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Abstract

The discussions in this paper were inspired by a college entrance practice exam from
China. It is extended to investigate the locus curve that involves a point on an ellipse and
its pseudo antipodal point with respect to a �xed point. With the help of technological tools,
we explore 2D locus for some regular closed curves. Later, we investigate how a locus curve
can be extended to the corresponding 3D locus surfaces on surfaces like ellipsoid, cardioidal
surface and etc. Secondly, we use the de�nition of a developable surface (including tangent
developable surface) to construct the corresponding locus surface. It is well known that, in
robotics, antipodal grasps can be achieved on curved objects. In addition, there are many
applications already in engineering and architecture about the developable surfaces. We
hope the discussions regarding the locus surfaces can inspire further interesting research
in these areas.

1 Introduction

Technological tools have in
uenced our learning, teaching and research in mathematics in many
di�erent ways. In this paper, we start with a simple exam problem and with the help of tech-
nological tools, we are able to turn the problem into several challenging problems in 2D and
3D. The visualization bene�ted from exploration provides us crucial intuition of how we can
analyze our solutions with a computer algebra system. Therefore, while implementing techno-
logical tools to allow exploration in our curriculum is de�nitely a must. How we can encourage
learners to discover more dynamic content knowledge in mathematics and its applications re-
mains a challenging task. In this paper, we use examples to demonstrate how the following
pedagogical issues can be addressed.

1. How can our explorations be linked to real life applications?

2. Can our problems be made accessible to general audience with the help of technological
tools?
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3. Can graphical representations inspire more learners to do more explorations?

4. Can students make use of the existing Dynamic Geometry System (DGS) and Computer
Algebra System (CAS) to verify their conjectures?

We consider the following problem that is being modi�ed from ([4]).
An exam-based 2D Problem: We are given a �xed circle in black and a �xed point A

in the interior of the circle (x� a)2+(y� b)2 = r2; where center O = (a; b) (see Figures 1(a) or
1(b)). A line passes through A and intersects the circle at C and D respectively, and the point
E is the midpoint of CD: Find the locus E: It is easy to see that the locus E is a circle (see
Figure 1(a)), which we leave it to readers to explore.

Figure 1(a). Locus and
lines passing through a

�xed point

Figure 1(b). Locus, circle
and perpendicular

We shall discuss the solution for a more general case in Section 2 below. They key relies on
the Vieta's formulae to �nd the pseudo-antipodal points with respect to a �xed point. In
Section 3, we demonstrate how we further apply the Vieta's formula on an ellipsoid to obtain
the corresponding locus surface. In Section 4, we show that if the �xed point is at the origin
(0; 0) in 2D, the pseudo-antipodal points with respect to the origin for a parametric equation
[r(t) cos t; r(t) sin t] ; where r(t) represents a smooth closed curve and t 2 [0; 2�] ; is simply
[r(t+ �) cos (t+ �) ; r(t+ �) sin (t+ �)] :We use the rotation technique to �nd the locus surface
for a cardioidal surface. In Section 5, we make use of the de�nition of a developable surface
and use the base curve to be either an ellipse and cardioid to explore the corresponding locus
surfaces. Finally, we discuss how developable surfaces have been discussed in many applications
and hope our discussions on locus curves an surfaces can encourage more real-life applications.

2 Vieta's Formulae in Ellipse and its Locus Curve

We show that the Vieta's formulae can be applied when the implicit equation of a curve is of
degree 2. We start with the case of ellipse below. First, we recall that for a real polynomial of
degree n, say p(x) = anx

n + an�1x
n�1 + � � �+ a1x+ a0, having roots r1; r2; : : : ; rn, then Vieta's
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formulas are:

r1 + r2 + � � �++rn�1 + rn = �
an�1
an

;

(r1r2 + � � �+ r1rn) + (r2r3 + � � �+ r2rn) + (rn�1rn) =
an�2
an

;

...

r1r2 � � � rn�1rn = (�1)n
a0
an
: (1)

Since the method we discuss in this section is to �nd locus for the graph of a quadratic
equation, the Vieta's formulae (1) we need is when n = 2:We demonstrate the process by using
an ellipse, we leave other similar scenarios to readers to explore. Suppose we are given an ellipse

x2

a2
+
y2

b2
= 1 (2)

and the �xed point is at A = (x0; y0). A line passes through A and intersects the ellipse at C

and D respectively. If the point E lying on CD and satisfying
��!
ED = s

��!
CD: Then our objective

is to �nd the locus of E. We shall call the point D as the pseudo-antipodal point of C with
respect to the �xed point A:We describe how we �nd the pseudo-antipodal point D and the
corresponding locus curve as follows:

1. First, we write the point C = (x; y) on the ellipse in parametric form as (a cosu; b sinu) :
Next we observe the followings:

(a) We express the line equation AC as

y = y0 +

�
b sinu� y0
a cosu� x0

�
(x� x0); (3)

(b) Substitute (3) in the implicit equation of the ellipse x2

a2
+ y2

b2
� 1 = 0 to obtain a

quadratic equation of x.

(c) We apply the Vieta's formulae to �nd the intersection point D = (x1; y1) between
the line AC and the ellipse, with the help of a CAS, accordingly as follows:

x1 = �
a (((b2 � y20) a2 + b2x20) cos (u) � 2abx0 (�y0 sin (u) + b))
�2 cos (u) ab2x0 � 2 y0 sin (u) a2b+ (b2 + y20) a2 + b2x20

; (4)

y1 = y0 +

�
b sin (u)� y0
a cos (u)� x0

�
� (5)�

�a (((b
2 � y20) a2 + b2x20) cos (u)� 2 abx0 (�y0 sin (u) + b) )

�2 cos (u) ab2x0 � 2 y0 sin (u) a2b+ (b2 + y20) a2 + b2x20
� x0

�
:

2. We note the equation ��!
ED = s

��!
CD (6)

can be also written as ��!
OE = s

�!
OC + (1� s)��!OD; (7)
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we therefore set up the locus E = (xe; ye) as follows:

xe = s � x+ (1� s) � x1; (8)

ye = s � y + (1� s) � y1: (9)

We use Geometry Expressions [5] to capture the following screen shots to illustrate the locus
E in red when the �xed point is at A = (0:8215576; 0:3345135); s = 0:2 and 0:7 in Figures 2(a)
and (b) respectively.

Figure 2(a). Locus of an
ellipse when s = 0:2

Figure 2(b). Locus of an ellipse
when s = 0:7

Remarks:

1. With the help of technological tools, we are able to �nd the intersections between a line
and an ellipse in a symbolic form such as equations (4) and (5).

2. We further can explore the locus curves by dragging the �xed point A and varying the
parameter s with the symbolic Geometry Expressions [5].

When the given surfaces are quadrics, we can extend the techniques that we have done
in the preceding 2D case to �nd the corresponding locus surfaces in 3D. We use the case of
ellipsoid as demonstration in the next section.

3 Locus Surface for an Ellipsoid with Arbitrary Fixed

point

We consider the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1 and the �xed point is A = (x0; y0; z0). A line passes

through A and intersects the ellipse at C and D respectively. If the point E lying on CD and

satisfying
��!
ED = s

��!
CD: We want to �nd the locus of E.

Let A = (x0; y0; z0) and consider a point C on the ellipsoid

� =

�
(x; y; z) 2 R3 : x

2

a2
+
y2

b2
+
z2

c2
= 1

�
; (10)
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We write point C as 24 x̂ŷ
ẑ

35 =
24 a cos(u) sin(v)b sin(u) sin(v)

c cos(v)

35 (11)

In order to calculate the pseudo antipodal point D = (x; y; z) of C with respective to A, we
make use of the parametric equation of line l as follows:

x� x0 = �(x̂� x0);
y � y0 = �(ŷ � y0);
z � z0 = �(ẑ � z0):

Hence, we obtain

y � y0
x� x0

=
ŷ � y0
x̂� x0

; (12)

z � z0
x� x0

=
ẑ � z0
x̂� x0

: (13)

By substituting (11) into equations (12) and (13), we get some expressions for the left hand
side in (12) and (13), allowing us to de�ne two auxiliary functions, namely

k(u; v) =
b sin(u) sin(v)� y0
a cos(u) sin(v)� x0

; (14)

m(u; v) =
c cos(v)� z0

a cos(u) sin(v)� x0
: (15)

Since both intersection points, C and D, satisfy the implicit equation of �, we use (14) and (
15) to get the x{coordinate of D, say x1, by calculating the roots of the polynomial

p(x) = a2x
2 + a1x+ a0;

where a0; a1 and a2 can be found with help of a computer algebra system. It follows from
p(x̂) = 0 and the Vieta's formulas that

x1 = �
a1
a2
� x̂:

It follows from (12) and (13) that

y1 = y0 + k(x1 � x0) and z1 = z0 +m(x1 � x0):

For a given s, the locus surface generated by point E = sC + (1� s)D is de�ned as

�(u; v) =

24 xeye
ze

35 =
24 sx̂+ (1� s)x1sŷ + (1� s)y1
sẑ + (1� s)z1

35 :
The explicit form of the locus surface � can be found but we omit here. We use the following
Example to demonstrate how we �nd the locus for a particular ellipsoid.
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Example 1 Consider the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1;

We explore the locus surface for the ellipsoid for the following scenarios using Netpad (see [6]).
We plot the surface when a = 5; b = 4; c = 3; s = 1:7; and the �xed point is at A = (2;�3; 4)
together with the locus trace when v is �xed at 0:81 and u varies between 0 and 2� in Figure 3
as follows.

Figure 3. Locus of an ellipsoid
when a = 5; b = 4; c = 3; s = 1:7

and v = 0:81

Remark: The web-based geometry software [6] indeed provides us a timely environment
of visualizing the 3D locus surface for an ellipsoid.

4 Locus Curves in 2D and their Extensions in 3D

We observe that for a quadric surface, the Vieta's formulae can be successfully applied in �nding
the pseudo-antipodal point D of the point C with respective to a �xed point A is because the
corresponding implicit equation is of degree 2 or when the implicit equation can be simpli�ed to
degree 2. We remark in the ellipse and ellipsoid cases that the Vieta's formulae are applicable
even when the �xed point A is arbitrary at (x0; y0) or (x0; y0; z0) respectively.
However, it is intuitive that Vieta's techniques may not be applied for any closed curve.

For example, if the closed curve we consider is a cardioid c(t) = (r(t) cos(t); r(t) sin(t)); where
r(t) = 2 � 2 cos t and t 2 [0; 2�]. Then the Vieta's formulae are applicable on its implicit
equation, p(x; y) = x4+2y2x2+y4+4x3+4xy2�4y2 = 0; when the �xed point is at A = (0; 0).
On the other hand, the Vieta's formulae may not be applied at a �xed point other than (0; 0)
because the polynomial p(x; y) may not be of degree 2 in x (after proper substitution of y, see
[12]).
Unless otherwise speci�ed, the parametric curves �(t) we consider in this paper are regular

(if its derivative never vanishes) closed curve, twice continuously di�erentiable, and is written
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as �(t) = (r(t) cos(t); r(t) sin(t)). It is interesting to see that the point D 2 (r(t + �) cos(t +
�); r(t+�) sin(t+�)) is the pseudo-antipodal point of C 2 (r(t) cos(t); r(t) sin(t)) with respect
to the �xed point A = (0; 0): Indeed, it can be veri�ed that three points A;C and D are
collinear, and more importantly, the locus curve E = sC + (1� s)D; in this case, turns out to
be the same as the one obtained by using the Vieta's formulas (see [12]).
Our task now is to see how the locus problem in 2D can be extended to the corresponding

locus surface in 3D. First, we rephrase the following terminologies:

1. We let cc(u) denote the 2D curve for the point C:

2. We let cd(u) denote the 2D curve for the point D; which is a pseudo antipodal point of
C with respect to the �xed point A:

3. We let ce(s; u) denote the locus curve for the locus E; with respect to s; satisfying

��!
OE = s

�!
OC + (1� s)��!OD (16)

We assume there exists a transformation that will extend the 2D curves of cc and cd to
the corresponding 3D surfaces of Sc(u; v) and Sd(u; v) respectively. Furthermore if we denote
Ste(s; u; v) to be the 3D surface, which is resulted by the same transformation by lifting from
the 2D locus curve ce(s; u). We are interested in exploring when the following equality holds

Ste(s; u; v) = Se(s; u; v) (17)

= sSc(u; v) + (1� s)Sd(u; v); (18)

and the �xed point A;C;D and E are colinear.
Remark: We note here that the points C;D and E are well de�ned in 3D. However, the

�xed point A in 3D needs to be speci�cally chosen or adjusted from its 2D �xed point. We
shall see how the �xed points A can be adjusted in later examples.
In view of an isometry is a distance-preserving transformation between metric spaces, which

maps elements to the same or another metric space such that the distance between the image
elements in the new metric space is equal to the distance between the elements in the original
metric space. We therefore consider the following
De�nition. If (17) holds and the adjusted �xed point A in 3D together with the points

C;D and E are all colinear, then we call such transformation to be a locus isometry.
The following is a trivial case locus isometry.

Theorem 2 The surfaces of revolution are of locus isometry.

Proof: If the surfaces Sc(u; v) and Sd(u; v) are obtained by rotating the curves cc and cd
respectively about a proper axis, L, which contains the �xed point A: Then it is easy to see
that the surface of revolution is locus isometry. In other words,

Ste(s; u; v) = sSc(u; v) + (1� s)Sd(u; v):

We demonstrate how we can obtain a 3D locus surface by rotating the 2D cardioid curve
c(u) = (r(u) cos(u); r(u) sin(u)) around the x-axis, where r(u) = 2� 2 cosu :
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1. We rotate the curve c(u) around x{axis to get the 3D cardioidal surface,

Sc(u; v) =

24 (2� 2 cosu) cos u
(2� 2 cosu) sinu cos v
(2� 2 cosu) sinu sin v

35 ;
2. We apply the same rotation on c(u + �) = (r(u + �) cos(u + �); r(u + �) sin(u + �)) to
obtain the surface Sd(u; v): We remark that if C is a point Sc(u; v) and D 2 Sd(u; v);
then D is the pseudo-antipodal point of C with respect to the �xed point A = (0; 0; 0):

3. We rotate the 2D locus curve ce(s; u) around the x � axis to obtain the surface of
Ste(s; u; v):

4. It is easy to show that

Ste(s; u; v) = sSc(u; v) + (1� s)Sd(u; v): (19)

We use a technological tool to visualize the following locus surface.

Example 3 The parametric equation for the cardioidal surface � is24 (2� 2 cosu) cos u
(2� 2 cosu) sinu cos v
(2� 2 cosu) sinu sin v

35 :
A line passes through A = (0; 0; 0) and intersects the at C and D respectively. If the point E

lying on CD and satisfying
��!
ED = s

��!
CD: Then explore the locus of E.

We refer readers to [7] for exploring the locus E: We capture the screen shot of the locus
surface when s = 0:7 and the trace of u = 0:88 in yellow in Figure 4. (The green curve is the
trace for the point C or D:)

Figure 4. Locus surface when s = 0:7;
trace of v = 4:88 (yellow).

We explore some more cases when locus isometry is valid by lifting a 2D locus curve to the
corresponding 3D locus surface in the next section.
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5 Ruled Spaces and Locus Isometry

We recall that a ruled surface if through every point of S there is a straight line that lies on
S. It is the union of a one parametric family of lines. The lines of this family are the generators
of the ruled surface. A ruled surface can also be described by a parametric representation of
the form ex(u; v) = c(u) + v � r(u): (20)

The curve c(u) is the directrix or the base curve of the representation. For �xed u = u0;
the space curve ex(u0; v) is a generator. The vectors r(u) describe the directions of the
generators. We shall describe ruled surfaces when the base curves are restricted to those cc(u)
in 2D, where its locus curve ce(u) can be found. There are many applications in computer-
aided geometric design (CAGD). For examples, there are interesting simpli�ed structures that
are related to ruled-surfaces.

5.1 Developable Surfaces and Locus Isometry

In the next two subsections, we explore locus isometry for two special developable spaces.
The results are intuitive based on the de�nition of developable surfaces. We shall use graphical
visualization to lead readers to appreciate the connection between the locus isometry and special
surfaces. A developable surface is a ruled surface with zero Gaussian curvature. That is, it
is a surface that can be 
attened onto a plane without distortion (i.e. it can be bent without
stretching or compression). Many developable surfaces can be visualized as the surface formed
by moving a straight line in space. For example, a cone is formed by keeping one end-point of
a line �xed whilst moving the other end-point in a circle. [11]. For developable surfaces they
form one family of its lines of curvature. It can be shown that any developable surface is a
cone, a cylinder or a surface formed by all tangents of a space curve.
Remarks:

1. Spheres are not developable surfaces under any metric as they cannot be unrolled onto a
plane.

2. The helicoid x(u; v) = (v cosu; v sinu; cu) = u(0; 0; c) + v(cosu; sinu; 0) = c(u) + v � r(u)
is a ruled surface by de�nition, but it is not a developable surface, because their Gaussian
curvature does not vanish at each point and every point of helicoid is hyperbolic.

Next we describe how we can obtain a locus isometry for a ruled surface if we de�ne it in
the following way. We let cc(u) be the 2D curve for the point C = (xc(u); yc(u)) ; cd(u) be the
2D curve for the point D = (xd(u); yd(u)) ; which is a pseudo antipodal point of C with respect
to the �xed point A = (x0; y0) : Finally, we let ce(s; u) denote the locus curve for the locus E;
with respect to s; satisfying ��!

OE = s
�!
OC + (1� s)��!OD: (21)

In other words,

ce(s; u) =

�
xe(s; u)
ye(s; u)

�
= s

�
xc(u)
yc(u)

�
+ (1� s)

�
xd(u)
yd(u)

�
(22)
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First we de�ne three respective ruled surfaces based on cc(u); cd(u) and ce(s; u) respectively as
follows, where f and g are di�erentiable functions.

Sc(u; v) =

0@ xc(u)
yc(u)
f(u)

1A+ v �
0@ xc(u)
yc(u)
g(u)

1A ;
Sd(u; v) =

0@ xd(u)
yd(u)
f(u)

1A+ v �
0@ xd(u)
yd(u)
g(u)

1A ;
Ste(s; u; v) =

0@ xe(u)
ye(u)
f(u)

1A+ v �
0@ xe(u)
ye(u)
g(u)

1A : (23)

Theorem 4 The ruled surface Ste(s; u; v) de�ned by (23) is of locus isometry if the �xed point
A = (x0; y0) is adjusted to be A

� = (x0; y0; f(u) + v � g(u)) :

Proof: First we prove that

Ste(s; u; v) = sSc(u; v) + (1� s)Sd(u; v): (24)

We observe that

sSc(u; v) + (1� s)Sd(u; v)

= s

0@0@ xc(u)
yc(u)
f(u)

1A+ v �
0@ xc(u)
yc(u)
g(u)

1A1A+ (1� s)
0@0@ xd(u)

yd(u)
f(u)

1A+ v �
0@ xd(u)
yd(u)
g(u)

1A1A
= s

0@ xc(u)
yc(u)
f(u)

1A+ (1� s)
0@ xd(u)
yd(u)
f(u)

1A+ v �
0@s �

0@ xc(u)
yc(u)
g(u)

1A+ (1� s) �
0@ xd(u)
yd(u)
g(u)

1A1A
=

0@ xe(u)
ye(u)
f(u)

1A+ v �
0@ xe(u)
ye(u)
g(u)

1A = Ste(s; u; v):

Finally we adjust the point A to be A� = (x0; y0; f(u) + v � r(u)) ; and hence the proof is
complete.
We describe how we can incorporate a closed curve and its antipodal curve as base curves

when constructing the respective ruled spaces. Speci�cally, in the next example we incorporate
a cardioid curve, its antipodal curve into respective developable cone surfaces.

Example 5 We let C 2 cc(u) = [x(u); y(u)] = [(2� 2 cosu) cos u; (2� 2 cosu) sinu]. Then we
have shown that when the point D is a point on cd(u) = [x1(u); y1(u)] = [x(u+ �); y(u+ �)],
the point D is a pseudo antipodal point of C with respect to the �xed point at A = (0; 0): Here
we would like to discuss the following corresponding two developable surfaces based on a cone,
whose respective base curves are plain cardioidal curves cc and cd respectively.
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1. First we de�ne two surfaces that are induced by the plane curves cc(u) = [x(u); y(u)] and
cd(u) = [x1(u); y1(u)] = [x(u+ �); y(u+ �)] respectively as follows:24 X(u; v)Y (u; v)

Z(u; v)

35 =
24 x(u)y(u)

1

35+ v
24 x(u)y(u)

1

35 ; (25)

24 X1(u; v)
Y1(u; v)
Z1(u; v)

35 =
24 x1(u)y1(u)

1

35+ v
24 x1(u)y1(u)

1

35 : (26)

Since both surfaces Sc(u; v) = [X(u; v); Y (u; v); Z(u; v)] and Sd(u; v) = [X1(u; v); Y1(u; v); Z1(u; v)]
are constructed by lifting respective 2D cardioid curves to 3D surfaces by setting Z(u; v) =
Z1(u; v) = 1 + v; we conjecture �rst both Sc(u; v) and Sd(u; v) are developable spaces.
After further investigation, we see that if

P (u; v) = q(u) + v � t(u) (27)

is a ruled surface. Then the Gaussian curvature K = 0 if and only if the tangent plane at
P (u; v) does not depend on v. Indeed, it can be shown that respective the normal vectors

of the tangents at both

24 X(u; v)Y (u; v)
Z(u; v)

35 and
24 X1(u; v)
Y1(u; v)
Z1(u; v)

35 do not depend on v: Therefore
both

24 X(u; v)Y (u; v)
Z(u; v)

35 and
24 X1(u; v)
Y1(u; v)
Z1(u; v)

35 are developable surfaces.
2. However, the locus surface E satisfying E = sC + (1 � s)D is topological transforma-
tion between surfaces Sc(u; v) and Sd(u; v); whether or not the locus surface E is also
developable depends on the coe�cient s:

3. Furthermore, we observe that the locus surface Ste(s; u; v) = [Xe(s; u; v); Ye(s; u; v); Ze(s; u; v)]
can be constructed from its 2D base curve [xe(u); ye(u)] directly as follows:24 Xe(s; u; v)

Ye(s; u; v)
Ze(s; u; v)

35 =
24 xe(u)ye(u)

1

35+ v
24 xe(u)ye(u)

1

35 (28)

4. Alternatively, the locus surface [Xe(s; u; v); Ye(s; u; v); Ze(s; u; v)] can be constructed once
both 3D surfaces of Sc(u; v) and Sd(u; v) are de�ned. In other words, we have Se(s; u; v) =
sSc(u; v) + (1 � s)Sd(u; v): It is clear that the locus surface is locus isometry. In other
words, the locus surface stays the same regardless of which way we use to construct such
locus surface.

5. When exploring the space curves Se(s0; u; v0); Sd(u; v0) and Sc(u; v0) with �xed s = s0
and v = v0, in order for the points A; C;D and E to be colinear, we need to adjust the
�xed point to be

A = (0; 0; 1 + v) (29)

in this case.
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6. We depict the screen shots below, including the space curves cc
�
u; �

4

�
; cd
�
u; �

4

�
; ce
�
1
3
; u; �

4

�
when we set s = 1

3
; v = �

4
together with the locus surface

24 Xe(
1
3
; u; v)

Ye(
1
3
; u; v)

Ze(
1
3
; u; v)

35 (See Figure
5(a)). When we project the space curves to z = 0; we get back to the 2D cardioid case,
see Figure 5(b). With the help of a DGS or CAS, we can visualize from Figure 5(b) that
the surface can be 
attened to a plane curve, which helps us to conjecture that the locus

surface

24 Xe(
1
3
; u; v)

Ye(
1
3
; u; v)

Ze(
1
3
; u; v)

35 is a developable surface. In addition, we notice that A;C;D and

E are all colinear satisfying
��!
ED =

1

3

��!
CD: (30)

Figure 5(a). A developable
surface when base curve is a

cardioid.
Figure 5(b). The projection of
z = 0 becomes a 2D cardioid

We depict the screen shot in Figure 6, including the space curves cc (1; v) ; cd (1; v) ; ce
�
1
3
; 1; v

�
when we set s = 1

3
; u = 1; together with the locus surface

24 Xe(
1
3
; u; v)

Ye(
1
3
; u; v)

Ze(
1
3
; u; v)

35 : We can see
that the generators cc (1; v) ; cd (1; v) ; ce

�
1
3
; 1; v

�
for their respective surfaces are lines as

expected. More importantly, we see that A;C;D and E are all colinear and

��!
ED =

1

3

��!
CD: (31)
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curves when s = 1=2 and u = 1

5.2 Tangent Developable Surfaces and Isometry

We refer to [9] that a tangent developable is a particular kind of developable surface obtained
from a curve in Euclidean space as the surface swept out by the tangent lines to the curve.
Such a surface is also the envelope of the tangent planes to the curve. Let


(u) = [x(u); y(u); z(u)]; (32)

where u is real, be a twice-di�erentiable function with nowhere-vanishing derivative. We see 

represents a space curve, we shall concentrate on the tangent developable surface that is written
in the form of 24 X(u; v)Y (u; v)

Z(u; v)

35 = 
(u) + v � 
0(u); (33)

where u; v 2 R: The original curve 
(u) forms a boundary of the tangent developable, and is
called its directrix or edge of regression. The following observation is clear, which we omit the
proof.

Theorem 6 The tangent developable transformation is locus isometry.

Example 7 We start with the plane curve an ellipse of [x(u); y(u)] = [3 cosu; 2 sinu]; where
u 2 [0; 2�] : As we have discussed in Section 2 that if the �xed point A is (4; 3); the pseudo
antipodal curve cd can be found as [x1(u); y1(u)] using 4 and 5 respectively. We de�ne xe(s; u) =
s �x(u)+ (1� s)x1(u) and ye(s) = s � y(u)+ (1� s)y1(u): If we choose z(u) = z1(u) = sinu cosu
for the edge of regression


(u) = [x(u); y(u); z(u)]; (34)

and

1(u) = [x1(u); y1(u); z1(u)]: (35)
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respectively. We obtain two respective surfaces Sc(u; v) =

24 x(u)y(u)
z(u)

35+v
24 x0(u)y0(u)
z0(u)

35 ; and Sd(u; v) =24 x1(u)y1(u)
z1(u)

35 + v
24 x01(u)y01(u)
z01(u)

35 : It follows from the preceding Theorem that we can write the locus

surface Ste(s; u; v) as follows:

Ste(s; u; v) = sSc(u; v) + (1� s)Sd(u; v): (36)

We discuss more about Sc(u; v); Sd(u; v) and S
t
e(s; u; v) as follows:

1. It can be shown that both surfaces Sc(u; v) and Sd(u; v) are tangent developable surfaces.

2. We depict Sc(u; v) together with the space curves Sc(u; 0) (in red, which is also the edge
of regression 
(u) in Figure 7). We note that the space curve Sc(u; 0) forms a boundary
of the tangent developable.

Figure 7. A developable
surface and its generator in

red

3. We remark that the developable spaces Sc(u; v); Sd(u; v) and S
t
e(s; u; v) are lifted from

2D. The choice of the �xed point A needs to be adjusted to

A = (x0; y0; z(u)) (37)

when exploring space curves Ste(s0; u; v0); Sd(u; v0) and Sc(u; v0), where s0 and v0 are �xed
constants. For example, when s0 =

3
5
and v = 0; we depict the space curves of Ste(

3
5
; u; 0)

(in red); Sd(u; 0) (in green) and Sc(u; 0) (in blue) in Figure 8below. More importantly, we
notice that A;C;D and E are all colinear and satisfy

��!
ED =

3

5

��!
CD: (38)
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Figure 8. Space curves when s = 3
5

and v = 0

Remark: Since Ste(s; u; v) is a topological transformation between two tangent developable
spaces Sc(u; v) and Sd(u; v), which may not a tangent developable space again for certain
parameter s: Therefore, it will be interesting to investigate for what value of s, Ste(s; u; v) stays
as a tangent developable surface.

5.3 Applications

In robotics it is well known that antipodal grasps can be achieved on curved objects. Devel-
opable surfaces have many applications in engineering, architecture and etc.. For example,
understanding developable surfaces in mechanisms will enable engineers to understand hyper-
compact mechanisms in several important application areas. The developable surfaces are also
critical in the understanding of architectural geometry because then architects can understand
the limitation and use of possible geometries to include in their work. We hope our �ndings
involve pseudo-antipodal points, which lead to the locus surfaces, can assist and promote fur-
ther research areas in applicable �elds. We demonstrate some interesting architectures images
that are related to either ruled or developable surfaces.

1. An architecture and ruled surface (see [1]).

Figure 9. An
architecture and ruled

surface
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2. An architecture and developable surface (see [2]).

Figure 10. An
architecture and
developable surface

6 Conclusion

In this paper, we see technologies can assist a learner to venture from an elementary college
entrance practice problem to several challenging explorations in 2D and 3D. It is indisputable
that technological tools indeed provide us with many crucial intuitions before we can prove
rigorous analytical solutions with a computer algebra system. Evolving technological tools
de�nitely have made mathematics fun and accessible on one hand, but they also allow the
exploration of more challenging and theoretical mathematics. We hope that when mathematics
is made more accessible to students, it is possible more students will be inspired to investigate
problems ranging from the simple to the more challenging. We do not expect that exam-
oriented curricula will change in the short term. However, encouraging a greater interest in
mathematics for students, and in particular providing them with the technological tools to solve
challenging and intricate problems beyond the reach of pencil-and-paper, is an important step
for cultivating creativity and innovation.
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