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Abstract

The discussions in this paper were inspired by a college entrance practice exam from
China, which leads author to explore a dynamical billiard in R2 that can be understood
with Euclidean geometry. We see if the incidental and re�ected rays at a point on a circle
are kept at a speci�c angle and continue this process, we shall create many nice geometric
patterns. Secondly, we replace the straight lines of the light beams by two symmetric curves
with respect to the corresponding normal line at the point on the circle, we will create nice
patterns involving curves. Finally, we explore some known facts regarding the re�ections
along ellipses with technologies.

1 Introduction

In this paper, we use technological tools to explore and investigate re�ections of light beams or
billiards along a smooth curve. Unless otherwise stated, the boundary curves we discuss in this
paper are simple, closed and di¤erentiable. The problems discussed in this paper were inspired
by a college entrance practice problem (see Example 1 in Section 2) we found from China (see
[5]). In short, if we start from a point and starts bouncing against the curve (like a straight
line light beam), we would like to know when the bounces will come back to the initial starting
point. One can view the incoming rays (incidental rays) and the outgoing rays (re�ected rays)
at any point of the curve as inverses with respective to the normal line at the point on the
curve. In Section 3, we discuss scenarios that will produce many nice geometric patterns when
we choose proper angle between the incoming and outgoing ray while the boundary curve is
a circle. In Section 4, we replace the incoming and outgoing rays from lines to curves, based
on the formula 3 derived from [10]. As a result, we may create beautiful patterns involving
curves. To encourage beginners to appreciate how technological tools can inspire learning
interesting mathematics, in Section 5, we use technological tools to explore three known facts
about re�ections along ellipses.



2 A College Entrance Practice Problem From China

We present the following Example, which is originated from a college entrance practice problem
from China, see [5].

Example 1 We refer to the following �gure: A light beam starts fromM(x0; 4) and follows the
direction parallel to the x� axis and hits y2 = 8x at P and re�ects and touches the horizontal
parabola at Q then the light beam touches the line x� y� 10 = 0 at the point N: Find x0 if the
�nal re�ection at N comes back to M:

Figure 1. Re�ections and a
parabola

First we note that the tangent at a point on y2 = 8x (or y2� 8x = 0) satis�es 2y dy
dx
� 8 = 0;

which implies dy
dx
= 4

y
: Since P = (x; 4) lies on y2 � 8x = 0; we see x = 2: We also note that

dy
dx
= 1 at P , thus the angle between MP (parallel to the x � axis) and the tangent line at

P is �
4
: Since the normal vector nP is perpendicular to the tangent vector at P; the incidental

angle � = �
4
too. Thanks to the law of re�ection, we see PQ?MP and dy

dx
at Q = (2;�4) is �1.

Analogously, we see QN?NM: We plug y = �4 into the line of x� y � 10 = 0 yields x0 = 6:
Discussions: To design an exam type of question, it is understandable that the problem

cannot be too complicated and the answer has to be simple too. However, we may make a
problem more realistic if technological tools are available to students. For example, one can
explore the following scenarios:

1. Suppose the given pointM (x0; y0) is �xed, the �rst and second re�ections along the curve
y2 = 8x are horizontal and vertical (as stated in the question) respectively. Now we make
the line ax + by + c = 0 to be movable, readers can explore if one vary the individual
variable a; b or c; will the �nal re�ection come back to the point M?

2. Suppose the given point M (x0; y0) and the line of ax + by + c = 0 are �xed. Now we
ask if we make the point P on the curve y2 = 8x to be movable, after the re�ections of
MP;PQ and QN , when will the last re�ection NM come back to the point M?



We recall that if a straight line in the plane has the form of ax+by+c = 0 and if (u; v) 2 R2;
then the re�ected point (u0; v0) of (u; v) with respect to the line ax + by + c = 0 will have the
form of

u0 = u� 2a (au+ bv + c)
a2 + b2

;

v0 = v � 2b (au+ bv + c)
a2 + b2

: (1)

Figure 2. Re�ection of a
point with respect to a line

We recall a game called �Brick Breaker Arcade�, which demonstrate simple applications on light
or billiards re�ections. Readers can recall some of fun from the following videos, see [1] or [2].
Now we consider the following scenario, where we can develop it as a game similar to �Brick
Breaker Arcade�.

Example 2 Given a circle of x2 + y2 = 4 and a point A = (0:385; 0:805) in the interior of
the curve.

1. We start with the initial incidental ray of
�!
AB = (0:705 86; 0:871 32) ; whereB = (1:09086; 1:67632)

is a point on the circle. Select the proper point D and the line L so that the second re-
�ection followed by L will come back to the starting point A after two re�ections on the
circle.

2. Repeat the problem by choosing a di¤erent point A in the interior of the circle and
di¤erent boundary point B on the circle.

3. Repeat the problem by starting a proper interior point A and the boundary point B: Now
�nd the �nd the proper point D and the line L so that the �fth re�ection followed by L
will come back to the starting point A after two re�ections on the circle.

Remark: A game that can be easily linked to this problem and can be stated like this:
We start with a point A within a given circle and start a random re�ection along the circle,
we are looking for a precise place within the circle (point D) and a proper line (L) so that the
re�ection will come back to the point A after �nitely many re�ections.



Figure 3. The line, second
re�ection and a circle

We describe how we approach the problem 1 as follows and leave the others to the readers to
explore.
Step 1. The normal line at B = (x1; y1) in rectangular form is OB : y = 1: 536 7x;
Step 2. We �nd the re�ection A with respect to OB; which we call it A0: The line equation

A0B is y = 1:954x � 0:4557. Next we �nd the proper intersection between A0B and the circle

to be C =
�
�0:7212729048
�1:865412929

�
:

Step 3. We note the normal line at C is y = 2: 586 3x: We next �nd the re�ection of BC
with respective to the line OC to be y = 3:685 � x+ 0:7926; which we call it L0:
Step 4. We�nd the intersection point between L0 andAB to beD =

�
x
y

�
=

�
�0:188 84
0:09664 7

�
.

Step 5. It su¢ ces to �nd the line of angle bisector, L00; between DB and CD at the point
D: This turns out to be y = �0:5117x; which is the green line in Figure 3.
Step 6. Finally, we �nd the desired line L000 (shown in pink in Figure 3), which is perpen-

dicular to L00 and passes through the point D; to be y = 1:954x+ 0:4657

3 Geometric Patterns, Re�ections and Circles

We now turn to a natural question one would ask by connecting an interior point of a given circle
with another point that lies on the boundary of the circle. The question we ask is if such initial
starting ray will come back to the same starting point after �nitely many re�ections. In other
words, we ask if the re�ections will become periodic after �nitely many steps. We exclude the
trivial case where the �rst incoming light beam is the normal vector to a given point. At present
we focus on the case when the simple closed curve is a circle, and the normal vector at a point
on the circle is pointing toward the center. We pick the starting point from an interior point E
of a circle with the trajectory that hits a point P1 on the boundary of the circle. At the point
P1; we de�ne the angle � of incidence as the angle between the inward pointing normal vector at
point P1 and the billiard trajectory EP1. Similarly, de�ne the angle of re�ection as the angle �
between the normal vector at P1 and the billiard trajectory P2P3. We see the angle of incidence



� is same as the angle � of refection (See Figure 4. This is an empirical fact in physics (See
Figure below). We �rst analyze the angle � when the re�ections form a regular polygon. With a
dynamic geometry software (DGS) at hand, we start with a point E 2 R2 with a �xed direction
v; which forms a �xed angle � with the normal vector at P1 on the circle. We continue with
the re�ection with the �xed angle � and ask if there is a positive integer n so that the Pn = E:
If such positive integer n exists, we call such re�ection a periodic. In addition, theoretically we
need to specify in advance how tow points can be numerically considered as the same point.
For example, we may set a pre-determined numerical small error to be � > 0; and for the points

p = (x1; y1) and q = (x2; y2) 2 R2 satisfying kp� qk =
q
(x1 � x2)2 + (y1 � y2)2 < � , we say p

and q are identical within �: Since this paper is meant for exploring new ideas, unless otherwise
stated, we shall not get into the discussion of how � is chosen.

Figure 4. Law of re�ection

3.1 Re�ections and a regular polygon inscribed in a circle

Since we ask if a re�ection becomes periodic or not, it is natural we �rst consider the case
of a regular convex polygon that is inscribed in a circle. We recall that a convex polygon is
a simple polygon (not self-intersecting) in which no line segment between two points on the
boundary ever goes outside the polygon. A convex polygon is regular if each side is of equal
length; subsequently, each interior angle of a regular convex n-polygon has the measurement of�
1� 2

n

�
� 180� =

�
1� 2

n

�
�. Therefore if the incidental angle for a re�ection is

� = 90�
�
1� 2

n

�
= 90�

�
n� 2
n

�
=
�

2

�
n� 2
n

�
; (2)

where n = 3; 4; ::: . Then the re�ections become periodic and follow the path of a regular
convex n-polygon.
For example, when n = 3 in (2) we see the inclination angle � = 30�; then we create an

equilateral. In the following Figure 5, we consider the circle x2+y2 = 4 and start with the initial
incoming ray of EA; with the interior point E = (0:276886; 1:09285) and A = (1:45596; 1:3712) ;
which lies on the circle. We see the inclination angle � between EA and the normal line at A
is � = 30�: It follows that the 4 � th re�ection, the last re�ection at the point C; will come
back to the initial re�ection of EA: In the meantime, we see the re�ections form an equilateral



triangle.

Figure 5. Re�ections and
an equilateral.

We note the following observations:

1. The re�ections become periodic or not does not depend on the location or the size of the
circle.

2. If we assume the initial ray starts with a point E 2 R2 and ends with the point P1 = (a; 0)
on the circle of x2 + y2 = a2: Then the incidental angle � 2

�
��
2
; �
2

�
: For simplicity, we

assume � 2
�
0; �

2

�
in our discussions.

3. If we use E = (0; e) and E is in interior of the circle, x2+y2 = a2; then � 2 (0; �
4
]; and if E

is outside of the circle, then � 2
�
�
4
; �
2

�
: Without loss of generality, we may consider the

initial incoming ray EP1 is formed when E = (0; e) lies on the y � axis and P1 = (2; 0)
lies on the circle of x2 + y2 = 4: For arbitrary interior point E and a point on the circle
P1; we may use rotation method to obtain the same results.

Next, we know that there are other scenarios where the re�ections along a circle can be
periodic. For example, we now consider a regular star polygon, that is a self-intersecting,
equilateral equiangular polygon.

Example 3 Consider the incidental angle of � = 15� with E = (0; e) and P1 = (a; 0) on the
circle of x2 + y2 = a2: We show that such re�ections produce a regular (star) 12-polygons.
Incidentally, we produce the regular (convex) 12-polygon by connecting adjacent points on the
circle and also another inner regular (convex) 12-polygons.

Here, we use e = a tan � to �nd E: If a = 2; then E = (0; 0:5358983848). We depict the
produced regular (star) 12-polygons using [6] and [7] in the following Figures 6(a) and 6(b)



respectively.

Figure 6(a) When � = 15� and
[6]

Figure 6(b) When � = 15� and
[7]

Now we turn to an interesting curve that if found after re�ections along a circle as follows:

De�nition 4 We call caustic curve to be the curve such that each billiard trajectory is tangent
to such a curve.

We see the caustic curve when � = 15� as we see in Figures 6(a) or 6(b) is a regular convex
12-gons. We present another example as follows:

Example 5 Consider the incidental angle of � = 5� and P1 = (2; 0); then we obtain a regular
star 36-polygons and E = (0; 0:1749773271) in this case. We depict the regular 36-polygons
using [6] and [7] respectively in Figures 7(a) and 7(b) respectively. We remark that the caustic
curve in this case is a convex regular 36-polygons.

Figure 7(a) When � = 5� and
[6]

Figure 7(b) When � = 5�

and [7]



It is clear that we need to rely on a CAS ([7] in this case) to �nd the relationship between
the incidental angle � and the number of regular polygon it may create if the re�ections become
periodic.

Example 6 If we start with E = (0; e), the point P1 = (2; 0): If we set � = �
180

or 1�: Then
�nd the number of points needed to make the re�ections periodic.

We use Maple to compute that 179 points are needed to make the refection recursive. In
such case, we get a regular star 180�polygons. We show the initial and �nal re�ections as
follows in Figure 8(a) and Figure 8(b) respectively.

Figure 8(a) Initial ray when
� = 1�

Figure 8(b) Final
re�ection when � = 1�

Observations: At this point, one may make the following conjectures:

1. If � is an integer degree, then will the re�ections along a circle be periodic and the resulted
curve will be either regular n gons or regular star polygons?

2. What if � is a rational angle in degree, will the re�ections along a circle be periodic?

Fortunately, the answers to the above two conjectures are all a¢ rmative, which will be left
in a later article to explore.

4 Replace Incoming And Outgoing Line Segments With
Symmetric Curves

Mathematically, an incoming ray and an outgoing ray is symmetric to a normal line at a point
on the circle. In other words, we may say that the outgoing ray is the inverse of the incoming ray
with respect to the normal line. Now, suppose we replace the incoming ray by a smooth curve
with proper starting and terminating points, and we would like to �nd the general inverse of this
smooth curve with respect to a normal line at a point on a circle. Since circles are symmetric,
we expect to create nice patterns of graphs.



Example 7 Here we consider the circle x2 + y2 = 4; centered at the point O (see Figure
9 in green). The triangle M MNL is an equilateral inscribed in the circle, where M =
([1:45596; 1:3712]) ; N = (0:45951;�1:9465) and L = (�1:91547; 0:575301) : (See Figure 9) We
describe how we construct three ellipses that passes through M;N and L respectively. Conse-
quently, then we construct a curve (part of the �rst ellipse) that is symmetric to another curve
(part of the second ellipse) with respective to the normal line at the point M: Similarly, we can
construct two symmetric curves with respective to the normal lines at N and L respectively.

Figure 9. Re�ections using
smooth curves

Step 1. We �nd the midpoint F of ML and construct a perpendicular line l1 to ML using
F as the perpendicular foot. We call the intersection between l1 and the circle to be P:
Step 2. We construct an ellipse using F as its center and FM and FP as its major and

minor axes respectively.
Step 3. We proceed to construct the second and third ellipses analogously.
Step 4. It is easy to see that the curve, which is the portion of the ellipse passing through

L; P and M; and another curve, which is the corresponding portion of the ellipse passing
through M;Q and N; are symmetric with respect to the normal line at M:
Step 5. Analogously, we can construct two symmetric curves with respective to the normal

lines at N and L respectively.
Remark: Incidentally, we ran into a construction of the rose with three leaves, where the

angles between each leave is 2�
3
:

Discussions: As we see that the curve\LPM is symmetric to the curve \MON with respec-

tive to the normal line atM . Mathematically, we may ask to �nd the general inverse
�
p(t)
q(t)

�
for

a given parametric equation
�
x(t)
y(t)

�
with respect to a line of ax+by+d = 0 (i.e., y = �a

b
x+ �d

b
).

We see the slope of this line to be �a
b
and we set � = tan�1(�a

b
): According to [10], we have



�
p(t)
q(t)

�
=

1

a2 + b2

�
�a2 + b2 �2ab
�2ab a2 � b2

� �
x(t)� 0
y(t)� (�d

b
)

�
+

�
0
�d
b

�
(3)

=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
x(t)� 0
y(t)� (�d

b
)

�
+

�
0
�d
b

�
;

we leave it as an exercise to readers to explore �nding nice patterns when replacing lines by
curves with respective to proper normal lines at points along a circle.

5 Further Explorations

We certainly can extend the re�ections over a circle to an ellipse. That is in an elliptical
billiards: If a trajectory closes after a �nite number of bounces. The history of Poncelet�s
Theorem is very interesting and there are many deep mathematical results in connection with
this theorem, including the conditions for periodicity obtained by Cayley. We refer readers to
[4] in exploring several interesting scenarios regarding the elliptical billiards when technological
tools are implemented. In what follows, we use a DGS and CAS [8], which developed by a
Chinese research group, to explore the following three known facts which are proved by [9].
In the following demonstrations with technological tools, we shall see that even though the
proofs in [9] are evidently non-trivial; however, technological tools can indeed be e¤ectively
implemented for making complex mathematical concepts more accessible.
Exploration 1. If the trajectory crosses the foci, then the re�ected ray will pass the other

foci. It can also be shown theoretically that the trajectory of the billiard converges to the major
axis of the ellipse.

Example 8 Consider the ellipse of x
2

52
+ y2

32
= 1 with the foci of (�4; 0) and (4; 0) : Let P be

a point on the ellipse. We explore if the incidental ray EP passes one of the foci, then the
re�ected ray will pass the other foci. It can also be shown theoretically that the trajectory of the
billiard converges to the major axis of the ellipse.

Readers can explore this example through

https : ==www:netpad:net:cn=svg:html#posts=137109:

Figure 10(a). Re�ections when
incidental ray passes one foci.

Figure 10(b). Trajectory converges to
the major axis of the ellipse.



Exploration 2. If the incidental ray EP crosses the line segment between the two foci,
then we can show theoretically that the caustic forms a hyperbola.

Example 9 Consider the ellipse of x
2

52
+ y2

32
= 1 with the foci of (�4; 0) and (4; 0) : Let P be a

point on the ellipse. We explore if the incidental ray EP crosses the x� axis between the two
foci. Then we can show theoretically that the caustic forms a hyperbola.

Readers can explore this example by modifying the example from

https : ==www:netpad:net:cn=svg:html#posts=137109:

Figure 11(a). Incidental ray crosses
between the two foci.

Figure 11(b). The caustic forms a
hyperbola.

Exploration 3. If the incidental ray EP does not cross the line segment between the two
foci, then it can be shown that every trajectory of the billiard is tangent to the ellipse which
shares the same foci with the ellipse. In other words, the trajectory forms a caustic which is
an ellipse confocal to the elliptical billiard table.

Example 10 Consider the ellipse of x2

4:52
+ y2

4:32
= 1 with their respective foci: Let P be a point

on the ellipse. We explore if the incidental ray EP does not intersect with the line segment
between the two foci of the ellipse. Then every trajectory of the billiard is tangent to the ellipse
which shares the same foci with the ellipse. In other words, the trajectory has a caustic which
is an ellipse confocal to the elliptical billiard table.

Readers can explore this example by modifying the example from

https : ==www:netpad:net:cn=svg:html#posts=137109:



Figure 12(a) Incidental ray does
not intersect the line segment

containing two foci.

Figure 12(b). A caustic
confocal to the elliptical

billiard table

6 Conclusions

Typically students are allocated no more than 10 minutes to solve one problem in a Gaokao
(College Entrance Exam) in China. Under such circumstances, it is not hard to imagine that
many students may lose interest and may even decide to give up to solving these types of
problems. It is clear that technological tools can provide us with crucial intuition before we
attempt more rigorous analytical solutions. Here we have gained geometric intuitions while
using a DGS. In the meantime, we use the computer algebra system (CAS) for verifying that
our analytical solutions are consistent with our initial intuitions. In this paper, we started
out with a simple re�ection problem from Gaokao and investigated several scenarios using
technological tools. The complexity level of the problems we posed vary from the simple to
the di¢ cult: some of our solutions are accessible to students from high school; others require
more advanced mathematics such as university. Nevertheless, activities presented in this paper
de�nitely are accessible to those teachers�training programs.
Evolving technological tools de�nitely have made mathematics fun and accessible on one

hand, but they also allow the exploration of more challenging and theoretical mathematics. We
hope that when mathematics is made more accessible to students, it is possible more students
will be inspired to investigate problems ranging from the simple to the more challenging. We do
not expect that exam-oriented curricula will change in the short term. However, encouraging
a greater interest in mathematics for students, and in particular providing them with the
technological tools to solve challenging and intricate problems beyond the reach of pencil-and-
paper, is an important task for many educators and researchers.
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