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Abstract: Computational thinking has been identified as an important skill for students who wish to pursue mathematics 
and mathematics related disciplines as a career. This has called for a special focus on CT activities in the K – 12 
curriculum. While many definitions of CT may be found in the literature, all of them seem to focus on specific skills, such 
as, the ability to deal with challenging problems, representing ideas in computationally meaningful ways, creating 
abstractions for the problem at hand, breaking down problems into simpler ones, assessing the strengths and weaknesses 
of a representation system and engaging in multiple paths of inquiry. These skills are also critical for mathematics 
learning and there is a common consensus on the understanding that CT skills have to be developed in mathematics 
classrooms right from the school years. However finding appropriate tasks which help to develop and elicit such thinking 
remains to be a key pedagogical challenge. Further teachers need to be empowered to create as well as integrate CT 
tasks in their lessons. This article hopes to suggest a guide map for preparing and integrating CT based activities in the 
mathematics classroom. It also attempts to highlight the pivotal role of in engaging students and in steering them towards 
computational thinking. Examples of tasks ranging from iteration and recursion in fractal constructions to exploration 
of chaos and simulation of queues and games which were conducted with secondary school students in the Indian context 
will be discussed. 

1. Introduction  

In recent years computational thinking has been identified as one of the key analytical abilities 
required for mathematics and science learning. The rapidly changing nature of scientific and 
mathematical disciplines and the need to prepare students for careers in these disciplines have been 
the primary motivation for bringing computational thinking into classroom practices. Papert [2,4] was 
the first to emphaisse the importance of computational thinking by referring to the affordances of 
computational representations for highlighting powerful ideas. Over the decades many researchers 
have attempted to define computational thinking. Stephen Wolfram [7], in his book A new kind of 
science, talks about the computational world, its relationship with the physical world and the 
importance of computational thinking. Wing [6] in her seminal article expressed that computational 
thinking involves solving problems, designing systems and understanding human behaviour by 
drawing on the concepts fundamental to computer science. However operationalising computational 
thinking for the K – 12 classroom is a key pedagogical challenge. Experts believe that computational 
thinking should not be restricted to mathematics and science only, and that it should be integrated in 
the social sciences, art and language curricula. It would require a monumental effort to design a 
coherent curriculum which integrates computational thinking in the various school subjects. 

In this paper we shall make a case for computational thinking in the mathematics classroom. We 
argue that it can be developed by engaging students in meaningfully designed tasks which not only 



highlight the practical relevance of mathematics but also illustrate the benefits of exploring real world 
phenomena through computer based explorations. The ability to deal with challenging problems, 
represent ideas in computationally meaningful ways, create abstractions for the problem at hand, 
break down problems into simpler ones and assess the strengths and weaknesses of a representation 
system are some important aspects of computational thinking for mathematics learning. In section 2 
of the article we shall briefly discuss some of the theoretical underpinnngs of computational thinking. 
In section 3 we shall describe how students of grades 11 and 12 worked on certain investigatory tasks 
and engaged in various aspects of computational thinking. These include fractal based explorations, 
understanding of chaos and simulation of queues and games. Technology in the form of spreadsheets 
(MS Excel), dynamic geometry software (GeoGebra) and graphics calculators (Casio cg-20) played 
a pivotal role in enabling these explorations and helping students to obtain a deeper insight into the 
problems. In section 4 we present a discussion based on students’ responses related to the tasks 
described in section 3. 

2. Theoretical Framework 

Back in the 1980s Seymour Papert [2] had expounded the role of computers in mathematics learning. 
In his book, Mindstorms he wrote 

Before computers there were very few good points of contact between what is most 
fundamental and engaging in mathematics and anything firmly planted in everyday life. But 
the computer — a “mathematics - speaking being” in the midst of the everyday life of the 
home, school, and workplace — is able to provide such links. The challenge to education is to 
find ways to exploit them. 

His pioneering work paved the way for addressing some key questions related to computational 
thinking - How is computational thinking related to mathematical thinking or problem solving? How 
does it relate to the field of computer science?   

While the term computational thinking was introduced by Papert, it was Jeanette Wing who 
popularised it in her short but seminal article [6]. 

According to Wing [6]  

Computational thinking is a fundamental skill for everyone, not just for computer scientists. 
To reading, writing, and arithmetic, we should add computational thinking to every child’s 
analytical ability. Just as the printing press facilitated the spread of the three Rs, what is 
appropriately incestuous about this vision is that computing and computers facilitate the 
spread of computational thinking.  

In the article, Wing [6] further explains what computational thinking entails. 

Computational thinking involves solving problems, designing systems, and understanding 
human behavior, by drawing on the concepts fundamental to computer science. 
Computational thinking includes a range of mental tools that reflect the breadth of the field 
of computer science.  

She further elaborates that computational thinking entails “formulating a seemingly difficult problem 
into one we know how to solve, perhaps by reduction, embedding, transformation, or simulation”, 



thinking recursively, “using abstraction and decomposition when attaching large problems” and using 
heuristic reasoning. 

She also describes some characteristics of computational thinking. For instance, she differentiates 
between computer science and computer programming 

Thinking like a computer scientist means more than being able to program a computer. It 
requires thinking at multiple levels of abstraction;  

and describes computational thinking as “a way humans solve problems”. 

Wing [6] elucidates that computational thinking is not 

…trying to get humans to think like computers. Computers are dull and boring; humans are 
clever and imaginative. We humans make computers exciting. Equipped with computing 
devices, we use our cleverness to tackle problems we would not dare take on before the age 
of computing and build systems with functionality limited only by our imaginations. 

Expanding on the relationship between Computer science and Mathematics, which is in a way a 
thrust of this article, Wing [6] writes 

Computer science inherently draws on mathematical thinking, given that, like all sciences, its 
formal foundations rest on mathematics. Computer science inherently draws on engineering 
thinking, given that we build systems that interact with the real world. The constraints of the 
underlying computing device force computer scientists to think computationally, not just 
mathematically.  

Weintrop et. al [5] attempt to define computational thinking in the context of school mathematics and 
science education and also suggest a theoretical grounding for the same. They propose a taxonomy 
comprising four categories: data practices, modeling and simulation practices, computational 
problem solving practices and systems thinking practices. Their article illustrates a series of 
computational thinking enhanced lesson plans for high school biology, chemistry, and physics 
classrooms.  Despite the attempts by researchers, there appears to be a lack of precision in 
documenting how computational thinking can be brought into the mathematics classroom. Hence the 
focus of this article is to explore the possibilities of integrating CT tasks in the mathematics 
classroom.  

3. Computational Thinking Tasks in the Mathematics Classroom 

In this section we shall describe a study in which CT tasks were attempted by senior secondary school 
students. The students who participated in this study were selected from four schools across New 
Delhi which follow the curriculum prescribed by the Central Board of Secndary Education (CBSE) 
[1], a national board of education in India. The tasks were exploratory in nature and required the 
knowledge of functions, geometric sequences and probability. These topics are a part to the senior 
secondary mathematics curriculum. Prior to the tasks students were familiarized with the basic 
features of the computational tool they would require for exploration. In general they were 
familiarized with basic features of spreadsheets, dynamic geometry software and graphics calculators. 
The sessions were conducted after school hours and on Saturdays so that they would not hinder the 
school schedule.  



3.1. Fractals constructions and recursive thinking. 

The study of Fractals is generally not included in school curricula. However the pedagogical benefits 
of this topic is immense as it provides a rich source of exploratory tasks which lead to notions of 
iteration and recursion. Recursive reasoning is an important skill for computational thinking. The 
concepts of self-simiarity and fractal dimension, if introduced through appropriate tasks, can be well 
within the reach of school students. In this module students of grade 11 explored various geometric 
fractals such as the Sierpinski triangle, Sierpinski Carpet, Koch Snowflake and Pythagorean tree and 
also created their own fractal patterns. This module was introduced after students had learnt the basic 
properties and formulae related to geometric sequences. In this subsection we shall describe students’ 
explorations of two fractals, namely the Sierpinski carpet and the Pythagorean tree. 

3.1.1. Sierpinski Carpet 

In the very first session of the module, students were introduced to the Sierspinski Carpet construction 
where stage 0 comprises a square cut out from a sheet of paper. The four sides are trisected and points 
of trisection are marked on all the sides. When points of trisection of opposite sides are joined, 9 
smaller squares are created. To obtain stage 1, the center square is removed and 8 shaded squares are 
obtained. This stage appears to be a square with a square ‘hole’ in the center. The same process of 
trisection and removing the center square is repeated on the 8 smaller shaded squares to obtain stage 
2. This process is further continued to obtain higher stages of the fractal as shown in figure 1. Students 
did the construction process on a dotted grid paper to ease out the trisection process.  

                  
 

Figure 1.  Stages 0 to 4 of the Sierpinski square carpet 
 
As the construction process ensued, they began to predict the geometric sequences, which would 
emerge by counting the number of shaded squares and the shaded area at each stage. They concluded 
that the number of shaded squares would lead to the geometric sequence 1,8,82,83,....... (with a 
multiplying factor of 8) whereas the shaded area through the stages leads to the sequence 1, 8/9, 
(8/9)2… with the multiplying factor of 8/9. They also obtained the recursive and explicit formulae for 
the number of shaded squares as Sn = 8Sn−1  and  Sn = 8n . The corresponding formula for shaded 
area at the nth stage were obtained as An =  (8/9) An−1 and An = (8/9)n respectively. This was 
followed by a spreadsheet exploration where students generated these sequences numerically and 
represented them graphically as shown in figure 2. Both numerical and graphical outputs helped to 
visualize the fractal at higher stages, which would not have been possible using pictorial 
representations. They were also able to visualize that the number of shaded squares grow 
exponentially as the stages increase whereas the shaded area approaches 0. This was followed by 
students identifying self-similarity within the Sierpinski carpet construction, looking for copies of 
lowers stages within higher stages of the fractal.  
 



 

Figure 2. Excel simulation of the Sierpinski Carpet 

In subsequent sessions, students created their own fractal patterns, analysed them using geometric 
sequences and also explored self similarity within them. Figure 3 illustrates one such example. After 
dividing the original square into 9 smaller squares, four squares (shown in yellow) are removed as 
shown. This process is repeated recursively and the number of shaded squares at various stages leads 
to powers of  5 whereas the shaded area leads to powers of  5/9. 

 

Figure 3.  A fractal pattern generated from the square 

 

3.1.2. Pythagorean tree 

The Pythagorean tree is constructed iteratively in which squares are erected on all three sides of a 
right-angled triangle. In subsequent stages, similar right-angled triangles are constructed on the two 
legs of the original triangle in such a manner that the legs of the original triangle become the 



hypotenuse of the new triangles. When this process is continued a few times, a beautiful intricate 
fractal pattern emerges.  

The initial steps of the iterative process were demonstrated to students using diagrams on the 
whiteboard. Subsequently they constructed various stages of the tree on GeoGebra using the ‘create 
tool’ feature which enables recursive constructions. Figure 4 shows the initial stages of a symmetrical 
Pythagorean tree and figure 5 shows the asymmetrical version.  

 

 

Figure 4. Stages 0, 1 and 2 of the symmetrical Pythagorean tree 

 

Figure 5. Asymmetrical version of the Pythagorean tree 

After this students explored various number sequences arising from different attributes of the 
construction. Firstly they computed the areas of the right triangles appearing along one branch of the 



tree. Assuming the legs of the initial triangle to be of unit length, they arrived at the geometric 
sequence  !
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 and discovered that with increasing number of stages, the sum 
of the areas of the triangles approaches 1! This revelation fascinated them as they had learnt the 
properties of geometric sequences in their regular classes but had not seen them being applied to any 
process. Also an infinite process leading to a finite sum was intriguing to them. Similarly, computing 
the areas of the squares (starting with the square on the hypotenuse of the initial triangle) led to the 
sequence 2, 1, !
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= 4, once again illustrating a situation in which an infinite process leads to a finite value. 

Overall the student engagement in fractal tasks was very satisfying as they actively participated in 
the explorations,  learnt the topic of geometric sequences which is a part of the curriculum, created 
their own fractal designs and developed a firm grip on the processes of iteration and recursion.  

3.2. Understanding Chaos 

In this module, a group of grade 12 students explored the chaotic behaviour of quadratic functions. 
These students had studied the topic of functions in their regular classes and were familiar with linear, 
quadratic, cubic, exponential and logistic functions. In order to explore the idea of chaos, they were 
prompted to begin with the logistic function f(x) = ax(1-x). The idea was to generate the numerical 
sequence of iterates of the function for different values of a ranging from 3 to 4 in steps of 0.1. For 
each value of a different initial seeds were considered to study the behaviour of the the function in 
the long run.  
 
Graphics calculators were used as the primary vehicles of exploration in this module. In order to 
explore the given task, students used the recursive mode of the calculator (RECUR) where the 
quadratic function was entered as a recursive sequence, an+1 = 3.3an(1 - an). 30 iterations of this 
sequence were generated in the TABLE mode and were also graphed. The connected graph for a = 
3.3 for x0 = 0.1 and 0.6, shown in figure 6 (i) and (ii), reveals a powerful progression of the terms. 
Students took different starting points and concluded that “the graphs settle down into the same 
pattern of oscillating between the values 0.48 and 0.82” even though they may look different in the 
beginning. For a = 3.5 the iterates form a regular pattern oscillating between 0.87, 0.38, 0.82, and 
0.50. However for a = 3.8 a very different scenario emerged. Different initial values x0 led to different 
graphical patterns. Figure 7 shows the connected graphs for x0 = 2.1 and 2.2. Students articulated in 
their observations that “even though the initial values are very close, the graphs become very different 
rather quickly” and “They don’t appear to settle down at all and behave in an arbitrary manner”. This 
situation was used by the teacher to introduce the idea of sensitive dependence on initial conditions. 
 



  

        (i)     (ii) 
 

Figure 6.  Iterations of the recursive sequence an+1 = 3.3an(1 - an) for x0 = 0.1 and 0.6 

  

                   (i)                                                 (ii) 

Figure 7.  Iterations of the recursive sequence an+1 = 3.8an(1 - an) for x0 = 2.1 and 2.2 

The graphics calculator provides another powerful way of visualizing recursive sequences using 
cobweb plots. This feature was exploited by students to see the long term behaviour of various 
recursive sequences. Figure 8 (i) and (ii) shows the cobweb plots for a = 3.3 and a = 3.8. For a = 3.3, 
the plot shows a clear convergent rectangular pattern whereas for a = 3.8 the pattern is rather chaotic. 
Sometimes a convergent pattern seems to appear but it disappears very quickly. 

  

(i)                                         (ii) 

Figure 8.  The cobweb plots for a = 3.3 and a = 3.8 

In this module graphics calculators played a crucial role in helping students visualize the notion of a 
chaotic process. Although numerical and graphical explorations of recursive sequences can be easily 
done on a spreadsheet, like MS Excel, the additional feature of creating cobweb plots provided by 



the graphics calculators was particularly helpful in developing a graphical understanding of the 
iterative process. 

3.3. The power of simulations in developing computational thinking 

Simulation is a modeling tool, which is used to imitate real-world problems in order to understand 
system behavior. In particular Monte Carlo Simulation is a problem solving technique used to 
approximate the probability of certain outcomes by running multiple trial runs, (called simulations), 
using random variables. Simple simulations of real world problems can be made accessible to school 
students through spreadsheets such as MS Excel. Through simulations students may be encouraged 
to explore real problems and also engage in computational thinking.  

3.3.1. Simulating queues 

In this module grade 11 students observed queues of cars in a vehicle fueling station, which had a 
single server. The observations were made during peak hours over a week. Later they tried to simulate 
the problem in Excel to understand the characteristics of the queuing process. 

A queuing system is characterised by the nature of arrivals in the queue, the service mechanism, the 
queue capacity and the manner in which the customers are served. In a single server queue, arrivals 
or service occur one at a time in a random fashion and once a customer joins the queue, is eventually 
served. In such a system, there are only two possible events that can affect the state of the system - 
the arrival event (the entry of a unit into the system) and the departure event (the completion of 
service). The queuing system includes the server, the unit being served and the units waiting in the 
queue. A simulation table which keeps a record of the arrivals and service times may be used to track 
the system. In a queuing system, inter arrival times and service times are randomly distributed and 
may be simulated using random numbers. Students were familiarised with the concept of random 
numbers and probability distributions and with how these can be used to model the arrivals and 
services in a queuing system. At the start of the module they used the RAND and RANDBETWEEN 
commands in Excel to simulate the throws of a coins and dice. Later they used these to simulate 
interarrival times and service duration times. Figure 9  shows an Excel simulation for 10 customers 
(cars) where the times between arrivals range from 1 to 6 minutes and the service times (service 
duration) randomly varies from 1 to 4 minutes. These time ranges were estimated based on students’ 
observations. Using simple rules, the actual arrival times and the starting service time as well as the 
ending service time for each customer was computed. 

 

Figure 9. Simulation of a queue for 10 customers 



A natural curiosity which arore among students was to find the average customer waiting time in the 
queue or the average time that the service counter remains idle. According to them this information 
would enable them to help the service station owner to improve his service efficiency. Figure 10 
shows the simulation where the average waiting time and idle time have been computed. 

 

Figure 10. Simulation of a queue for 100 customers (all numbers are in minutes) 

After simulating for 100 customers the following were calculated 

Average waiting time for a customer = 454)6	7)8489:	48;<
454)6	9=;><+	5?	@=A45;<+A

 

Average service time = 454)6	48;<	AB<94	89	A<+C8@<
454)6	9=;><+	5?	@=A45;<+A

 

Average time that the server remains idle = 454)6	8D6<	48;<
454)6	9=;><+	5?	@=A45;<+A

 

Students computed these values by for different choices of interarrival times and service durations. 
Their aim was to reduce waiting time of cars and the idle time of the server. 

3.3.2. Simulating games of chance 

Another useful way for students to engage with simulations is to analyze games of chance, since such 
games, by their very nature, are driven by randomness. A very popular game (also played in casinos) 
is the Game of Craps, which is played with a pair of dice. It is said that if you want to double your 
money quickly on a game of pure chance, one of your best opportunities is to bet all your money on 
one game of craps! Your probability of winning is just slightly under 50%. In this module students 
were familiarized with the rules of the game (as mentioned below) and were asked to analyse the 
game using rules of probability and by simulation in Excel. 

1. If a total of 7 or 11 is obtained on the first roll, you win. 

2. If a total of 2, 3 or 12 is obtained on the first roll, you lose. 

3. If a total of 4, 5, 6, 8, 9 or 10 is obtained on the first roll, this number becomes your point. 
You continue to roll the dice. If you get your total point before a total of 7 appears, you win. 
If you roll a total of 7 before your total point appears, you lose. 

Grade 12 students who were familiar with the basic concepts of probability attempted this task. They 
analysed the game by computing the probability of winning in the first roll, that is, getting a total of 
7 or 11. The possibilities of the numbers appearing on the dice were enumerated as (1,6), (2,5), (3,4), 



(4,3), (5,2), (6,1) for 7 and (5,6) and (6,5) for 11. Thus there are 8 favorable outcomes out of a total 
of 36 possible outcomes leading to a probability of 8/36 = 22.22% 

Similarly the probability of losing on the first roll, that is, getting a total of 2, 3 or 12 was calculated 
to be = 4/36 = 11.11% 

The next task was to calculate the total probability of winning by getting a total of 4, 5, 6, 8, 9 or 10. 
In order to find the probability of winning by getting a total of, say 4, we would need to find the 
probability of getting 4 in the first roll and then getting 4 before getting 7 in subsequent throws. This 
is a case of conditional probability and it can be calculated as follows: 

The probability of getting a 4 in the first roll is 3/36 (the possible outcomes being (1,3), (2,2) and 
(3,1)). In subsequent rolls, only totals of 4 and 7 need to be considered which leads to only 9 
possibilities (3 for a total of 4 and 6 for a total of 7). Among these a win is possible only when a total 
of 4 precedes a total of 7, the probability for which is 3/9. Thus the total probability of winning by 
getting a 4 in the first roll is E

E'
× E

G
= 0.027. Similarly students computed the probability of winning 

by getting a total of 5, 6, 8, 9 and 10. The total probablity of winning a single game of craps (as shown 
in Table 1) works out to approximately 0.49. 

Table 1: Probabilities of winning a Game of Craps 

Initial total Probability 
4 0.027 
5 0.044 
6 0.063 
7 0.167 
8 0.063 
9 0.044 

10 0.027 
11 0.056 

Total probaility of winning 0.493 
 

After the theoretical analysis of the problem, students used the IF, OR, AND, RANDBETWEEN, 
SUM and COUNT commands in Excel to simulate the game. The aim was to explore the average 
number of throws required to win the game. Figure 11 illustrates four scenarios. In (a) the sum of the 
numbers of the two die in the first roll is 7 and the player wins so the game doesn’t continue beyond 
the first roll. In (b) the player loses in the first roll as the sum is 2. Once again the game doesn’t 
continue beyond the first roll. (c) and (d) represent cases when the player neither wins nor loses in 
the first roll. In (c) the sum in the first roll is 10, which becomes the player’s point. The game 
continues till either 10 or 7 appaers. Since 10 appears in the 6th roll, the player wins the game. (d) 
illustrates the case where the players’ point in the first roll is 5. However 7 appears before 5 and the 
player loses the game. 



 

Figure  11 (a).  Player wins on the first roll in the game of Craps 

 

Figure  11 (b).  Player loses on the first roll in the game of Craps 

 

Figure  11 (c).  Player’s point is 10  on the first roll and wins in 6th roll 

 

Figure  11 (d).  Player’s point is 5  on the first roll and loses in 3rd roll 

Students simulated several games and used the data to compute the average number of throws 
required to win the game. It created much excitement and some students also attempted to wite a code 
for the game in Python programming language. 



4. Concluding discussion 

Despite attempts by various researchers there appears to be ambiguity about computational thinking 
and how it can be elicited in the mathematics classroom. This article attempts to propose a guide map 
for preparing and integrating CT based activities in mathematics. While designing the study the 
author (also the researcher) selected tasks based on students’ knowledge and familiarity of 
mathematical content. Thus the fractal explorations tasks were assigned to grade 11 students as the 
topic of geometric sequences is taught in grade 11 whereas the game of Craps task was assigned to 
grade 12 students who study probability as a part of their curriculum. Since recursion has been 
identified as a key computational thinking skill, an attempt was made to include tasks which involve 
iteration and recursion. Thus explorations based on fractals and chaos was a natural choice. Further, 
modeling and simulation is an integral part of the computational thinking in mathematics and science 
taxonomy as proposed by Weintrop et. al. [5] and it became imperative to include modeling tasks in 
the study. The simulation of queues was a modeling exercise, which could be attempted by both grade 
11 as well as grade 12 students. Further analyzing the game of Craps required simulation as well. 
Typically each CT task in the study was spread over four weeks. Students were assigned reading 
materials and exercises, which would help to investigate the problem at hand. They met after school 
on one weekday and on Saturdays. During these sessions they would engage in discussions and 
present their ideas to the whole group. Further the exploration of the problem using technology was 
also done during these sessions. Technology in the form of spreadsheets, graphics calculators and 
dynamic geometry software played a pivotal role in the exploration of these computational thinking 
tasks. These tools acted as ampifiers as they provided access to higher-level concepts and increased 
the scope of the tasks. For example, in the fractal explorations, students were able to explore the 
recursive construction at higher stages as they generated the geometric sequences numerically in 
Excel. In the chaos exploration, the graphical outputs (including cobweb plots) provided by the 
graphics calculator helped to develop a graphical insight of the problem. In the queue simulation task, 
the spreadsheet was critical in helping students understand the nuances of the queuing process. 
Technology also acted as a reorganiser, in the sense that the same sequence did not work for all tasks. 
Each exploratory task had its unique characteristics and a different sequence of explorations. In 
general students explored the tasks through multiple representations, that is, graphically, symbolically 
and numerically. They also developed competence in using the appropriate tool for exploration and 
appreciated the role of technology in the investigations. All through the explorations, students 
engaged in the processes of looking for patterns and invariances, selecting between representations 
and creating new ones, simplifying or generalising problems, making conjectures and even generating 
new questions for exploration all of which are important skills for computational thinking as well as 
mathematical learning. 

The most encouraging aspect of the study was that the excellent student feedback. They expressed 
that such tasks should be included in the regular teaching of mathematics. They valued the 
opportunity of asking ‘what if’ questions during the interactive sessions and also the opportunity for 
discussions with their peers. Unlike regular school lessons, the outcomes of each task was not 
predefined. There was a sense of ‘suspense’ and there were many ‘aha’ moments which really 
appealed to students. They expressed a sense of ownership about their tasks and were responsible for 
their own learning. The tasks encouraged group work and everyone participated.  

Despite the positive findings of the study there were some pitfalls. The explorations were time 
consuming and integration of the CT tasks needed to be planned carefully. Students needed to be 
motivated to try out problems which are considered to be ‘beyond the school curriculum’ and in this 



regard the teacher played a pivotal role. In general, teachers need to be convinced about the 
importance of integrating CT based tasks in mathematics learning and also need adequate 
professional development opportunities to enhance their knowledge and understanding about such 
tasks. In fact the inclusion of computational thinking in mathematics classrooms must receive the 
support of all stakeholders - students, teachers, school authorities as well as parents. It may be 
approptiate to conclude that the study described in this paper points to many benefits of integrating 
CT based activities in mathematics classrooms. In fact, mathematics provides many rich contexts for 
integrating computational thinking activities while computational thinking, in turn, enriches 
mathematics learning. 
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