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Abstract

We continue the investigations regarding the locus problems for certain curves and
quadric surfaces, which are discussed in [6] and [7] in 2D and 3D cases. We explore
the intersecting curves when the fixed point A is outside the surface and when A is at
an infinity. The discoveries from explorations with the help of technological tools in this
paper will assist learners to conduct further research in the area of projective geometry
and beyond.

1 Introduction

In [7], we considered the following:
Original problem: We are given a fixed point A and a generic point C on a specified

curve or surface Σ such that the line l passes through A and C and intersects a well-defined
D on Σ, we want to determine the locus curve or locus surface 4 generated by the point E,

lying on CD, which satisfies
−−→
ED = s

−−→
CD, where s is a real number parameter.

We remark that the original locus problem leads to many interesting projects thanks to
several parameters that need to be taken care of. The location of a fixed point A certainly
determines the locus once the original surface Σ is chosen. The parameter s determines size of
the locus surface 4. As we discussed in [7], the 3D surface Σ we consider in this paper is either
an ellipsoid or a hyperboloid with two sheets. In this paper, we discuss how the locus surface
4 will behave when point A is outside the specified surface Σ. Furthermore, since the location
of the fixed point A will determine the locus surface, we shall distinguish the case when A is
either at an infinity or not. We recall that we calculated the exact expression for the antipodal
point D corresponding to the point C in [7]. In Section 2, we remind readers how we apply the
Vieta formula to find the locus surface. In Section 3, we discuss the scenario, when A is outside
a specified surface Σ but not at an infinity, how we can find the intersecting curves between
Σ and its locus surface 4. It is interesting to note that once the fixed point A is chosen, the
intersecting points or curve stays fixed regardless of the parameter s. In Section 4, we explore



the locus surfaces when A is at an infinity. In such case, the point Dinf can be viewed as the
“limit” of point D when A goes radially to infinity, or as the projection of C along the line l
through the point A “fixed at infinity”. The explorations lead to linear transformations involve
further discussions in [8].

2 Generic methodology to find locus surface

If Σ is the quadric surface F (x, y, z) = 0 we recall from [7] how we find the locus surface when
the fixed point A = (x0, y0, z0) does not go to infinity. We represent a generic point on Σ as

C =

 x̂
ŷ
ẑ

 (1)

In order to calculate the coordinates of point D = (x, y, z) (which is different from C), as
the intersection between the quadric Σ and the line l passing through A and C, we make use
of the parametric equation of line l as follows:

x− x0 = λ(x̂− x0),

y − y0 = λ(ŷ − y0),

z − z0 = λ(ẑ − z0).

Hence, we obtain

y − y0

x− x0

=
ŷ − y0

x̂− x0

, (2)

z − z0

x− x0

=
ẑ − z0

x̂− x0

. (3)

Then we define two auxiliary functions, namely

k
.
= k(x̂, ŷ) =

ŷ − y0

x̂− x0

(4)

m
.
= m(x̂, ŷ) =

ẑ − z0

x̂− x0

(5)

Since both intersection points, C and D, satisfy the implicit equation of Σ, we can use (4) and
( 5) to get the x–coordinate of D, say x1, by calculating the roots of the polynomial

p(x) = a2x
2 + a1x + a0,

It follows from p(x̂) = 0 and the Vieta’s formulas that

x1 = −a1

a2

− x̂.

It follows from (2) and (3) that

y1 = y0 + k(x1 − x0) and z1 = z0 + m(x1 − x0).



For a given s, the locus surface generated by point E = sC + (1− s)D is defined as

∆(x0, y0, z0) =

 xe

ye

ze

 =

 sx̂ + (1− s)x1

sŷ + (1− s)y1

sẑ + (1− s)z1

 .

We remark that once the fixed point A is chosen, since A and C together determine the point
E, the locus surface is thus fixed too.

3 Motivations

In this section, we shall explore how various factors such as, the original surface Σ, the fixed
point A, and the scalar s will affect a locus surface ∆ (Σ, A, s). For example, we may investigate
the following scenarios:

1. How will the radius ρ of the fixed point A = (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0) affect
a locus surface?

2. How will the angle (u0, v0) of the fixed point A = (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0)
affect a locus surface?

3. How will the parameter s > 1 affect a locus surface?

We first use the following two dimensional ellipse to motivate our findings:

3.1 The ellipse case when the fixed point A is not at infinity

Consider the ellipse c
x2

a2
+

y2

b2
= 1 (6)

and let A = (x0, y0) be a fixed point “outside” c. In [6], the locus curve γ : [0, 2π] → R2 was
determined in parametric form as

γ(t) =

 s a cos(t) + (1− s)
a3y2

0 cos(t)−2a2b x0y0 sin(t)−a b2x2
0 cos(t)+2a2b2x0−a3b2 cos(t)

a2y2
0−2a2b y0 sin(t)+b2x2

0−2a b2x0 cos(t)+a2b2

s b sin(t) + (1− s)
a2b y2

0 sin(t)+(2a b2x0 cos(t)−2a2b2)y0−b3x2
0 sin(t)+a2b3 sin(t)

a2y2
0−2a2b y0 sin(t)+b2x2

0−2a b2x0 cos(t)+a2b2


The Figure 1 shows the locus curves (orange) and the original ellipse (blue) for a = 8, b = 6,
A = (10, 10) and s = 0.75, 1.5, and 2.0 respectively.



Figure 1. Locus curves when s = 0.75, 1.5 and 2.0 respectively.

With the help of [1] we see that, for any s > 1, the corresponding locus curve intersects tan-
gentially the ellipse at the same points, say P1 and P2. Consider now the following experiment:
construct a point C on the ellipse and draw the corresponding tangent line, using for example
the command Tangent(Point,Conic). Turns out that the tangent lines to the ellipse at points
P1 and P2 will contain the point A (this is what is expected from the geometric construction of
the locus curve generated by point E = sC + (1− s)D, because when D = C, we see E = C.

The intersecting points does not depend on the parameter s; the idea is that intersecting
points are those that are equal to their “antipodal” points and are equal to the points of
tangency of the lines from A to the ellipse. The Figure 2 below shows the construction when
we drag C on P1.

Figure 2. Tangent line for the ellipse at intersecting point P1.



Therefore, when the fixed point A is given, the problem of finding the tangency points of
the ellipse with any locus curve reduces to the simple problem to find the tangent lines passing
through point A. We describe the procedure as follows:

1. We set the Eq1 as the equation the ellipse c :

F (x, y) =
x2

a2
+

y2

b2
− 1 = 0 (7)

2. We calculate the gradient of F (x, y),

∇F (x, y) =

(
2x

a2
,
2y

b2

)
(8)

3. For generic point P (x, y), we consider the vector
−→
PA = (x− x0, y − y0).

4. The condition of ∇F (x, y)⊥
−→
PA yields to the following:

2x
x− x0

a2
+ 2y

y − y0

b2
= 0. (9)

5. We solve, using [1] (see [S1]), Eq1 and Eq2 for x and y to get the intersecting points,

P1 =

(
a2y0

√
a2y2

0 + b2x2
0 − a2b2 + a2b2x0

a2y2
0 + b2x2

0

,−b2x0

√
a2y2

0 + b2x2
0 − a2b2 − a2b2y0

a2y2
0 + b2x2

0

)
and

P2 =

(
−a2y0

√
a2y2

0 + b2x2
0 − a2b2 − a2b2x0

a2y2
0 + b2x2

0

,
b2x0

√
a2y2

0 + b2x2
0 − a2b2 + a2b2y0

a2y2
0 + b2x2

0

)

3.2 The ellipsoid case when fixed point A is not at infinity

We want to find the tangent plane T at a point P on the ellipsoid C =

 x̂
ŷ
ẑ

 such that

T is passing through the fixed point A = (x0, y0, z0) . If the ellipsoid is the level surface of

F (x, y, z) = x2

a2 + y2

b2
+ z2

c2
− 1 = 0. Then the gradient at a point of the ellipsoid is OF (x, y, z) =(

2x
a2 ,

2y
b2

, 2z
c2

)
, then we see the tangent plane as follows:

T (x, y, z) = OF (x, y, z) · (x− x0, y − y0, z − z0) = 0, (10)

We thus solve F (x, y, z) = 0 and T (x, y, z) = 0 for the variables x, y and with the help of [7],
we obtain the followings:

x = −

a2

RootOf

 (
a2y0 2 + b2x0 2

)
Z2 + a2c4 − 2 a2c2zz0

+a2z2z02 − c4x02 + c2x02z2

+ (−2 a2c2y0 + 2 a2y0 zz0 ) Z

 y0− c2 + zz0


c2x0

, (11)

y =

RootOf

 (
a2y0 2 + b2x0 2

)
Z 2 + a2c4 − 2 a2c2zz0

+a2z2z0 2 − c4x0 2 + c2x0 2z2

+ (−2 a2c2y0 + 2 a2y0 zz0 ) Z

 b2

c2
(12)



Consequently, we have two branches for each of the respective variables x and y. We list them
accordingly below:

x1 =
a2

c2x0 (a2y0
2 + b2x0

2)

 −

√√√√√−c2x0
2

 ((a2y0
2 + b2x0

2) c2 + a2b2z0
2)

(cos (t))2 − 2 a2cz0 cos (t) b2

+c2 ((b2 − y0
2) a2 − b2x0

2)

y0

+b2cx0
2 (− cos (t) z0 + c)



x2 =
a2

c2x0 (a2y0
2 + b2x0

2)


√√√√√−c2x0

2

 ((a2y0
2 + b2x0

2) c2 + a2b2z0
2)

(cos (t))2 − 2 a2cz0 cos (t) b2

+c2 ((b2 − y0
2) a2 − b2x0

2)

y0

+b2cx0
2 (− cos (t) z0 + c)



y1 =
b2

(a2y0
2 + b2x0

2) c2


√√√√√−c2x0

2

 ((a2y0
2 + b2x0

2) c2 + a2b2z0
2)

(cos (t))2 − 2 a2cz0 cos (t) b2

+c2 ((b2 − y0
2) a2 − b2x0

2)


+a2cy0 (− cos (t) z0 + c)



y2 =
b2

(a2y0
2 + b2x0

2) c2

 −

√√√√√−c2x0
2

 ((a2y0
2 + b2x0

2) c2 + a2b2z0
2)

(cos (t))2 − 2 a2cz0 cos (t) b2

+c2 ((b2 − y0
2) a2 − b2x0

2)


+a2cy0 (− cos (t) z0 + c)


Accordingly, we have two branches of the space curves, which we describe them, respectively,
as follows:

1. r1(t) = (x∗1(t), y
∗
1(t), z

∗(t)) , where z∗(t) = c cos t, and x∗1(t), y
∗
1(t) are shown below respec-

tively. First, we let

δ =

√
−c2x0

2

(
( c2 (a2y0

2 + b2x0
2) + a2b2z0

2) (cos (t)) 2

−2 b2ca2 cos (t) z0 + c2 ((b2 − y0
2) a2 − b2x0

2)

)
(13)

x∗1(t) =
−a2

c2x0 (a2y0
2 + b2x0

2)

(
δy0 + b2cx0

2 (− cos (t) z0 + c)
)

, (14)

y∗1(t) =
b2

c2 (a2y0
2 + b2x0

2)

(
δ + a2cy0 (− cos (t) z0 + c)

)
. (15)

2. r2(t) = (x∗2(t), y
∗
2(t), z

∗(t)) , where z∗(t) = c cos t, and x∗2(t), y
∗
2(t) can be shown below

respectively:

x∗2(t) =
a2

c2x0 (a2y0
2 + b2x0

2)

(
δy0 + b2cx0

2 (− cos (t) z0 + c)
)
, (16)

y∗2(t) =
−b2

c2 (a2y0
2 + b2x0

2)

(
δ + a2cy0 (− cos (t) z0 + c)

)
. (17)



We use a = 5, b = 4, c = 3, x0 = 7, y0 = 8, z0 = 9 and plot the intersecting curve together
with the ellipsoid and its locus surface when s = 3 in Figure 3. We remark that the intersecting
curve in red will not vary when s varies once the fixed point A = (x0, y0, z0) is fixed. We use
[S2] for exploration for this observation.

Figure 3. Intersecting curve between an ellipsoid and its locus surface.

3.3 Locus surface for a sphere

We let Σ be the sphere x2+y2+z2 = r2, and let the fixed point A = (ρ sin v0 cos u0, ρ sin v0 sin u0, ρ cos v0)
be on S1 : x2 + y2 + z2 = ρ2 with ρ 6= r and ρ < ∞. Because Σ is symmetric with respect to the
origin and in view of preceding exploration with the locus for ellipsoid, it is natural to expect
the shape of the locus for Σ stays unchanged and is coordinate free. Specifically, if we move
the fixed points A1, A2, ..., An ∈ S1 sequentially:

A1 → A2 → ... → An (18)

with An = A. Then ∆i, the locus surface of Σ with respect to Ai, for i = 1, 2, ...n, moves
sequentially

∆1 → ∆2 → ... → ∆n, (19)

and we would expect that ∆n = ∆. However, we shall explore that even if ∆n = ∆, these
two surfaces may be of different structures from differential geometry points of view. To begin
with, we remark that it is an easy exercise to note that the antipodal points D of C for quadric
surfaces by applying the Vieta’s formula discussed in [7] is a non-linear transformation
when ρ < ∞ and the fixed point A is not on the x, y or z axis. In the following, we describe
how we can establish a sequence of non-linear transformations from a sphere to its locus surface
∆∗ with the property of ∆ = ∆∗.

Theorem 1 For s > 0 given, let Σ be the sphere x2 + y2 + z2 = r2, A1 = (0, 0, ρ) and
A = (ρ sin v0 cos u0, ρ sin v0 sin u0, ρ cos v0). We denote ∆1 to be the locus surface of Σ with
respect to A1 and ∆ to be the locus surface of Σ with respect to A. If Ry (v0) represents the
rotation by v0 radians around y–axis, and Rz(u0) represents the rotation by u0 radians around
z–axis, then Rz (u0) ◦Ry (v0) (∆1) = ∆.



Proof. Method 1. (Rz (u0) ◦Ry (v0) (∆1) is congruent to ∆.)
Let us consider the transformations T = Rz (u0) ◦ Ry (v0) and T−1 = Ry (−v0) ◦ Rz (−u0).

For arbitrary E ∈ Rz (u0) ◦Ry (v0) (∆1), there exists E1 ∈ ∆1 such that E = T (E1) where

E1 = sC1 + (1− s)D1 with C1, D1 ∈ Σ ∩
←→

A1C1.

A direct calculation shows that T (A1) = A and, since T is a rigid transformation, for C
.
=

T (C1) and D
.
= T (D1), we have that

E = sC + (1− s)D with C, D ∈ Σ ∩
←→
AC.

This shows that Rz (u0)◦Ry (v0) (∆1) ⊂ ∆. The contention of ∆ ⊂ Rz (u0)◦Ry (v0) (∆1) follows
from a similar argument by using T−1.

Method 2. (Expressing Rz (u0) ◦ Ry (v0) (∆1) via a non-linear transformation) We let ∆1

be the locus surface for Σ when u0 = v0 = 0, and let C1 =

 x̂
ŷ
ẑ

 ∈ Σ and D1 be the antipodal

point C1. By the definition of D1, we may write

D1 =

 x1
1

y1
1

z1
1

 =
1

ρ2 + r2 − 2ρr cos v

 ρ2 − r2 0 0
0 ρ2 − r2 0

0 0
−(ρ2+r2)+2r2ρ

cos v


 x̂

ŷ
ẑ

 . (20)

Consequently, we define T1 : Σ → ∆1 by

T1

 x̂
ŷ
ẑ

 = s

 x̂
ŷ
ẑ

+ (1− s)

 x1
1

y1
1

z1
1

 ,

= s

 x̂
ŷ
ẑ

+
1− s

ρ2 + r2 − 2ρr cos v

 ρ2 − r2 0 0
0 ρ2 − r2 0

0 0
−(ρ2+r2) cos v+2r2ρ

cos v


 x̂

ŷ
ẑ



=


s +

(ρ2−r2)(1−s)

ρ2+r2−2ρr cos v
0 0

0 s +
(ρ2−r2)(1−s)

ρ2+r2−2ρr cos v
0

0 0 s− (1−s)((ρ2+r2) cos v−2rρ)
(ρ2+r2−2ρr cos v) cos v


 x̂

ŷ
ẑ



=


sr cos (u) sin (v)− (1− s) cos (u) (r2 − ρ2) sin (v) r

−2 ρ cos (v) r + r2 + ρ2

sr sin (u) sin (v)− (1− s) r sin (u) sin (v) (r2 − ρ2)

−2 ρ cos (v) r + r2 + ρ2

sr cos (v)− (1− s) r ((r2 + ρ2) cos (v)− 2 rρ)

−2 ρ cos (v) r + r2 + ρ2


= ∆1 (21)



We remark that matrix

M =


s +

(ρ2−r2)(1−s)

ρ2+r2−2ρr cos v
0 0

0 s +
(ρ2−r2)(1−s)

ρ2+r2−2ρr cos v
0

0 0 s− (1−s)((ρ2+r2) cos v−2rρ)
(ρ2+r2−2ρr cos v) cos v


is a non-linear transformation and ∆1 is an image of a non-linear transformation. If we let
Ry (v0) and Rz(u0) represent the rotation matrix around y and z axes respectively as follows:

Ry (v0) =

 cos v0 0 sin v0

0 1 0
− sin v0 0 cos v0

 , Rz (u0) =

 cos u0 − sin u0 0
sin u0 cos u0 0

0 0 1

 . (22)

We leave it to a CAS to prove that Rz (u0) ◦Ry (v0) (∆1) produces the same surface as ∆.
Remarks:

1. In the preceding theorem, Rz (u0) ◦ Ry (v0) (∆1) is congruent to ∆. However, these two
locus surfaces have different characteristics in differential geometry sense. For example,
the cross sections are different for Rz (u0)◦Ry (v0) (∆1) and ∆ respectively, when u or v is
being kept as constant, and yet they have different characteristics in differential geometry
sense. See the Example below.

2. In view of the preceding Theorem, if the fixed point A is on the x, y or z axis, the
transformation from Σ to the corresponding locus surface is a non-linear transformation.
The following result is trivial, which we omit the proof.

Corollary. If Σ is the sphere x2+y2+z2 = r2, and we let A = (ρ sin v0 cos u0, ρ sin v0 sin u0, ρ cos v0)
be on S1 : x2 + y2 + z2 = ρ2 with ρ 6= r, and A is not on the x, y or z axis. Then there exists
a transformation T ∗ on Σ such that T ∗(Σ) and ∆ are same surface but with different cross
sections, where ∆ is the locus surface of Σ with respect to the fixed point A.

We use the following Example to demonstrate the effect of the preceding theorem.

Example 2 Consider the sphere S0 of x2 + y2 + z2 = 25, and the fixed point of

A =
((

7 sin
π

4

)(
cos

π

4

)
,
(
7 sin

π

4

)(
sin

π

4

)
, 7 cos

π

4

)
. (23)

We shall show that to obtain the locus surface ∆ for A when s = 3. We may pursue in the
following ways. First, we pick u0 = v0 = 0 for the fixed point

A1 = ((7 sin 0) (cos 0) , (7 sin 0) (sin 0) , 7 cos 0) = (0, 0, 7), (24)

and let the locus surface ∆1 be the one with respect to A1. We first depict the surface ∆ for A
when s = 3 together with S0 in Figure 4 below.



Figure 4. Locus surface ∆ together with S0.

We notice that ∆ is tangent to S0 at an intersecting curve as we have discussed in the
preceding section. Furthermore, we depict the locus ∆ in Figure 5(a). Next we compute Rz (u0)◦
Ry (v0) ◦∆1, with u0 = v0 = π

4
, and the plot can be seen as in Figure 5(b).

Figure 5(a). The locus for ∆. Figure 5(b). The locus surface
Rz (u0) ◦Ry (v0) ◦∆1.

The traces for ∆ and Rz (u0) ◦ Ry (v0) ◦∆1 when u = π
2

can be seen in Figures 5(c) and 5(d)
respectively.

Figure 5(c) The traces for ∆ when u = π
2
. Figure 5(d). The traces for

Rz (u0) ◦Ry (v0) ◦∆1 when u = π
2
.



It is a good exercise, which we leave it to readers to explore with a CAS or DGS that
the the trace for ∆ when u = π

2
(Figure 5(c)) does not lie on the same plane but the trace

for Rz (u0) ◦ Ry (v0) ◦ ∆1 when u = π
2

does lie on the same plane (Figure 5(d)). See [S3] for
explorations.

In the next section, we show that when the fixed point A is at infinity, the mapping which
sends a quadric surface to its locus surface is a linear transformation.

4 When the fixed point is at an infinity

We first describe two approaches how we may obtain the locus surfaces when the fixed point
A, written in its spherical coordinate, (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0) , is at an infinity.
We remark that the following Method 2 is essentially identical to the Method 1 after letting
ρ →∞.

Method 1. We let the radius of spherical coordinate for A = (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0),
ρ, go to infinity

We describe the locus surface in the following steps:

1. If A = (ρ cos u0 sin v0, ρ sin u0 sin v0, ρ cos v0) . Let us note that 4 and 5 become,

k =
ŷ − ρ sin u0 sin v0

x̂− ρ cos u0 sin v0

(25)

m =
ẑ − ρ cos v0

x̂− ρ cos u0 sin v0

(26)

2. We follow the usual procedure to find the intersection between the line AC and the
quadric surface at D = (x1, y1, z1) respectively by adopting the Vieta’s formula.

3. Next we let ρ →∞ to obtain the corresponding intersection point Dinf = (x1 inf , y1 inf , z1 inf)

4. The corresponding locus surface, is defined as Einf = (xe inf , ye inf , ze inf) where

xe inf = sx̂ + (1− s) (x1 inf)

ye inf = sŷ + (1− s) (y1 inf)

ze inf = sẑ + (1− s) (z1 inf) .

Method 2. We take k (4) and m (5) to be fixed angles after letting ρ →∞.

1. We fix the angles u0 ∈ (0, 2π) − {π
2
, 3π

2
} and v0 ∈ (0, π) , and let the point A going to

infinity in the direction (sin v0 cos u0, sin v0 sin u0, cos v0). Taking the limit of 25 and 26
when ρ →∞ we get,

k0
.
= k(u0, v0) =

sin v0 sin u0

sin v0 cos u0

= tan u0, (27)

and
m0

.
= m(u0, v0) =

cos v0

sin v0 cos u0

= cot v0 sec u0.. (28)



2. By using the followings and substitute into the implicit equation of the quadric, F (x, y, z) =
0,

y = ŷ + k0(x− x̂),

z = ẑ + m0(x− x̂),

we follow the Vieta’s formula to find the x–coordinate of the the antipodal point D′inf ,
say x′1inf , by calculating the roots of the polynomial

p(x) = a2x
2 + a1x + a0.

3. For a given s, the locus surface generated by point E ′inf = sC + (1− s)D′inf is defined as

∆′inf(s, u0, v0) =

 x′e inf

y′e inf

z′e inf

 =

 sx̂ + (1− s)x′1 inf

sŷ + (1− s)y′1 inf

sẑ + (1− s)z′1 inf

 .

Calculations in Exploration [S4] shows that Dinf = D′inf , and therefore Einf = E ′inf , so
the locus surfaces ∆inf(s, u0, v0) and ∆′inf(s, u0, v0) produced by Method 1 and Method 2,
respectively, are identical.

We explore the locus surfaces for ellipsoids and hyperbolic with two sheets when A is at an
infinity in the following subsections.

4.1 Ellipsoid

Let Σ be the ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1. Following the methodology set out in the previous

section, we calculate the roots of the polynomial

p(x) = a2x
2 + a1x + a0,

where

a2 =
a2b2m2 + a2c2k2 + b2c2

a2b2c2
(29)

a1 =
2
(
z0b

2m + y0c
2k − x0(b

2m2 + c2k2)
)

b2c2
(30)

a0 =
x2

0

(
b2m2 + c2k2

)
− 2x0

(
z0b

2m + y0c
2k
)

+ y2
0c

2 + z2
0b

2 − b2c2

b2c2
. (31)

The explicit expressions for Dinf , Einf and ∆inf(s, u0, v0) are calculated in Exploration [S5].
See [S6] for dynamic explorations.

We depict the locus surface (blue) when s = 2, a = 5, b = 4, c = 3, with u0 = π
3
, v0 = π

4
and

ρ →∞ together with the original ellipsoid (yellow) in Figure 6.



Figure 6. Locus ellipsoid when s = 2.

4.2 Hyperboloid with two sheets

Let Σ be the hyperboloid with two sheets x2

a2 + y2

b2
− z2

c2
= −1. Following the methodology set

out in the previous section, we calculate the roots of the polynomial

p(x) = a2x
2 + a1x + a0,

where

a2 =
a2c2k2 − a2b2m2 + b2c2

a2b2c2
(32)

a1 =
2y0c

2k − 2x0 (c2k2 − b2m2)− 2z0b
2m

b2c2
(33)

a0 =
2x0z0b

2m− 2x0y0c
2k − x2

0 (b2m2 − c2k2) + y2
0c

2 − z2
0b

2 + b2c2

b2c2
. (34)

The explicit expressions for Dinf , Einf and ∆inf(s, u0, v0) are calculated in Exploration [S7].
See [S8] for dynamic explorations.

We depict the locus surface (blue) when s = 0.8, a = 5, b = 4, c = 3, with u0 = π
6
, v0 = π

3

and ρ →∞ together with the original hyperboloid (yellow) in Figure 7.

Figure 7. Locus hyperboloid when s = 0.8



5 Special Cases

We show that both methods coincide when the point A = (x0, y0z0) is at infinity on x −
axis, y−axis or z−axis respectively. In other words, when x0 → ±∞, y0 → ±∞ or z0 → ±∞
respectively, both methods produce the same locus surfaces.

1. If the fixed point A = (x0, y0z0) is on the x−axis and we let x0 → ±∞, D = (x1, y1, z1) =
(−x̂, ŷ, ẑ)) is simply a reflection of C along the x− axis. Consequently, the locus surfaces
is  sx̂ + (1− s)(−x̂)

sŷ + (1− s)ŷ
sẑ + (1− s)ẑ

 =

 (2s− 1)x̂
ŷ
ẑ

 . (35)

2. If the fixed point A = (x0, y0z0) is on the y−axis and we let y0 → ±∞, D = (x1, y1, z1) =
(x̂,−ŷ, ẑ) is simply a reflection of C along the y − axis. Consequently, the locus surfaces
is  sx̂ + (1− s)x̂

sŷ + (1− s)(−ŷ)
sẑ + (1− s)ẑ

 =

 x̂
(2s− 1)ŷ

ẑ

 . (36)

3. If the fixed point A = (x0, y0z0) is on the z − axis and we let z0 →∞, D = (x1, y1, z1) =
(x̂, ŷ,−ẑ) is simply a reflection of C along the z − axis. Consequently, the locus surfaces
is  sx̂ + (1− s)x̂

sŷ + (1− s)ŷ
sẑ + (1− s)(−ẑ)

 =

 x̂
ŷ

(2s− 1)ẑ

 . (37)

5.1 Remarks for the ellipsoid case

When the point A = (x0, y0, z0) is at infinity on x−axis, say x0 → +∞, the above calculations
show the followings:

1 The locus surface ∆inf(s, u0 = 0, v0 = π/2) is the image of Σ under the linear transforma-
tion given by the matrix

L =

 2s− 1 0 0
0 1 0
0 0 1


Let us note that this locus surface is an ellipsoid, say:

∆x inf
.
= ∆inf(s, u0 = 0, v0 = π/2) =

{
(x, z, z) ∈ R3 :

x2

((2s− 1)a)2
+

y2

b2
+

z2

c2
= 1

}
2 If s ∈ R+ \ {1} then Σ and ∆x inf intersect tangentially just at an elliptical curve, say:

γx=0 =

{
(x, y, z) ∈ R3 : x = 0,

y2

b2
+

z2

c2
= 1

}
.



Proof. Clearly, γx=0 ⊆ Σ ∩∆x inf . Now, (x̄, ȳ, z̄) ∈ Σ ∩∆x inf implies that

1 =
x̄2

a2
+

ȳ2

b2
+

z̄2

c2
=

x̄2

((2s− 1)a)2
+

ȳ2

b2
+

z̄2

c2

so, (2s − 1)2 x̄2 = x̄2. Since s 6= 1, we conclude that x̄ = 0, that is, (x̄, ȳ, z̄) ∈ γx=0, and
therefore Σ ∩∆x inf ⊆ γx=0.

Remark 3 1 Let us denote by

Σ =

{
(x, y, z) ∈ R3 :

x2

a2
+

y2

b2
+

z2

c2
≤ 1

}
the solid ellipsoid which boundary is Σ. Then we see ∆x inf ( Σ for 0 < s < 1.

Proof.

Given (x, y, z) ∈ ∆x inf , choose (x̂, ŷ, ẑ) ∈ Σ such that x = (2s − 1)x̂, y = ŷ and z = ẑ.
Then

x2

a2
+

y2

b2
+

z2

c2
=

(2s− 1)2x̂2

a2
+

ŷ2

b2
+

ẑ2

c2
<

x̂2

a2
+

ŷ2

b2
+

ẑ2

c2
≤ 1.

2 Let us denote by

∆x,inf =

{
(x, y, z) ∈ R3 :

x2

((2s− 1)a)2
+

y2

b2
+

z2

c2
≤ 1

}
the solid ellipsoid which boundary is ∆x,inf . Then, s > 1 implies Σ ( ∆x,inf .

Proof.

The proof is similar to (1). Similar statements hold when x0 → −∞, y0 → ±∞ or
z0 → ±∞ respectively.

In view of 1, we prove the result for A being at an infinity as follows:

Theorem 4 For s > 0 given, let Σ be the sphere x2 + y2 + z2 = r2, A1 be at the infinity on the
z axis, and A = (ρ sin v0 cos u0, ρ sin v0 sin u0, ρ cos v0) when ρ → ∞. We denote ∆1 to be the
locus surface of Σ with respect to A1 and ∆ to be the locus surface of Σ with respect to A. If
Ry (v0) represents the rotation by v0 radians around y–axis, and Rz(u0) represents the rotation
by u0 radians around z–axis, then Rz (u0) ◦Ry (v0) (∆1) = ∆.

Proof. We let ρ → ∞ for A1 = (0, 0, ρ) , and compute the matrices in method 2 in 1.

It turns out, as expected, that the antipodal point D1 is

 r cos u sin v
r sin u sin v
−r cos v

 and the locus ∆1 is

 sr cos u sin v + (1− s)r cos u sin v
sr sin u sin v + (1− s)r sin u sin v

sr cos v − (1− s)r cos v

 . (38)

We proceed and compute Rz (u0)◦Ry (v0) (∆1) and let a CAS to verify that Rz (u0)◦Ry (v0) (∆1) =
∆.



5.2 Remarks for the hyperboloid with two sheets

When the point A = (x0, y0, z0) is at infinity on x−axis, say x0 → +∞, the above calculations
show the followings:

1 The locus surface ∆inf(s, u0 = 0, v0 = π/2) is the image of Σ under the linear transforma-
tion given by the matrix:

L =

 2s− 1 0 0
0 1 0
0 0 1


Let us note that this locus surface is an hyperboloid with two sheets, say:

∆x inf
.
= ∆inf(s, u0 = 0, v0 = π/2) =

{
(x, z, z) ∈ R3 :

x2

((2s− 1)a)2
+

y2

b2
− z2

c2
= −1

}
2 If s ∈ R+ \ {1} then Σ and ∆x inf intersect tangentially just at an hyperbolic curve, say:

γx=0 =
{

(x, y, z) ∈ R3 : x = 0, y2

b2
− z2

c2
= −1

}
.

Proof. Clearly, γx=0 ⊆ Σ ∩∆x inf . Now, (x̄, ȳ, z̄) ∈ Σ ∩∆x inf implies that,

−1 =
x̄2

a2
+

ȳ2

b2
− z̄2

c2
=

x̄2

((2s− 1)a)2
+

ȳ2

b2
− z̄2

c2

so, (2s−1)2 x̄2 = x̄2. Since s 6= 1, we conclude that x̄ = 0, that is, (x̄, ȳ, z̄) ∈ γx=0, and therefore
Σ ∩∆x inf ⊆ γx=0.

3 Let us denote by

Σ =

{
(x, y, z) ∈ R3 :

x2

a2
+

y2

b2
− z2

c2
≤ −1

}
the solid hyperboloid with two sheets whose boundary is Σ. Then we have ∆x inf ( Σ for
0 < s < 1.

Proof. Given (x, y, z) ∈ ∆x inf , choose (x̂, ŷ, ẑ) ∈ Σ such that x = (2s − 1)x̂, y = ŷ and
z = ẑ. Then,

x2

a2
+

y2

b2
− z2

c2
=

(2s− 1)2x̂2

a2
+

ŷ2

b2
− ẑ2

c2
<

x̂2

a2
+

ŷ2

b2
− ẑ2

c2
≤ −1.

4 Let us denote by

∆x,inf =

{
(x, y, z) ∈ R3 :

x2

((2s− 1)a)2
+

y2

b2
− z2

c2
≤ −1

}
the solid hyperboloid with two sheets whose boundary is ∆x,inf . Then we have Σ ( ∆x,inf

for s > 1.

Proof. The proof is similar to (3). Similar statements hold when x0 → −∞, y0 → ±∞ or
z0 → ±∞ respectively.



6 Main results

This section is to say the locus problem is a linear transformation between the specified surface
Σ and the locus surface ∆ when A is at an infinity. However, due to the length requirement for
the paper, we simply state the following results and their respective proofs can be found in [8].

Theorem 5 Let Σ be a quadric surface, and let Ainf(u0, v0) be the fixed point at infinity in
the direction of (cos u0 sin v0, sin u0 sin v0, cos v0), C ∈ Σ and Dinf be the “antipodal” point of
C corresponding to Ainf(u0, v0) as described in previous sections. Then there exists an affine
transformation AD : R3 → R3 such that AD(C) = Dinf .

Corollary. Given s > 0, consider same hypothesis as in Theorem 5 and let Einf = sC +
(1− s)Dinf . Then the affine transformation

AE = sI + (1− s)AD

is such that AE(C) = Einf , where I is the identity mapping from R3 to R3.

Proposition 6 In Theorem 5, if Σ is the ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1, then there exists a matrix

Le
D =

[
leij
]
3×3

such that Le
D C = Dinf .

Corollary. Given s > 0, consider same hypothesis as in Proposition 6 and let Einf =
sC + (1− s)Dinf . Then the matrix

Le
E = sI + (1− s)Le

D

is such that Le
E C = Einf , and therefore, the locus surface ∆inf(s, u0, v0) is the image of Σ under

the linear transformation given by the matrix Le
E = [leij]3×3.

Proposition 7 For s ∈ R \ {1}, the ellipsoid Σ and locus ellipsoid ∆inf(s, u0, v0) intersect
themselves tangentially at an elliptical curve.

Exploration [S6] contains an animation to exemplify the previous result.

Proposition 8 For s ∈ R+ \ {1}, if the hyperboloid with two sheets Σ and corresponding locus
surface ∆inf(s, u0, v0) intersect themselves, they do it tangentially at an hyperbolical curve.

Finally, we can verify that the gradient of Σ and ∆inf(s, u0, v0) are colinear when evaluated
at any point on γ when Σ is a hyperboloids with two sheets, see Figure 8 and exploration [S8].

Figure 8. Intersection of the hyperboloid
∑

and its corresponding locus.



In [8], we shall further discuss how the eigenvectors of a linear transformation on a quadric
surface, when the fixed point A is at an infinity, will affect the shapes of locus surfaces when s
gets larger and larger and when s →∞ respectively.

7 Conclusions

In this paper, we have explored the locus problems when the fixed point A is outside a specified
curve or surface. When A is not at an infinity, although the projection T : Σ → ∆ is not a
linear map, the result is interesting because the intersecting points in 2D or intersecting curve
in 3D remains fixed regardless of the parameter s. When the fixed point A is at an infinity, the
projection T : Σ → ∆ becomes a linear transformation. We shall further discuss this linear
transformation in [8]. It is delighted to see a simple college entrance exam problem originated
from China [6] has led to many interesting discoveries in projective geometry, differential geom-
etry (see [6]), and possibly other areas. The explorations, discussed all papers that are elated
to this locus problem, are very accessible to undergraduate or graduate students, we believe
that the concepts involved can be comprehended to future math teachers. Only when the math
contents are enriched for our math teachers, can we increase our success in teaching math for
our future generations.

It is clear that technological tools provide us with many crucial intuitions before we attempt
more rigorous analytical solutions, and lead to many unexpected discoveries. Here we have
gained geometric intuitions while using a DGS. In the meantime, we use a CAS for verifying
that our analytical solutions are consistent with our initial intuitions. Incorporating a DGS
and CAS into exploring a problem definitely has made mathematics fun and accessible on one
hand, but they also allow the exploration of more challenging and theoretical mathematics. We
hope that when mathematics is made more accessible to students, it is possible more students
will be inspired to investigate problems ranging from the simple to the more challenging. We
do not expect that exam-oriented curricula will change in many parts of the world. However,
encouraging a greater interest in mathematics for students, and in particular, providing them
with the technological tools to solve challenging and intricate problems beyond the reach of
pencil and paper, is an important step for cultivating creativity and innovation.

8 Supplementary Electronic Materials

[S1] GeoGebra worksheet for ellipse case in Section 3.1.

[S2] GeoGebra worksheet for ellipsoid case in Section 3.2.

[S3] Maple worksheet for Sections 3.2, 3.3 and Example 2.

[S4] wxMaxima worksheet for methods 1 and 2 in Section 4.1.

[S5] wxMaxima for ellipsoid case in Sections 4.1 and 6.

[S6] GeoGebra worksheet for ellipsoid case in Sections 4.1 and 6.

[S7] wxMaxima worksheet for hyperboloid case in Sections 4.2 and 6.

https://atcm.mathandtech.org/EP2021/invited/21877/s1_Section3-1.ggb
https://atcm.mathandtech.org/EP2021/invited/21877/s2_Section3-2.ggb
https://atcm.mathandtech.org/EP2021/invited/21877/s3-Section3-2_3-3_Example2.mw
https://atcm.mathandtech.org/EP2021/invited/21877/s4_Section4.wxmx
https://atcm.mathandtech.org/EP2021/invited/21877/s5_Sections46.wxmx
https://atcm.mathandtech.org/EP2021/invited/21877/s6_Sections46.ggb
https://atcm.mathandtech.org/EP2021/invited/21877/s7_Sections46.wxmx


[S8] GeoGebra worksheet for hyperboloid case in Sections 4.2 and 6.
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