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Abstract: The work of British and American codebreakers led by Alan Turing at Bletchley Park in breaking the Enigma

cipher machine during World War II has been well-documented, and rightfully recognized as one of the most extraordinary

achievements of the human intellect. However, without the success of Polish codebreakers led by Marian Rejewski in the

1930s on an earlier version of Enigma, the work by the British and Americans in the 1940s might have taken much longer,

prolonging the war at the potential cost of untold additional lives. The mathematics integral to the Polish method for

breaking Enigma involved some basic theory of permutations. The purpose of this paper is to present an overview of these

ideas and how they served to this effect. To assist in demonstrating this, technology involving Maplets will be used.

1 Introduction

In 1918, a German electrical engineer named Arthur Scherbius applied for a patent for a mechanical

cipher machine. Later marketed commercially under the name Enigma, this machine was designed

with electric current running through revolving wired wheels, called rotors. Scherbius offered Enigma

to the German military, who, after learning that their World War I ciphers had routinely been broken,

adopted and used it as their primary field cipher prior to and throughout World War II.

In the early 1930s, due to suspicions that Germany was seeking to rearm and reclaim territories

they had lost to Poland following World War I, the Poles began carefully monitoring German radio

transmissions, which were encrypted using Enigma. Unable to decrypt these messages, the Polish

government recruited mathematics students for the purpose of breaking Enigma. Among these stu-

dents were Marian Rejewski, Jerzy Różycki, and Henryk Zygalski, who became employees of the

Cipher Bureau in Warsaw in the summer of 1932, coinciding with the beginning or their work on

Enigma. Among Rejewski, Różycki, and Zygalski, the most renowned is Rejewski, who in particular

pioneered the use of permutations in attacking Enigma.

In this paper, we will give an overview of the theory of permutations that Rejewski needed, and

characterize the various components of Enigma and reasons for Germany’s ill-fated confidence in its

security. We will also describe and demonstrate several aspects of the successful efforts by the Polish

codebreakers in breaking the pre-war version of Enigma.

2 Permutations

Traditional collegiate abstract algebra courses often cover the basic theory of permutations, the details

of which can be found in many sources typically used as textbooks in such courses. Due to their
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importance in the Polish method for breaking Enigma, we will begin by giving an overview of some

of the theory of permutations and their representations involving cycles.

A permutation on a set Ω is a function σ : Ω → Ω that is both one-to-one and onto. In this paper

we will assume the set Ω is finite. For example, if Ω = {A,B,C,D}, then one example of a permutation

on Ω is the function σ with σ(A) = B, σ(B) = C, σ(C) = D, and σ(D) = A. Similarly, the function

τ with τ(A) = C, τ(B) = B, τ(C) = D, and τ(D) = A is a permutation on Ω. On the other hand, the

function µ with µ(A) = B, µ(B) = A, µ(C) = B, and µ(D) = D is not a permutation on Ω, since it is

not one-to-one (nor, incidentally, onto).

Permutations can be represented most efficiently using cycle notation. A permutation on a finite

set {x1,x2, . . . ,xn} that maps x1 7→ x2 7→ x3 7→ · · · 7→ xn 7→ x1 is represented using cycle notation as

(x1x2 · · ·xn), with each element within the parentheses listed to the right of the element from which

it maps, until the parentheses are closed when the element at the “end” (the far right) maps back

to the element at the “start” (the far left). So, for example, the permutation σ on Ω = {A,B,C,D}
with σ(A) = B, σ(B) = C, σ(C) = D, and σ(D) = A would be represented using cycle notation as

σ = (ABCD). The permutation τ on Ω with τ(A) = C, τ(B) = B, τ(C) = D, and τ(D) = A would be

represented as τ = (ACD)(B), which requires two “cycles,” one containing the single element B, since

B maps to itself under τ , and thus must be at both the start and end of the cycle in which it is contained.

Such cycles of “length” 1 are often not explicitly expressed in representations of permutations, since

an element’s absence from an expression can be interpreted as indicating that it maps to itself. Thus,

τ could also be expressed as τ = (ACD). However, in this paper we will include cycles of length 1.

Any pair of permutations σ and τ on a set Ω can be combined using function composition to form

a new permutation, σ ◦τ , on Ω, which is typically represented simply as στ . The Polish codebreakers

interpreted such compositions with the permutation listed on the left applied first, so for any a ∈ Ω,

the composition στ would be applied as (στ)(a) = τ(σ(a)).1 For example, for the permutations

σ = (ABCD) and τ = (ACD)(B) on Ω = {A,B,C,D}, we have the following.

(στ)(A) = τ(σ(A)) = τ(B) = B

(στ)(B) = τ(σ(B)) = τ(C) = D

(στ)(C) = τ(σ(C)) = τ(D) = A

(στ)(D) = τ(σ(D)) = τ(A) = C

That is, στ = (ABCD)(ACD)(B) = (ABDC).
For a nonempty set Ω, the set SΩ of all permutations on Ω is a group with the operation of com-

position. This guarantees every permutation in SΩ is invertible, meaning that for every permutation σ

in SΩ, there must be a corresponding permutation σ−1 in SΩ for which σσ−1 and σ−1σ are both the

identity permutation (which maps every input to itself). To find the inverse of a cycle, we must only

reverse its elements. For example, for the permutation σ = (ABCD) on Ω = {A,B,C,D}, the inverse

is σ−1 = (DCBA), or, equivalently, using a common convention of moving the first element in some

understood order (e.g., alphabetical) to the start of a cycle, σ−1 = (ADCB).
Similarly, for a permutation requiring more than one cycle to express in cycle notation, if the

cycles are “disjoint” (i.e., if no element appears in more than one cycle), then to find the inverse we

must only reverse the elements in each cycle. For example, for the permutation σ = (ADE)(BCG)(F) on

Ω = {A,B,C,D,E,F,G}, the inverse is σ−1 = (EDA)(GCB)(F), or, equivalently, σ−1 = (AED)(BGC)(F).

1Many sources interpret compositions with the permutation listed on the right applied first, so στ would be applied as

(στ)(a) = σ(τ(a)). We will use the interpretation of the Polish codebreakers though, with the permutation listed on the

left applied first.
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A pair of permutations σ and τ on a set Ω are said to be conjugate if a permutation ρ on Ω exists

for which ρσρ−1 = τ . For example, the permutations σ = (ADE)(BCG)(F) and τ = (BCD)(GAF)(E) on

Ω = {A,B,C,D,E,F,G} are conjugate, since it can be verified that for the permutation ρ = (ACDEFGB),
we will have ρσρ−1 = τ .

The type of a permutation is a list of the lengths of the cycles in nonincreasing numerical order in

its representation as a single cycle or composition of disjoint cycles. For example, the permutations

σ = (ADE)(BCG)(F) and τ = (BCD)(GAF)(E) on Ω = {A,B,C,D,E,F,G} are both of type (3,3,1), since

as compositions of disjoint cycles both contain two cycles of length 3 and one cycle of length 1.

Similarly, the permutation ρ = (ACDEFGB) on Ω is of type (7). The fact that the permutations σ and

τ , which are conjugate, are also of the same type is not a coincidence, but rather is guaranteed by the

following theorem, which turns out to be fundamental to the Polish method for breaking Enigma.

Theorem 2.1 If σ and τ are conjugate permutations in SΩ, then σ and τ must be of the same type.

Proof. Suppose σ and τ are conjugate permutations, with ρσρ−1 = τ , and let (a1a2 · · ·ak) be a cycle

for σ , so σ(a j) = a j+1 for j = 1,2, . . . ,k−1, and σ(ak) = a1. For any j = 1,2, . . . ,k−1, note that

τ(ρ−1(a j)) = (ρσρ−1)(ρ−1(a j)) = ρ−1(σ(ρ(ρ−1(a j)))) = ρ−1(σ(a j)) = ρ−1(a j+1).

Similarly, τ(ρ−1(ak)) = ρ−1(a1), and so we see that (ρ−1(a1)ρ
−1(a2) · · ·ρ

−1(ak)) is a cycle for τ .

Thus, σ and τ must be of the same type. �

The proof of Theorem 2.1 shows that for permutations σ and ρ , to find the conjugate ρσρ−1,

we must only translate the elements in the cycles of σ by ρ−1. For example, for the permutations

σ = (ADE)(BCG)(F) and ρ = (ACDEFGB) on Ω = {A,B,C,D,E,F,G},

ρσρ−1 = (ρ−1(A)ρ−1(D)ρ−1(E))(ρ−1(B)ρ−1(C)ρ−1(G))(ρ−1(F)) = (BCD)(GAF)(E).

3 Description of Enigma

Enigmas contained various components, each contributing in their own way to the overall security of

the machine. Two photos with several of these components labeled are shown in Figure 1.

Figure 1: Photos of an Enigma with components labeled and the plugboard shown.

To encrypt or decrypt a letter using an Enigma, a key labeled with the letter was pressed on

a keyboard, which launched electric current designating the letter from the keyboard. The current
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traveled first to the plugboard, where it changed to designate a different letter if a pair of sockets

representing the input letter were connected by a cable to a pair of sockets representing another letter.

The current then passed right-to-left through a series of wheels, called rotors, three in the version of

Enigma faced by the Poles, each of which could change the current to designate a different letter. The

current then passed through another wheel called the reflector, which definitely changed the current to

designate a different letter, back through the rotors but from left to right, back through the plugboard,

and finally to the lampboard, where it lit a small bulb indicating the encrypted or decrypted letter.

The plugboard resembled a miniature old telephone switchboard, and was physically situated in

the front of the machine. It had 26 pairs of sockets, one pair to represent each of the letters in the

alphabet. Each socket pair could either be left open or connected to another socket pair by a short

cable. If the socket pairs representing two letters were connected by a cable, then current designating

either letter would change at the plugboard to designate the other letter. If the socket pair representing

a letter was left open in the plugboard, then current designating that letter would leave the plugboard

still designating the same letter.

The machine could be operated using anywhere from 0 to 13 plugboard cables. Varying the

number of cables would have obviously maximized security, however standard German operating

procedure was to use a fixed number of cables. With a fixed number of cables, we show in [3] that

11 would have maximized security, but for the version of Enigma faced by the Poles, 6 were always

used. We actually show in [3] that for any p = 1,2, . . . ,13, the number of ways to connect 2p socket

pairs using p cables is given by

Np =
26!

(2p)!(26−2p)!
· (2p−1) · (2p−3) · · ·1.

Using this formula, we find that the number of different ways the plugboard could be configured in

the version of Enigma faced by the Poles is N6 = 100,391,791,500.

Three rotors, each a circular disk about the size of a hockey puck, were lined up side-by-side in

the back of the machine. The German Navy later employed a version of Enigma in which four rotors

were used at the same time, but in the version of Enigma faced by the Poles, three were used.

We will call the flat sides of a rotor the right and left sides, since they could only be placed in

the machine standing on end with each side facing in a particular direction. Both flat sides of a rotor

contained 26 contact points, one to represent each of the letters in the alphabet, in alphabetical order

around both sides of the rotor clockwise (when it was viewed from the right). Each contact on the

right side of a rotor was connected to a contact on the left side by an electrical wire, although contacts

that were connected did not usually represent the same letter. The idea was that current could enter a

rotor on one side at a contact position designating one letter, and pass through and exit the rotor on

the other side at a contact position designating a different letter.

There are an incredibly large number of ways in which the contacts within a rotor could have

been connected (26! ≈ 4.03×1026, to be precise), but because they had to be hard-wired, rotors with

only a very small number of different wirings were ever actually produced. Rotors were eventually

produced with ten different wirings, but for the version of Enigma faced by the Poles, rotors with only

three different wirings were available. While multiple rotors with identical wirings could have been

used in the machine at the same time, in the version of Enigma faced by the Poles, exactly one rotor

with each of the three different wirings available at the time was always used. These rotors could,

however, be placed in the machine from left to right in any of 3! = 6 possible orders.

One of the most remarkable achievements of the Polish codebreakers was that they were able

to identify these three different wirings from intercepted messages alone, without first physically
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handling a rotor. A detailed discussion of how they accomplished this can be found in [2]. These

three different wirings are most easily expressed as permutations, taking as input the letter designated

by current as it enters a rotor on the right, and giving as output the letter designated by the current as

it exits the rotor on the left. In this manner, the wirings of the rotors, which we will denote as R1, R2,

and R3, can be expressed using cycle notation as follows.

R1 = (AELTPHQXRU)(BKNW)(CMOY)(DFG)(IV)(JZ)(S) (1)

R2 = (A)(BJ)(CDKLHUP)(ESZ)(FIXVYOMW)(GR)(NT)(Q) (2)

R3 = (ABDHPEJT)(CFLVMZOYQIRWUKXSG)(N) (3)

For example, current designating A and entering R1 on the right would exit R1 on the left designating E,

current designating J and entering R2 on the right would exit R2 on the left designating B, and current

designating N and entering R3 on the right would exit R3 on the left still designating N. Note also that

the permutation R1 is of type (10,4,4,3,2,2,1), the permutation R2 is of type (8,7,3,2,2,2,1,1), and

R3 is of type (17,8,1).
Rotors were called “rotors” because they revolved, or rotated, inside the machine during its opera-

tion. Even before this though, as the machine was being set up, each rotor could be rotated into any of

26 distinct positions before being placed into the machine. This gave 263 = 17,576 unique positions

into which all three rotors could be rotated before being placed into the machine.

To assist Enigma operators with orienting rotors correctly, the letters A–Z (or sometimes the

numbers 01–26) were etched into a ring around the outside of each rotor, listed in order clockwise

(when the rotor was viewed from the right). For each of the three rotor slots, a small window was cut

into the top of the machine to reveal the letter (or number) at a particular location on the ring. We

will call this letter the window letter. The etched ring around the outside of each rotor was movable,

and could itself be rotated into any of 26 distinct positions while the wired part of the rotor was held

stationary. This was a complication, because rotating the ring while holding the wired part of a rotor

stationary would move the window letter but not the wiring. A number from 1 to 26 called the ring

setting indicated the position of the ring on a rotor.

The 26 possible ring settings for each rotor gave 263 = 17,576 unique ring settings for all three

rotors before they were placed into the machine. When counting the number of ways an Enigma

could be set up prior to its operation, it is tempting to ignore the number of possible ring settings,

since the movable rings did not change the fact that there were only 26 different wires for current

to follow through a rotor. However, the number of possible ring settings cannot be ignored, because

the rotation of the rotors during the operation of the machine depended only on the ring, and not the

full rotor. More specifically, encrypting and decrypting messages using an Enigma was done one

letter at a time, and each time the key for an input letter was pressed on the keyboard, the rightmost

rotor would immediately (before the current reached the rotors) rotate one position counterclockwise

(when the rotor was viewed from the right). In addition, a notch was cut out from the ring around

each rotor, and for the middle and rightmost rotors, when this notch was in one particular position in

the rotor slot, if the rotor rotated one position counterclockwise it would cause the rotor to its left to

also rotate one position counterclockwise.2

Combining the 3! = 6 possible rotor orders, 263 = 17,576 unique positions into which all three

rotors could be rotated, and 263 = 17,576 unique ring settings for all three rotors, we find that the

2This means we could technically reduce the number of possible ring settings under consideration by a factor of 26,

since the notch on the leftmost rotor was irrelevant, as there was no rotor to its left for it to influence. We will describe

later though how the Poles were actually able to nullify the effect of the ring settings altogether.
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total number of different ways that rotors could be configured in the version of Enigma faced by the

Poles is 6 ·17,576 ·17,576 = 1,853,494,656.

The reflector sat to the left of the rotors, and was also a circular disk with 26 contact points, one

to represent each of the letters in the alphabet. The reflector only had contacts on its right side though,

which were always wired to each other in 13 pairs. After its right-to-left journey through the rotors,

current designating a letter would enter the reflector at one of its contact points, travel along one of

the wires, and then exit the reflector at a different contact point, designating a different letter, to begin

a left-to-right journey back through the rotors.

As with a rotor, there are a very large number of ways in which the contacts within a reflector

could have been connected (25 · 23 · 21 · · ·1 = 7,905,853,580,625, to be precise), but because they

also had to be hard-wired, reflectors with only a very small number of different wirings were ever

produced. Reflectors were eventually produced with five different wirings, but for the version of

Enigma faced by the Poles, reflectors with only a single distinct wiring were available. This reflector

was called reflector A, and it permuted the letters designated by current according to the following

permutation.

A = (AE)(BJ)(CM)(DZ)(FL)(GY)(HX)(IV)(KW)(NR)(OQ)(PU)(ST) (4)

For example, current entering this reflector designating D would exit the reflector designating Z, and

vice versa. Also, although an Enigma could be operated with the reflector rotated into any of 26

distinct positions before being placed into the machine, reflectors were always placed into Enigmas

in one specific position, and once in the machine did not move. Thus, the number of different ways

that the reflector could be configured in the version of Enigma faced by the Poles is 1.

With 100,391,791,500 ways to configure the plugboard, 1,853,494,656 ways to configure the

rotors, and just 1 way to configure the reflector, the number of different ways that the full machine

could be configured in the version of Enigma faced by the Poles is

100,391,791,500 ·1,853,494,656 ·1 = 186,075,649,051,516,224,000. (5)

This number, which is approximately 1.86×1020, or more than 186 quintillion, was much too large

for a brute force attack on Enigma to have been possible at the time. However, through the work of

Rejewski, Różycki, and Zygalski, this astronomical number was overcome.

4 Operation of Enigma

Although all three rotors in an Enigma of the version faced by the Poles could rotate during the

encryption of a message, for the rest of this paper we will assume that only the rightmost rotor rotated.

This obviously significantly simplifies the machine, but it is a reasonable assumption, since the Polish

method for breaking Enigma would unfortunately fail if any rotor except the rightmost rotated during

the formation of the portion of a ciphertext used in determining the configuration of the machine.

Consider now an Enigma of the version faced by the Poles, with wired plugboard pairs A ↔ Q,

I ↔ K, J ↔ T, M ↔ Z, O ↔ S, and X ↔ Y, and rotors in the left-to-right order R3, R1, R2, with corre-

sponding ring settings 14, 23, 5. Suppose also that the rotors are initially rotated into the positions for

which the left-to-right window letters are AIM; these initial window letters were called the ground

setting of the machine. To use this machine to encrypt E, we would press the key labeled E on the

keyboard. This would cause the rightmost rotor R2 to rotate one position counterclockwise (before

current reached the rotors), resulting in the left-to-right window letters AIN, and send current initially

designating E on a journey through the machine. This journey is illustrated in Figure 2.
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Figure 2: Diagram of current flow through an Enigma.

The path followed by the current through the machine as illustrated in Figure 2 can be described

explicitly as follows using the language and terminology of permutations.

• Current designating E travels first to the plugboard, which can be represented as the permu-

tation P = (AQ)(B)(C)(D)(E)(F)(G)(H)(IK)(JT)(L)(MZ)(N)(OS)(P)(R)(U)(V)(W)(XY). Since this

permutation maps E to itself, the current leaves the plugboard still designating E.

• Current designating E travels next to the rightmost rotor R2, which has ring setting 5 and win-

dow letter N. The effect of the ring setting and window letter can in general be combined

into a single number from 0 to 25 called the rotor offset, which indicates the number of po-

sitions the wiring in the rotor has rotated from its “standard” position (for which this rotor

would transform the letter designated by current exactly as in the expression for R2 given in

(2)) to reach its actual position. In particular, with window letter N, which is the 14th let-

ter in the alphabet, and ring setting 5, the rotor offset is 14− 5 = 9, meaning that the wiring

in the rotor has rotated 9 positions from its standard position to reach its actual position, and

that current designating any letter would actually follow the wire through the rotor intended

for the letter 9 positions later in the alphabet. This effect of the rotor offset can be repre-
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sented as the permutation O9 = (AJSBKTCLUDMVENWFOXGPYHQZIR), in which each letter is fol-

lowed by the letter 9 positions later in the alphabet, and the action of current entering and

passing through the rotor can be represented by the permutation O9R2. However, because the

current is actually designating the letter 9 positions earlier in the alphabet, the action of the

current leaving the rotor also requires an application of the inverse O−1
9 . That is, the jour-

ney into, through, and out of the rightmost rotor can be represented in full by the permuta-

tion R = O9R2O−1
9 = (AS)(BCYLGTU)(DNWZOMPF)(EK)(H)(IX)(JQV)(R). Since this permutation

maps E to K, the current leaves the rightmost rotor designating K.

• Current designating K travels next to the middle rotor R1, with ring setting 23 and window letter

I, which combine to give the rotor offset 9− 23 = −14, or 12 when adjusted by adding 26 to

make the rotor offset be nonnegative. With O12 = (AMYKWIUGSEQCO)(BNZLXJVHTFRDP), and

the expression for R1 given in (1), the journey into, through, and out of the middle rotor can be

represented in full by M = O12R1O−1
12 = (ACMQ)(BKPY)(DVELFIOSZH)(G)(JW)(NX)(RTU). Since

this permutation maps K to P, the current leaves the middle rotor designating P.

• Current designating P travels next to the leftmost rotor R3, with ring setting 14 and window

letter A, which combine to give rotor offset 1−14 = −13, or 13 when adjusted by adding 26.

With O13 = (AN)(BO)(CP)(DQ)(ER)(FS)(GT)(HU)(IV)(JW)(KX)(LY)(MZ), and the expression for

R3 given in (3), the journey into, through, and out of the leftmost rotor can be represented in

full by L = O13R3O−1
13 = (A)(BLDVEJHXKFTPSYIZM)(CRWGNOQU). Since this permutation maps

P to S, the current leaves the leftmost rotor designating S.

• Current designating S travels next to reflector A, whose expression as a permutation is given in

(4). Since this permutation maps S to T, the current leaves the reflector designating T.

• Current designating T travels next back to the leftmost rotor, but since it is now moving in

the opposite direction, it will follow the path through the rotor indicated by the permutation

L−1 = (O13R3O−1
13 )

−1 = (O−1
13 )

−1R−1
3 O−1

13 = O13R−1
3 O−1

13 . That is, the journey into, through,

and out of the leftmost rotor in this direction can be represented in full by the permutation

L−1 = O13R−1
3 O−1

13 = (A)(BMZIYSPTFKXHJEVDL)(CUQONGWR). Since this permutation maps T

to F, the current leaves the leftmost rotor in this direction designating F.

• Current designating F travels next back to the middle rotor. The journey into, through, and

out of the middle rotor in this direction can be represented in full by the permutation

M−1 = O12R−1
1 O−1

12 = (AQMC)(BYPK)(DHZSOIFLEV)(G)(JW)(NX)(RUT). Since this permutation

maps F to L, the current leaves the middle rotor in this direction designating L.

• Current designating L travels next back to the rightmost rotor. The journey into, through, and

out of the rightmost rotor in this direction can be represented in full by the permutation

R−1 = O9R−1
2 O−1

9 = (AS)(BUTGLYC)(DFPMOZWN)(EK)(H)(IX)(JVQ)(R). Since this permutation

maps L to Y, the current leaves the rightmost rotor in this direction designating Y.

• Current designating Y travels next back to the plugboard, which maps Y to X. The current thus

leaves the plugboard designating X, on its way to the lampboard, whose bulb labeled X it lights.

The full journey through the machine can be expressed as PRMLAL−1M−1R−1P−1, or, equiva-

lently, (PRML)A(PRML)−1. This shows that as permutations, the full journey through the machine

is conjugate to the reflector. By Theorem 2.1, we know then that the full journey through the machine
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is a permutation of the same type as the reflector.3 This guarantees that the encryption and decryption

processes were reciprocal, and also that it was not possible for a letter to encrypt as itself. These facts

were true of the more complex versions of Enigma the Germans used during World War II as well,

and were exploited by the British and American codebreakers led by Alan Turing at Bletchley Park.

We should also note that after encrypting E as described in this section, if we wished to encrypt

a second letter, pressing its key on the keyboard would cause the rightmost rotor to rotate another

position counterclockwise. This would result in the new rightmost window letter O, and new right-

most rotor offset 10. Then, with O10 = (AKUEOYISCMWGQ)(BLVFPZJTDNXHR),4 for the encryption of

the second letter, the journey into, through, and out of the rightmost rotor the first time it was visited

would be represented in full by O10R2O−1
10 = (ABXKFST)(CMVYNLOE)(DJ)(G)(HW)(IPU)(Q)(RZ).

We will now demonstrate a Maplet5 written by the authors that simulates the operations of encryp-

tion and decryption with an Enigma. Enigma operators carried a codebook that indicated the common

plugboard pairs, rotor order, ring settings, and ground setting for each day. However, given the vol-

ume of messages that were sent, and the fact that each one on any given day would be encrypted using

the same codebook settings, to decrease vulnerability to frequency analysis, Enigma operators were

instructed to choose a separate, personal ground setting for each message. To avoid confusion (with

the ground setting given in the codebook), we will call this the message setting. When encrypting a

message, an operator was to first configure their machine as directed by the codebook, including its

ground setting, and use this configuration to encrypt the letters in their message setting, repeated to

form a six-letter sequence so that transmission errors could be identified. The operator was then to

manually turn the rotors so that their message setting was showing in the windows, and use this con-

figuration to encrypt their actual message. They were then to transmit the six letters that resulted from

encrypting their repeated message setting followed by the letters in their encrypted actual message.

An Enigma operator in receipt of an encrypted transmission was to first configure their machine

as directed by the codebook, and use this configuration to decrypt the first six letters in the received

transmission. This would reveal the message setting that had been used to encrypt the actual message.

The operator was then to manually turn the rotors so that this message setting was showing in the

windows, and use this configuration to decrypt the remainder of the transmission.

As an example, suppose an Enigma operator wishing to encrypt ENIGMAXISXWORKING chose mes-

sage setting AIM, and found, for daily settings in the codebook, plugboard pairs A ↔ Q, I ↔ K,

J ↔ T, M ↔ Z, O ↔ S, and X ↔ Y, rotor order R3, R1, R2, ring settings 14, 23, 5, and ground

setting TAG. The operator would first configure their machine as directed by the codebook, and

encrypt AIMAIM. The result of using the Maplet to do this is shown in Figure 3. The operator

would then turn their rotors so AIM was showing in the windows, and encrypt their actual mes-

sage. This would result in XYLFWMOJLVOQOBMAU, and thus they would transmit the full ciphertext

RBCPLWXYLFWMOJLVOQOBMAU.

An Enigma operator in receipt of this would decrypt the message in two steps. They would first

configure their machine as directed by the codebook (which would match the codebook settings used

by the originator of the message), and decrypt RBCPLW. The result of this would be AIMAIM. They

would then turn their rotors so AIM was showing in the windows, and decrypt the remainder of the

transmission. The result of using the Maplet to do this is shown in Figure 4.

3Incidentally, for the example given in this section, the full journey through the machine turns out to be

PRMLAL−1M−1R−1P−1 = (AG)(BO)(CU)(DK)(EX)(FV)(HM)(IY)(JP)(LQ)(NW)(RS)(TZ).
4This could be found directly, or, with O1 = (ABCDEFGHIJKLMNOPQRSTUVWXYZ), as O10 = O1O9.
5A Maplet is like an applet, but uses (and requires) the engine of the computer algebra system Maple, and is written

using Maple functions and syntax.
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Figure 3: Using the Maplet to encrypt a message setting.

Figure 4: Using the Maplet to decrypt a message.

5 The Polish Method for Breaking Enigma

5.1 Analyzing Message Settings

The Polish codebreakers, working with the knowledge that the first six letters in any intercepted

transmission resulted from encrypting the three letters in the originator’s message settings repeated,

cleverly exploited this fact to discover the message settings. To see how they did this, consider the first

six letters XXGCJQ in an intercepted transmission, formed using Enigma full-machine permutations

labeled in order as P1–P6, applied to the repeated message setting AIMAIM, and with ground setting

TAG. This portion of encryption can be summarized as follows.

Permutation: P1 P2 P3 P4 P5 P6

Plaintext: A I M A I M

Window Letters: TAH TAI TAJ TAK TAL TAM

Ciphertext: X X G C J Q

Of course, the Poles would not have known the plaintext or window letters. However, they would have

known that the first and fourth plaintext letters matched, from which they could glean some important

information. In particular, due to the reciprocal nature of Enigma, the letter to which P1 mapped X
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would have to be mapped by P4 to C. That is, P4(P1(X)) = C, or, equivalently, (P1P4)(X) = C. Also,

because the second and fifth plaintext letters matched, they would have known that (P2P5)(X) = J,

and because the third and sixth plaintext letters matched, that (P3P6)(G) = Q.

Building upon this idea, the Poles noticed certain patterns that occurred within the first six letters

of intercepted transmissions originating from multiple Enigma operators all on the same day. For

instance, consider the following list of 68 such examples.

ACFKVE JAKJEB SHDMZU HEGNYQ HOONPH AXAKJG BHLQZA BNUQDO

BHGQZQ KHMFZI TAGYEQ MFBGFN BPKQMB AYAKTG BHMQZI AXWKJT

CHHZZY LHHIZY UHFPZE TGCYGW XQVCIM VZHBKY BMNQXP CHXZZX

DHBEZN MEJGYC VDJBQC AIAKUG PRITND QSCHHW BMOQXH GHYOZZ

EHOLZH NHHVZY WHBWZN XJECWV BSJQHC ATDKLU GNPODL BNZQDS

FAAAEG OAJSEC XBNCAP AKAKCG ATAKLG BHHQZY AIQKUJ

GHGOZQ PAJTEC YHDUZU MLJGBC HUUNRO AXIKJD AIRKUR

HCWNVT QHGHZQ ZNAXDG BMBQXN AVKKSB BMJQXC BSSQHF

IHDRZU RHZDZS ODNSQP BNJQDC TWJYOC AIKKUB CSTZHK

(6)

From the highlighted letters, for the permutations P1 and P4 resulting from the codebook settings on

that particular day, we can see that (P1P4)(A) = K, while (P1P4)(K) = F, and (P1P4)(F) = A. This

means that the cycle (AKF) is part of the permutation P1P4. Similarly, using the letters in the first

and fourth positions of these 68 six-letter sequences, we can see that the cycle (BQHNV) is part of

P1P4, and in fact that P1P4 = (AKF)(BQHNV)(CZX)(DELIR)(GOSM)(J)(PTYU)(W). In the same manner,

using the letters in the second and fifth positions of these 68 six-letter sequences, we can see that

P2P5 = (AEYTLB)(CVSHZK)(DQIURN)(F)(G)(JWOPMX), and using the letters in the third and sixth posi-

tions, that P3P6 = (AGQJCWTKBNPL)(DUOHYZSFEVMI)(R)(X). Notably, the permutation P1P4 is of type

(5,5,4,4,3,3,1,1), while P2P5 is of type (6,6,6,6,1,1), and P3P6 is of type (12,12,1,1).
A couple of other insights dramatically reduced the number of possible machine configurations the

Poles needed to consider. One was that since the expression PRMLAL−1M−1R−1P−1 summarizing

the full journey through the machine can also be viewed as P(RMLAL−1M−1R−1)P−1, the full journey

through the machine is conjugate to the part of this journey that occurs between visits to the plugboard.

By Theorem 2.1, we know then that the full journey through the machine is a permutation of the same

type as the part of this journey that occurs between visits to the plugboard. That is, the plugboard

had no effect on the cycle structure of the permutation representing the full machine. It is not hard

to show that the plugboard would similarly have no effect on the cycle structure of the product of

two permutations. As a result, ignoring the plugboard would not change the cycle structures of P1P4,

P2P5, and P3P6 from what we observed them to be previously. Ignoring the plugboard though does

significantly reduce the number of possible full machine configurations from its theoretical value

given in (5) by the factor 100,391,791,500 that was contributed by the plugboard to this value.

Another insight was that since the Poles’ method would fail if any rotor except the rightmost

rotated during the formation of the portion of a ciphertext used in determining the configuration of

the machine, and the rightmost rotor rotated in a predictable manner, they could simply ignore the

ring settings. By assuming fixed common ring settings, then with regard to the rotors, the Poles only

needed to consider the 263 = 17,576 possible ground settings and 3! = 6 possible rotor orders. This

gives only 6 ·17,576 = 105,456 different ways that rotors could be configured, significantly less than

the factor 1,853,494,656 that was contributed by the rotors to the theoretical value given in (5).

The Poles determined and recorded the cycle structures of P1P4, P2P5, and P3P6 for each of the

105,456 configurations they needed to consider. To do this, they built a machine called a cyclometer,
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which consisted of two sets of three rotors with the reflector in between, and which they used to

simulate the between-plugboard-visits operation of Enigma. When running the cyclometer, the Poles

arranged both sets of rotors in one of the six possible orders, and moved the first set to reflect a

combination of window letters (e.g., AIM) and the second set the combination with the rightmost

rotor moved three positions forward (e.g., AIP). Current designating an input letter was then sent

through the cyclometer, with the output letter recorded and itself put back into the machine to obtain

a second output. This process was repeated until the original input was obtained as output, thus

revealing a cycle in the permutation for the rotor order and window letters with which they started.

Then, they would input a letter not in this cycle into the cyclometer and repeat the process, continuing

to do this until every letter had occurred in a cycle. This would finally give the full representation of

P1P4. They would then repeat the entire process with the window letters in the cyclometer set for the

combinations with the rightmost rotor moved one position forward (e.g., AIN and AIQ) to find the

representation of P2P5, and again with the window letters set for the combinations with the rightmost

rotor moved one more position forward (e.g., AIO and AIR) to find the representation of P3P6.

The Poles completed this process for each of the 105,456 configurations they needed to consider,

and recorded the results for P1P4, P2P5, and P3P6 in a (very large) table. Although no original copies

of this table are known to still exist, we do know how the table was organized, specifically that

permutations of the same type were grouped together, and listed alongside the window letters that

were used on the first set of rotors in the cyclometer.

To demonstrate how this table could be used, consider Table 1, which gives a few samples of the

cycles in the permutations of types (5,5,4,4,3,3,1,1), (6,6,6,6,1,1), and (12,12,1,1) that result

with the rotor order R3, R1, R2 and assumed ring settings 1, 1, 1.

Permutation Type Window Letters Cycles

(5,5,4,4,3,3,1,1) GDQ (HKLQJ)(MXSYW)(BGDZ)(ENOV)(AFT)(CUI)(P)(R)
(5,5,4,4,3,3,1,1) GED (BIRPE)(HNVLQ)(DJXU)(GSOM)(AKZ)(CFY)(T)(W)

...
...

...

(5,5,4,4,3,3,1,1) HPN (CORLU)(DSHGZ)(BKWF)(EMNP)(AXT)(IYQ)(J)(V)
(5,5,4,4,3,3,1,1) HYR (ATXVB)(LOYMQ)(CRKJ)(EUNS)(DIF)(GWP)(H)(Z)

(6,6,6,6,1,1) FYY (ABFWNQ)(CHZOER)(DLTKGI)(PVUSXY)(J)(M)
(6,6,6,6,1,1) GEE (AEXJBL)(CVOHFK)(DMYTWS)(IURNPQ)(G)(Z)

...
...

...

(6,6,6,6,1,1) HYJ (AUBNOY)(CHIFKQ)(DLJTPE)(RZXWVS)(G)(M)
(6,6,6,6,1,1) HYS (AOSVIQ)(BMPUWN)(CRHFDT)(EYJLKZ)(G)(X)

(12,12,1,1) GEC (AKZUWGQRHJST)(CXIENFLYVMOD)(B)(P)
(12,12,1,1) GEF (AGQTCWJKLNDB)(EVMIPUSHXFOZ)(R)(Y)

...
...

...

(12,12,1,1) HXU (ANFHYXJRKLGT)(BPZEOVUQIMWC)(D)(S)
(12,12,1,1) HYT (BNPCWEOFXQMI)(DSUJRVTLKZYH)(A)(G)

Table 1: Sample permutation types for rotor order R3, R1, R2 and ring settings 1, 1, 1.

In attacking the example given at the start of this section, we would first be looking for permutations

in the full table with consecutive window letter settings that matched the permutation types of P1P4,

P2P5, and P3P6 that we discovered previously. Two candidates emerge from the small portion of the

full table given in Table 1, the trio with consecutive window letter settings GED, GEE, and GEF, and

the trio with consecutive window letter settings HYR, HYS, and HYT. Between these two candidates,
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we would then want the one whose cycles can be arranged to match up better with the cycles in P1P4,

P2P5, and P3P6. To determine this, consider the following comparisons, with the cycles arranged to

have common lengths and with the matching letters between corresponding cycles maximized.

P1P4: (AKF)(BQHNV)(CZX)(DELIR)(GOSM)(J)(PTYU)(W)
GED: (AKZ)(LQHNV)(CFY)(PEBIR)(GSOM)(T)(DJXU)(W)
HYR: (DIF)(BATXV)(GWP)(MQLOY)(UNSE)(H)(CRKJ)(Z)

P2P5: (AEYTLB)(CVSHZK)(DQIURN)(F)(G)(JWOPMX)
GEE: (AEXJBL)(CVOHFK)(PQIURN)(Z)(G)(TWSDMY)
HYS: (ZEYJLK)(CRHFDT)(BMPUWN)(X)(G)(QAOSVI)

P3P6: (AGQJCWTKBNPL)(DUOHYZSFEVMI)(R)(X)

GEF: (AGQTCWJKLNDB)(PUSHXFOZEVMI)(R)(Y)

HYT: (WEOFXQMIBNPC)(KZYHDSUJRVTL)(A)(G)

The cycles for GED, GEE, and GEF clearly match up better with the cycles in P1P4, P2P5, and P3P6

than do the cycles for HYR, HYS, and HYT. Thus, we would proceed assuming the ground setting

that produced the six ciphertext letters in the example given at the start of this section was GEC, so

that when the key labeled with first plaintext letter on the keyboard was pressed, the rightmost window

letter would rotate to D before current reached the rightmost rotor.

The reason why the cycles for GED, GEE, and GEF do not identically match the cycles in P1P4,

P2P5, and P3P6 is that the latter were formed with the plugboard pairs connected, while the former were

not. However, our comparisons between the cycles for GED, GEE, and GEF and those in P1P4, P2P5,

and P3P6 actually reveal these plugboard pairs. Specifically, note that in our comparisons between

P1P4 and GED, P2P5 and GEE, and P3P6 and GEF, the places where these comparisons fail to match

all indicate the same six plugboard connections: B↔ L, D↔ P, F↔ Z, J↔ T, O↔ S, and X↔ Y.

We will now demonstrate a Maplet written by the authors that can be used to form the permutations

P1P4, P2P5, and P3P6 from the sample intercepts given in (6), and then search a full table of the type

created by the Poles in which they recorded results for each of the 105,456 configurations they needed

to consider, looking for permutations with consecutive window letter settings that match the types of

P1P4, P2P5, and P3P6. We begin by typing the sample intercepts given in (6) in a textbox at the top

of the Maplet window, and clicking Check Message Settings to ensure that the intercepts provide

enough information to give permutations P1P4, P2P5, and P3P6 that include all alphabet letters.6 Next,

we click Compute Cycle Structure to see the permutation types and cycles for P1P4, P2P5, and P3P6,

and click Check Table to search the full table, looking for permutations with consecutive window

letter settings that match the types of P1P4, P2P5, and P3P6.

The window to the right of Check Table then shows the combinations of rotor orders and ground

settings from the full table for which permutations with consecutive window letter settings match the

types of P1P4, P2P5, and P3P6. The number to the right of the ground settings in this window is a

measure of how well the letters between corresponding cycles match, with a number significantly

higher than the rest indicating the likely best option. Since this number is highest for the ground

setting GEC, we next type the rotor order and this ground setting in the given text boxes, and click

Compare Plugboard Cycle Structure. This causes the cycles in P1P4, P2P5, and P3P6 and those from

the table to be displayed together in the window, enabling us to identify the plugboard connections

6Recall that this particular example involved 68 intercepts. Rejewski claimed that sometimes as many as 80 intercepts

were necessary before the permutations P1P4, P2P5, and P3P6 would include all alphabet letters.
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that would make these cycles identically match. Typing these plugboard connections in the given text

box and clicking Decrypt Message Settings finally reveals the decrypted message settings for each

of the sample intercepts given in (6). The result of this is shown in Figure 5.

Figure 5: Using the Maplet to analyze encrypted message settings.

In this example, even using a full table of the type created by the Poles, only two combinations

of a rotor order and ground setting resulted in permutations of the same type as P1P4, P2P5, and P3P6.

Indeed, often there were only a few such combinations. On some occasions though there were many,

and sometimes several had cycles that matched up favorably and similarly with the cycles in P1P4,

P2P5, and P3P6, making the task of finding the correct one more difficult. A detailed discussion of the

cycle structures in the full table can be found in [1].

5.2 Analyzing Full Messages

To be able to decrypt full messages, the Poles still needed to figure out the ring settings given in the

codebook, which to this point they had assumed to be some common fixed settings. To do this, the

Poles discovered and exploited another mistake made by Enigma operators, specifically that many

of their messages began with the crib TOX (actually, ANX, which would translate from German to

English as TOX, the word “To” followed by X acting as a space character). Using a message setting

they had already determined though, the Poles could simply search for ring settings from among the

263 = 17,576 possibilities that would decrypt the three letters directly following the sixth as TOX. Of

course, with such a short crib, there were usually multiple such ring settings. However, each could be

used in an attempt to decrypt a message in full, and then when the correct settings were found (i.e.,

when the full message decrypted correctly), the ring settings from the codebook would be known, and

could thus be used in the decryption of every full message intercepted on the same day.

As an example of this that demonstrates another Maplet written by the authors, from the six-letter

sequences given in (6) and their decrypted companions shown in Figure 5, consider the sequence
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CHHZZY and its decrypted companion FABFAB. Suppose also that the rest of the intercepted ciphertext

(after the first six letters) was GCAHNYBCYHELYYDECLUQUVOGKGPLNXQXFPGLDQS, which would thus

be known to have been formed using message setting FAB, rotor order R3, R1, R2, and plugboard

connections B↔ L, D↔ P, F↔ Z, J↔ T, O↔ S, and X↔ Y. The Maplet window in Figure 6 shows,

from among all of the 17,576 possibilities for the ring settings, the only four that would cause the first

three encrypted message letters GCA to decrypt as the assumed crib TOX.

Figure 6: Using the Maplet to find ring settings.

Attempting to decrypt the full message using each of these four ring settings, which could be done

using the Maplet demonstrated previously as in Figure 4, would reveal that the correct ring settings

were 14, 23, 5, and the full plaintext was TOXBEXORXNOTXTOXBEXTHATXISXTHEXQUESTION.

6 Conclusion

In this paper, we showed how Polish codebreakers led by Marian Rejewski used permutations to

analyze German communications encrypted using Enigma prior to World War II. Maplets written by

the authors were used to demonstrate this. These Maplets are available for download at [4].

More detailed historical descriptions of the work of the Polish codebreakers can be found in [1]

and [2]. By 1938, Germany had made two additional rotor wirings available for use in their Enigmas.

This increased the number of possible rotor orders by a factor of 10 (from 3! = 6 to 5 · 4 · 3 = 60),

too many for the Polish method for breaking Enigma to be effective. However, British and American

codebreakers led by Alan Turing at Bletchley Park exploited other weaknesses in their own successful

attack on the more complex machine. A detailed discussion of their efforts can be found in [3].
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