
concept of isoptics in the the framework of plane Euclidean geometry, while
avoiding the projective geometry concepts. Thus the isoptic ”at infinity”
giving the ”π-isoptic” seen as the line at the infinity is not applicable here,
and in the further part of this talk we want to define and examine such
isoptics.



Curves of generalized constant width

Recall that with the aid of vector q we can express the curvature of the
α-isoptic Cα by

(23) kα =
sinα

|q(t)|3
(
2|q(t)|2 − [q(t), q′(t)]

)
,

where [ , ] denotes the determinant of the arguments. One of possible
ways to see π-isoptic is given by the following definition.

Definition 3

For any curve C ∈ M and any its α-isoptic Cα, 0 < α < π, the function

(24) κα(t) =
2|q(t)|2 − [q(t), q′(t)]

|q(t)|3

is said to be a sine-curvature of Cα.



Curves of generalized constant width

We could consider an isoptic of the curve C at infinity as a curve which is
given by its curvature κπ, but neither π-isoptic nor its equation is known
yet. Moreover, computer simulations show that such curves can be fairly
complicated and possibly constructed in a non-geometric way.
For us the following definition will be useful.

Definition 4

A curve with κα ≡ const will be called the curve of constant α-width.

Note, that this notion makes sense for α = π. Then, we can say that the
considered curve is a curve of constant width at infinity.

Theorem 6

A curve C is a curve of constant width at infinity iff it is a curve of
constant width.

From this theorem we immediately get

Corollary 1

For 0 < α < π oval is of constant α-width iff its α-isoptic is a circle.



Curves of generalized constant width

Before we formulate our last theorem we need three more ingredients - a
generalization to our framework of the notion of width of an oval, a certain
hedgehog associated to C and the sine theorem for isoptics.
In the classical projective definition the diameter is the polar line of the pole
at infinity. Thus the generalization of the notion of width in this framework
should rather be the section connecting the two touching points, that is the
vector q(t, α). But q(t, α) does not generalize to the diameter of an oval
in the direction e it when α = π. Moreover, as we already said, we would
like to work in the framework of plane Euclidean geometry, while a avoiding
the projective geometry concepts. Thus we introduce an adequate notion
which we will call a α-spread of C at a point t and which has also some
relevance with the diameter of the oval. For this purpose we introduce a
vector Q(t, α) between the projections of the origin of coordinate system
onto support lines of C at points z(t) and z(t + α), as it is shown in the
Figure below.



Curves of generalized constant width

Construction of vector Q.

After some calculations one gets

(25) Q(t, α) = (p(t + α) cosα− p(t)) e it + p(t + α) sinα ie it .



Curves of generalized constant width

Definition 5

A number
dα(t) = |Q(t, α)| =

√
p(t)2 + p2(t + α) − 2p(t)p(t + α) cosα is said to

be an α-spread of C at a point t.

Note that in the case α = π we get

(26) dπ = p(t) + p(t + π).

By hedgehog we understand a curve given by the equation

(27) z(t) = p(t)e it + p′(t)ie it ,

where on the 2π-periodic function p(t) we assume only that it is the C 1-
function.



Curves of generalized constant width

Figure: A hedgehog given by the support function p(t) = 8 + cos 3t + cos 5t

To define a necessary hedgehog we define a new support function P(t) =
|Q(t,α)|

2 . Thus by a definition a α-hedgehog associated to an oval C and the
angle α is a curve Hα(t) = P(t)e it + P ′(t)ie it . Note that the hedgehogs
are intensively investigated, see papers Martinez-Maure, Y., Hedgehogs
of constant width and equichordal points, Ann. Pol. Math. 67, No.3,
285-288 (1997) and Langevin, R., Levitt, G., Rosenberg, H., Hérissons
et multihérissons (enveloppes parametrées par leur application de Gauss),
Singularities, Banach Cent. Publ. 20, 245-253 (1988) for references.
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In the our generalization we will need the sine theorem proved in Benko,
K., Cieślak, W. Góźdź, S., Mozgawa W., On isoptic curves, An. Ştiinţ.
Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 36, No.1, 47-54 (1990).

The sine theorem

Theorem 7

Under the notations in the above Figure the following identities hold

(28)
|q|

sinα
=

λ

sinα1
=

−µ

sinα2
.
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Having fixed all these notions and notations we prove the following theorem

Theorem 8

For fixed α ∈]0, π] the statements;

(i) an oval is of constant α-width;

(ii) an oval is of constant α-spread;

(iii) all the vectors q(t, α) are parallel to vectors Q(t, α);

(iv) with the notations from the last Figure the expression

(29)
1

|q(t, α)|2

(
2|q(t, α)| −

(
sinα1

k(t + α)
+

sinα1

k(t)

))
is constant;

are equivalent, in the sense that whenever one of statements (i− iv)
holds true, all other statements also hold.

(v) For all curves of the same constant α-width a the associated
hedgehogs Hα have the same length L given by

L = πa.
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It is worth the effort to see why is it a generalization of Mellish theorem.
Let us substitute α = π and let C be an oval of constant width d then as
we have on the last Figure α1 = α2 = π

2 and |q| = a thus we get

(30) a =
1

k(t)
+

1

k(t + π)

and conversely. To finish this step we have to deal with the last property
(v). However, if an oval C is of constant α-width, i.e. dα ≡ const = a
then the length L of the associated hedgehogs Hα is constant and given
by the formula

(31) L =

2π∫
0

P(t)dt =

2π∫
0

a

2
dt = πa.

In the case of α = π we get a = p(t) + p(t + π) which gives the reason
for Barbier theorem, and L is the perimeter of C in this case.
Thus we are done with this non-trivial generalization of the Mellish theo-
rem.
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At the end of my talk we mention three still interesting questions:
1). Is it possible to give a characterization of convex bodies of constant
α-width analogous to that unexpected given by Makai and Martini in
Makai, E. jun.; Martini, H., A new characterization of convex plates of
constant width, Geom. Dedicata 34, No.2, 199-209 (1990).

In this paper the authors prove that a convex plate D ⊂ R2 of diameter
1 is of constant width 1 if and only if any two perpendicular intersecting
chords have total length ≥ 1.
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Figure: An oval given by the support function p(t) = 10 + cos 3t has the
constant width equal to 20
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2). Is it possible to give a counterpart of a theorem given by

A. Miernowski in Parallelograms inscribed in a curve having a circle as π
2 -

isoptic, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A 62, 105-111 (2008)

showing that for a closed, convex curves having circles as π
2 -isoptics, the

maximal perimeter of a parallelogram inscribed in this curve can be realized
by a parallelogram with one vertex at any prescribed point of the curve?
Note that

Jean-Marc Richard observed in Safe domain and elementary geometry, Eur.
J. Phys. 25 (2004), 835– 844

that maximal perimeter of a parallelogram inscribed in a given ellipse can
be realized by a parallelogram with one vertex at any prescribed point of
ellipse.
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Alain Connes and Don Zagier gave in A property of parallelograms inscribed
in ellipses, Amer. Math. Monthly 114 (2007), 909–914
probably the most elementary proof of this property of ellipse.

A nice proof of this fact can be found in M. Berger, Géométrie, Vol. 2,
Nathan, Paris, 1990.
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3). Is it possible to extend the above results to ovaloids, obtaining suitable
generalization of the second part of Mellish paper Notes on differential
geometry, Ann. Math. (2) 32, 181-190 (1931).
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