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Abstract: Automated mathematics has attracted more and more interests to mathematicians and computer scientists. In 
this article, we propose a new solution, Robot for Mathematics College Entrance Examination (RMCEE), to 
automatically solve elementary mathematical problems. RMCEE took the college entrance exam of China in 2017 and 
scored 105 points out of 150. RMCEE takes as input Chinese natural language and outputs human-readable solution 
processes. It leverages artificial intelligence technologies in multiple domains such as the knowledge graph, natural 
language understanding, cognitive reasoning, and deep learning. Our project outperforms other similar projects such as 
Todai Robot of Japan in that RMCEE proposes a natural language understanding model of entity combinations based 
on knowledge graph, and implemented human-readable solution processes based on a novel cognitive reasoning model. 
      
1.  Introduction 
 

The famous mathematician Descartes said that any problem can be converted into a 
mathematical problem and any mathematical problem can be converted into solving equations (see 
[1]). Therefore, if we can solve equations automatically, and eventually solve a big category of 
mathematical problems, we may expect to attack a multitude of problems in the real world directly 
or indirectly. 

 
In this direction, many pioneering mathematicians has made profound progress. Tarski first proved 
the possibility of elementary geometry mechanization using algebraic methods (see [11]). In the 
1970’s, Wen-Tsun Wu presented Ritt-Wu’s Method (see [12]) to prove a lot of theorems 
systematically (such as Pythagoras’theorem, Simson’s theorem, Feuerbach’s theorem, and so on). J. 
Z. Zhang introduced a geometric invariant method (see [13]) with readable proofs. Stimulated by 
them, many new methods appeared such as the resultant elimination method (see [14]), Grobner basis 
(see [15]), and so on. These methods are called algebraic elimination methods, they are however 
hardly comprehensible and not intuitive enough for humans to understand. While logic methods (see 
[16], [17] and [18]) proposed have always been the dream of mankind, their applications are limited 
due to the massive search space. Recently, readable simplification of trigonometric expressions has 
been put forward by Fu (see [19]), and research has been done in different sub areas, such as algebra 
word problems (see [20]), geometry problems (see [21]). 
 
With these pioneering works, with the big picture of AI leading the current wave of new technology 
revolution, it is the right time for automated mathematics to make an impact to real world problems. 
Much effort has been made towards this goal. The Allen Institute for AI at University of Washington 
proposed an end to end Geometry Problem Solver (GPS) for SAT questions. GPS takes text input in 
natural language and returns the answer to the question (see [7]). Project Aristo (see [22]) contributes 
to research on computerized solving of elementary school science and math exam problems, they use 
a deep learning-based approach to solve the problem of premise selection (see [23]), pre-university 
entrance exams (see [8]), etc. While these projects have their achievement, their focus is on the 
utilization of AI technologies. Like IBM Watson project in 2011[2], they are proud of processing 
natural language, understanding the input geometric graphs, etc. On the other hand, they are relatively 



weak in solving the mathematical problems themselves. These solvers can only solve standardized 
tests, and the correctness of the answers is to be improved. 
 
An example utilizing the state-of-the-art in mathematics mechanization is the Todai Robot Project in 
Japan (see [8]). It aims to develop a mechanical problem-solving system that can pass the University 
of Tokyo’s entrance examination (see [3] and [4]). It began in 2011 and terminated in 2016, utilizing 
the theory and practice of the computer algebra software Maple (see [5]) and automatic theorem 
proving (see [6]). Unfortunately, it does not contain a natural language processing model and can 
take inputs with limited formats. 
 

 

Figure 1.1 An example question in a mathematics test 
 

In 2015, China launched a project comparable to Todai, the National High Technology Research and 
Development Program of China “Key technologies and systems of human-like intelligence based on 
big data”. This program focuses on the annual university entrance examination of four subjects, 
Chinese (see [9]), history, geography (see [10]), and mathematics. This paper presents the part of the 
work of mathematics in this project. We aim to develop a mathematics robot for automated solving 
of elementary mathematics problems just like human being, which can automatically answer both 
standard and non-standard questions with the input of text in natural language and the output of human 
readable solutions. Figure 1.1 shows an example question (Example 1) in a mathematics exam. It 



consists of the topic description and two sub questions. This problem is different from and more 
complex than problems handled by existing approaches to automated question answering. It handles 
natural language input and includes knowledge in 2D geometry, analytic geometry, maximum value 
problems and so on. 
 
In this paper, we firstly present the architecture of RMCEE in section 2, then further describe certain 
key technologies in detail in section 3. After that, experiments are performed on sample elementary 
mathematics problems. Finally, conclusions and areas of future work will be discussed in the last 
section. 

 
2.  The architecture  
 

 
 

Figure 2.1 The architecture of RMCEE 
 

The architecture of RMCEE is shown in figure 2.1. It includes five parts. The natural language 
processing module segments, parses, and understands the conditions and conclusions of math 
problems. The automated reasoning module solves the problems by calculating, reasoning and so on. 
The natural language processing module and the automated reasoning module are connected by the 
first order predicate logic forms. A knowledge graph of elementary mathematics (see [24]) and a 
machine learning framework based on big data are two modules, which effectively support natural 
language processing and automated problem solving. In the following, we will illustrate some key 
technologies of RMCEE in detail. 
 
3.  Key Technologies 
  
3.1 An elementary mathematics knowledge graph 
 
As we know, construction of an elementary mathematics knowledge graph is primary.  



 
First, we manually construct a core ontology of elementary mathematics based on Chinese textbooks. 
Next, we extend the domain core ontology based on a synonym list (such as word forest (see [26]) 
and general ontology (such as WordNet (see [27]). Finally, we use deep learning technology to extract 
entities and relations from mathematical texts on the internet, in order to realize the dynamic extension 
and improvement of the elementary mathematics knowledge graph. In this paper, we implemented it 
by Neo4j (see [25]). In the following, we will describe the process step by step. 

 
Core ontology 

 
We adopt a top-down method in the construction of an elementary mathematics ontology. First, we 
define two main classes of algebra and geometry. In the algebraic class, we have several subclasses 
such as sequence, vector, set, function, math expression. In the geometric class we have several 
subclasses such as angle, curve/line, polygon, polyhedron. This includes elementary mathematics 
entities and relations, for example, PointRelation:A, LineCrossCircleRelation{line=CP, circle=⊙O, 
crossPoints=[C, M], crossPointNum=2}, etc., as shown in table 1. Furthermore, we improve the 
attributes of mathematical entities and relations. Some examples include: SubClassOf relation 
between entities is constructed which can inherit all the attributes from its parent node; PreviousOf 
relation between entities is constructed which can deal with new concepts based on existing entities 
and relations; the symmetry of mathematical relations (such as Intersect, Parallel) is introduced 
which can process statements such as Line AB intersects with circle O and Circle O intersects with 
line AB; synonymy relations are constructed for normalization, and antonymic relations are 
constructed for propositional calculus.  

 
Table 1 Some elementary mathematics relations and corresponding descriptions 

 
Relations The description of relations 

PointOnLineRelation 点在直线上关系 
PointOutOfLineRelation 点在直线外关系 

PlaneRelation 平面关系 
LineInPlaneRelation 直线在平面内关系 

LineParallelPlaneRelation 线面平行关系 
LineCrossPlaneRelation 直线与平面相交关系 
LinePrepPlaneRelation 直线与平面垂直关系 

DualPlaneCrossRelation 面面相交关系 
DualPlanePrepRelation 面面垂直关系 

 
 
Mathematics synonym library 
 
After building the core ontology, because the descriptions of mathematical entities and relations in 
different mathematical texts will change dramatically, we construct a mathematics synonym library 
based on the synonym library (see [28]) to manage the situation, so that sentences can be expanded 
locally and horizontally at the word level, and expressions beyond synonyms can be processed 
similarly.  

 



Automatic extension of the knowledge graph 
 

Combining relation extraction based on pattern matching and dependency parsing based on HanLP 
(see [29]) with deep learning based on Bi-LSTM+Attention (see [30]), we propose a new method of 
automatic extraction of elementary mathematical entities and relations from text. At the same time, 
we realize automatic verification of relational validity by OpenKG (see [31]).   
 
There are two sources for the corpus, one is data from the internet, and the other is self-built 
elementary mathematics exercises. Among them, there are 856 encyclopedia pages and 16951 
unstructured texts on the internet. There are 3355 self-built elementary mathematics exercises. 
 
Finally, a total of 685 entities and 22638 triples are extracted automatically by this method and corpus. 
Among them, there are 12264 triples extracted by pattern matching, 4753 triples extracted by 
dependency parsing, 5535 triples extracted by deep learning, and 86 triples obtained by graph 
reasoning, which enriches and improves the elementary mathematics knowledge graph. Our 
elementary mathematics knowledge graph is shown in figure 3.1. 

 
 

Figure 3.1 An elementary mathematics knowledge graph 
 

Moreover, a rule base with about 1700 mathematics rules (rules including axioms, definitions, 
theorems, corollaries, etc. of elementary mathematics) is constructed too, as shown in table 2, for 
instance, rule "DefinitionOfNeutralityLineOfTriangle", rule "NeutralityLineOfTriangle", etc. Among 
them, rule "DefinitionOfNeutralityLineOfTriangle" implemented by Drools (see [32]) is shown in 
table 3. 
 
 
 



Table 2 The table of elementary rules and corresponding descriptions 
 

Rules The description of rules 
DefinitionOfNeutralityLineOfTriangle 中位线的判定定理：连结三角形两边中点的线段

叫做三角形的中位线 
NeutralityLineOfTriangle 中位线定理：经过三角形一边的中点,平行于第

二边的直线必平分第三边 
DualPlaneParallelDecisionTheorem 两个平面平行的判定定理：一个平面内的两条相

交直线与另一个平面平行，则两个平面平行 
DualPlaneParallelDecisionTheorem2 两个平面平行的判定定理：垂直于同一条直线的

两个平面平行 
LineInOnePlaneParallelToAnotherPlane 相互平行的两个平面里，其中一个平面上的任意

直线都平行于第二个平面 
 

Table 3 The rule "DefinitionOfNeutralityLineOfTriangle" implemented by Drools 
 

rule "DefinitionOfNeutralityLineOfTriangle"   //rule name  
    when   // match conditions  
        $triangle : Triangle()  
        MiddlePointOfSegmentRelation($triangle.isContainSegment(segment), $segment1 : 
segment, $point1 : point) 
        MiddlePointOfSegmentRelation(!segment.equals($segment1), 
$triangle.isContainSegment(segment), $segment2 : segment, $point2 : point) 
        eval(pointUtil.isConnective($point1, $point2)) 
    then   // execute conclusions 
        Segment seg = new Segment($point1, $point2); 
        List<Segment> segments = $triangle.getSegments(); 
        segments.remove($segment1); 
        segments.remove($segment2); 
        NeutralityLineOfTriangleRelation mid = new NeutralityLineOfTriangleRelation(seg, 
$triangle, segments.size() == 1 ? segments.get(0) : null); 
        insert(mid);    // insert knowledge base 
end 
Description: The when part is the conditions of the rule matching. For example, consider the 
rule covering a triangle and two MiddlePointOfSegment objects. The segment is determined by 
the method inside the triangle (for example: $triangle.isContainSegment(segment)), and eval is 
equivalent to the if condition, and the then part is the rule execution content. In this example, 
the result of this rule is to generate a NeutralityLineOfTriangle object, and then it can insert the 
knowledge base through the insert keyword. 

 
Thus, an elementary mathematics knowledge base is constructed which can provide semantic 
supports for natural language processing and automatic problem solving. 
 
3.2 A natural language processing module 
 
Our knowledge graph describes the relations between entities in the form of triples. We still construct 
about 8000 math relation templates manually based on corpus and exercises, as is shown in figure 



3.2, so simple elementary mathematical natural language description can be understood by template 
matching and knowledge graph reasoning.   

 

 
 

Figure 3.2 An example of math relation templates 
 

Entity Combinations Based on Knowledge Graph 
 

In fact, elementary mathematics problems often contain a large number of complex sentences and 
compound sentences. Therefore, in order to solve these problems, we propose a novel math relation 
understanding model Entity Combinations Based on Knowledge Graph, as is shown in figure 3.3, 
which can handle problems that are not correctly understood by accurate matching. 
 

 
Figure 3.3 Entity combinations based on knowledge graph  

 
First, we add the math lexicon and thesaurus, and then execute the word segmentation and the part of 
speech tagging with CRF (Conditional Random Field). Next, the named entity recognition is 
implemented by CRF++ training on manually-Tagged math entities and LaTeX math formulas (such 
as line AB, triangle ABC, plane ABC, Expression y = a * x + b and so on). Finally, in addition to the 
traditional technologies above, a novel math relation understanding model Entity Combinations 
Based On Knowledge Graph is used to manage co-reference resolution, which is the introduction of 
variables such as entities and attributes of entities based on elementary mathematics ontology (such 
as domain, range, attributes and so on), in order to support the computing and reasoning needs of the 
problem solving module.   
 



If a mathematical problem is known, the entities in the problem are annotated by labeling named 
entities. A sequence of entities is used to represent all entities and the relations between entity 
sequences (e1, e2, e3,...) are expressed as a real symmetric matrix Aij, where aij=Rel(ei, ej) represents 
the candidate relations between entity i and entity j. A concrete example describe the process of matrix 
Aij construction follows. 
 
Assuming there is a mathematical problem: problem 1“直线 L与三角形 ABC的 BC边相交于点
P”(The line L intersects the side BC of the triangle ABC at point P). The matrix Aij construction steps 
are as follows:  
 
(1). Extract entities in problem 1: Line L, Triangle ABC, Side BC, and Point P, then obtain an entity 
sequence (e1, e2, e3, e4). 
 
(2). Construct a matrix Aij= (e1, e2, e3, e4)×(e1, e2, e3, e4) based on entity sequence (e1, e2, e3, e4). 
 
(3). Execute the entities combinations based on the knowledge graph, and then fill the possible 
relations between each entity and other entities in aij=Rel(ei, ej). For example, fill in the candidate 
relations between edge BC and line L, because edge BC is a subclass of segment, and segment is a 
subclass of line, so the relations between edge BC and line L correspond to the relations between line 
l1 and line l2, while the candidate relations between line l1 and line l2 are 1) LineCrossRelation, 2) 
LineParallelRelation, 3) LinePerpRelation, 4) LineFactedRelation, so the corresponding relation 
sequence should be filled in aij=Rel(ei, ej), where ei=line L and ej= Side BC. The entity combinations 
based on the knowledge graph are shown in table 4.  

 
Table 4 The entity combinations based on knowledge graph 

 
The line L intersects the side BC of the triangle ABC at point P 

 Line L Triangle ABC Side BC Point P 
Line L /    
Triangle 
ABC 

1. LineCrossTriangleRelation 
2. LineOutOfTriangleRelation /   

Side BC 

1. LineCrossRelation  
2. LineParallelRelation  
3. LinePerpRelation  
4. LineFacetedRelation 

1. FigureHasEdgesRelation /  

Point P 1. PointOnLineRelation 
2. PointOutOfLineRelation 

1. PointInTriangleRelation 
2. PointOnTriangleRelation 
3. PointOutOfTriangleRelation 

1. PointOnLineRelation 
2. PointOutOfLineRelation 
3. MiddlePointOfSegment-
Relation 

/ 

 
(4).Using the method of fuzzy pruning to delete the relations with low reliability. The candidate 
relations obtained from entity combinations can also be verified by the automatic problem solving 
model. If the problem is solved successfully, the candidate relation is correct.  
 
Finally, we get the semantic analysis of the sentence: Line L has a LineCrossTriangleRelation with 
Triangle ABC, a LineCrossRelation with Side BC, and a PointOnLineRelation with Point P. Triangle 



ABC has a FigureHasEdgeRelation with Side BC, and a PointInTriangleRelation with Point P. Side 
BC has a PointOnLineRelation with the Side BC.  
 
Thus, the results of all the conditions and conclusions coming from the natural language processing 
module are produced. Then it will be converted into first order predicate logic forms. Subsequently, 
it will be regarded as the input to automatic problem solving. 
 
3.3 A hybrid reasoning model 
 
Elementary mathematics includes elementary algebra, plane geometry, solid geometry, analytic 
geometry, set, function, series, complex numbers. Because of the variety and complexities of 
elementary mathematics, a hybrid reasoning model (as is shown in figure 3.4) is put forward. It 
integrates logical reasoning, symbolic computation and deep learning.  
 
Traditional rule-based bidirectional reasoning is achieved based on Drools rule engine. On one hand, 
backward reasoning based on automatic reduction is applied, which can produce new facts from 
known conclusions. On the other hand, forward reasoning based on symbolic computation and 
complex logical reasoning is implemented, which can produce new facts from the known conditions. 
Various possible symbolic computations such as simplifications and calculations are carried out by 
Maple (see [5]), which will be called as needed.  
 
Moreover, complex logical reasoning is executed based not only on domain rules in the rule base, but 
also on all kinds of policies in the policy library and cognitive reasoning models. The latter two will 
be described in the following section. 

 

 
 

Figure 3.4 the Hybrid Reasoning Model 
 
Policy Library 
 
The policy library is composed of different branching policies, which can be divided into three levels, 
as is shown in figure 3.5. The first layer is the pre-processing branching policies, which includes 



auxiliary point and auxiliary line adding policy and variable introduction policy. The second layer is 
the external branching policies, which contains different methods to solve the same problem, such as 
mathematical induction method, the unified method, anti-evidence method; the third layer is the 
internal branching policies, which describes some feature-based skills to reduce the difficulties of 
problems, such as expression split, quadratic sum, straight slopes.  

 
Figure 3.5 The Policy Library 

 
 

Cognitive Reasoning Model  
 
Through bidirectional reasoning, a big, well-structured data set will be generated when solving 
thousands of problems. By observing and summarizing the results of numerous cases, human beings 
obtain the cognition rules of the objective world. In a similar way a rule-based machine learning 
algorithm is adopted to extract pieces of problem solving sequences, and a DNA sequence assembly 
algorithm (see [33]) is applied to assemble the problem solving sequences. The generating process of 
a cognitive model is shown in figure 3.6. Finally a series of cognitive reasoning models (about 300 
models) are generated, one of them is shown in figure 3.7. 
 



 
 

Figure 3.6 The generating process of a cognitive reasoning model 
 
 



 
 

Figure 3.7 A cognitive reasoning model 
 
Thus, by this cognitive reasoning model, all the results will be stored in the dynamic knowledge base. 
When matching is successful, it will generate readable processes, otherwise, it will return and 
continue computing and reasoning until it reaches one of the termination conditions.    
 
4.  Experiments 
 
For RMCEE, we consider a simulated scenario to take part in the college entrance examination just 
like high school students. It is disconnected from the outside world (i.e. no network and no additional 
database). First, it is faced with the input of natural language texts, LaTeX mathematics formula and 
XML graphics information from the examination paper. Next, it will start to read the problems in 
order to automatically understand the natural language of the mathematics problems by the entity 
combination model. Finally, it will solve the math problems automatically by the hybrid reasoning 
model. The subject areas include elementary algebra, plane geometry, solid geometry, analytic 
geometry, set, functions, series, complex numbers.  
 
4.1 An Analytical Geometry Example 
 
In example 1 (Fig. 1.1), the solving processes of an analytical geometry problem can be generated to 
help understand the effective use of different strategies.  
 
(1) Introducing variables: In order to express the logic relations of mathematical problems 
explicitly, new variables are introduced. For example, in sub-problem (1), step (36) 
∴by(6): the focal length of conic 𝐶 is 2 ∗ 𝐶$. The variable “𝐶$” represents the parameter “𝑐” in 
ellipse C, which has the relationship between the parameter “a” and the parameter “𝑏” in the analytic 



expression “𝑐' = 𝑎' − 𝑏'”. In sub-problem (2), step (23) ∵ 𝑆△-./ = 	𝑣2, variable “𝑣2” is also 
introduced to express the area of △ 𝐴𝐵𝐷. 
 
(2) Classification discussion: In sub-problem (2), step (42)  ∴

by(18,19,20,21,27,28,31,32,33,34,35,37,40,41): 𝑠7 = −1; 𝑎 = 2; 𝑏 = 3
;
<; 𝑡7 = $

'
	𝑜𝑟	𝑠7 = −1; 𝑎 =

2; 𝑏 = 3
;
<; 𝑡7 = $

'
 . The variable “𝑠7” appears in the multi-solutions, so it needs to be discussed in 

two classifications. 
 
(3) Expression simplifications and (in)equation combinations: In sub-problem (2) step (26) ∴by 
(9,10,12,13,15,17,22,23,24,25): the maximum value of 𝑆△-./  is @AA

AB
. The problem is solved 

efficiently by selecting previously valid equations or inequalities from the knowledge base. 
 
The Human-like solving processes of example 1: 
Question (1):  
(1)∵ line F_1M⊥line X:y=0 
(2)∴ by(1): analytic of function F_1M is x=x_F_1M 
(3)∴ by(1): analytic of function X is y=0 
(4)∴ by(1,2,3): x_F_1M=0 
(5)∵ the focus of C is F_1. 
(6)∵ analytic of ellipse C is ((x^2)/(a^2))+((y^2)/(b^2))=1 
(7)∴ by(5): point F_1 
(8)∴ by(5,6,7): point F_1(-(a^2-b^2)^(1/2),0) 
(9)∴ by(3,8): point F_1 (-(a^2-b^2)^(1/2), 0) is on line X: y = 0 
(10)∴ by(2): point F_1 is on line F_1M: x = x_F_1M 
(11)∴ by(9,10): line X:y=0 and line F_1M:x=x_F_1M crossing at point F_1(-(a^2-b^2)^(1/2),0) 
(12)∴ by(11): point F_1(-(a^2-b^2)^(1/2), 0) is on line F_1M:x=x_F_1M 
(13)∴ by(4,8,12): analytic of function F_1M is x=-(a^2-b^2)^(1/2) 
(14)∴ by(13): point M is on line F_1M:x=-(a^2-b^2)^(1/2) 
(15)∵ point M is on ellipse C 
(16)∴ by(15): point M 
(17)∴ by(15,16): point M(s_M, t_M) 
(18)∴ by(13,14,17): s_M+(a^2-b^2)^(1/2)=0 
(19)∴ by(6): a>b 
(20)∴ by(6,15,17): s_M≥-a 
(21)∴ by(6,15,17): t_M≥-b 
(22)∵ F_1M=(3/2) 
(23)∴ by(22): |vector F_1M| is (3/2) 
(24)∴ by(23): vector F_1M is (s_M+(a^2-b^2)^(1/2), t_M) 
(25)∴ by(24): vector F_1M 
(26)∴ by(8,17,25): vector F_1M=(s_M+(a^2-b^2)^(1/2), t_M) 
(27)∴ by(23,26): (a^2-b^2+2*s_M*(a^2-b^2)^(1/2)+s_M^2+t_M^2)^(1/2)=3/2 
(28)∴ by(6): a^2≠b^2 
(29)∴ by(5,6): Point F_1 is on line X:y=0 
(30)∴ by(5,29): The focus of C is on X axis. 



(31)∴ by(6,30): a^2>b^2 
(32)∴ by(6): a>0  
(33)∴ by(6,15,17): t_M≤b 
(34)∴ by(6,15,17): s_M^2/a^2+t_M^2/b^2-1=0 
(35)∴ by(6): b>0 
(36)∴ by(6): focal length of conic C is 2*C_3 
(37)∴ by(6,36): C_3>0 
(38)∴ by(4,14,17): analytic of function F_1M is x=s_M 
(39)∴ by(38): point F_1 is on line F_1M:x=s_M 
(40)∴ by(8,38,39): -(a^2-b^2)^(1/2)-s_M=0 
(41)∴ by(6,15,17): s_M≤a 
(42)∴ by(18,19,20,21,27,28,31,32,33,34,35,37,40,41): s_M=-1,a=2,b=3^(1/2),t_M=3/2 or s_M=-
1,a=2,b=3^(1/2),t_M=-3/2 
Discussions in different conditions: 
Condition 1 
when [${s}_{M}=(-1)$, $a=2$, $b=\sqrt{3}$, ${t}_{M}=\frac{3}{2}$]: 
(1)∵ b=3^(1/2) 
(2)∵ a=2 
(3)∵analytic of ellipse C is ((x^2)/(a^2))+((y^2)/(b^2))=1 
(4)∴ by(2,3): analytic of ellipse C is 1/4*(b^2*x^2+4*y^2)/b^2=1 
(5)∴ by(1,4): analytic of ellipse C is 1/4*x^2+1/3*y^2=1 
when [${s}_{M}=(-1)$, $a=2$, $b=\sqrt{3}$, ${t}_{M}=(-\frac{3}{2})$]: 
Condition 2 
The same as Condition 1 
To sum up, [the standard equation of ellipse C is x^2/4+y^2/3=1] 
 
Question (2): 
(1)∵ the standard equation of ellipse C is x^2/4+y^2/3=1 
(2)∵ the left vertex of ellipse C is point A 
(3)∴ by (1,2): A(-2,0) 
(4)∵ line AB intersects ellipse C at B 
(5)∴ by (3,4): the equation of  function AB is y=k_AB*(x+2) 
(6)∵ line AD intersects ellipse C at D 
(7)∴ by (3,6): the equation of  function AD is y=k_AD*(x+2) 
(8)∵ let B(x_B, y_B) 
(9)∴ by (1,4,8): x_B^2/4+y_B^2/3=1 
(10)∴ by (3,5,8): k_AB=(y_B-0)/(x_B+2) 
(11)∵ let D(x_D, y_D) 
(12)∴ by (1,6,11): x_D^2/4+y_D^2/3=1 
(13)∴ by (3,7,11): k_AD=(y_D-0)/(x_D+2) 
(14)∵ segment AB 
(15)∴ by (3,8,14): AB=((x_B+2)^2+(y_B-0)^2)^(1/2) 
(16)∵ segment AD 
(17)∴ by (3,11,16): AD=((x_D+2)^2+(y_D-0)^2)^(1/2) 
(18)∵ Rt△ABD(vertex is point A) 
(19)∴ by (18): Rt∠BAD  



(20)∴ by (19): AD⊥AB, foot point is A  
(21)∴ by (20): segment AB is the height of △ABD 
(22)∴ by (21): S_△ABD=((1/2)*AD)*AB 
(23)∵ S_△ABD=v_0 
(24)∴ by (15,17,22,23): v_0=1/2*((x_D+2)^2+(y_D-0)^2)^(1/2)*((x_B+2)^2+(y_B-0)^2)^(1/2) 
(25)∴ by (20): k_AB*k_AD=-1 
(26)∴ by (9,10,12,13,15,17,22,23,24,25): the maximum value of S_△ ABD is 144/49 
 
4.2 An Example in the 2017 Math College Entrance Exams 
 
Example 2: The Question Descriptions is shown in Figure 4.1 and Figure 4.2: 

 

     
 

Figure 4.1 The question descriptions 
 

 
Figure 4.2 The figure of the question 

 
The result of Natural Language Processing is shown in figure 4.3. 
 



 
 

Figure 4.3 The result of natural language processing 
 

The readable problem solving processes of Automated Solving is shown in figure 4.4. 
 

 
 



 
 

 
Figure 4.4 The readable problem solving processes of automated solving 

 



4.2 Result of Exams 
 
Training set: About 500 sets of college entrance exams or simulated college entrance exams. A set of 
exams is mainly composed of standard problems (such as multiple-choice problems, fill-in-the-
blanks problems) and non-standard problems (such as Calculation problems, Proof problems).  
 
Test set:  
 
1) For the Liberal arts mathematics college entrance exams in 2017 in the Beijing area, RMCEE 
earned a score of 105 out of 150, and took 22 minutes to complete.  
 
2) For secret exams simulated college entrance exams from IFLYTEK (see [34]), RMCEE scored 
123 out of 150. Furthermore, in 8 sets of Liberal Arts mathematics exams selected as a training set, 
RMCEE scored an average of 118 out of 150, with a high score of 127 points, and a low score of 106 
points. The scores of all the 8 exams are shown in table 5.  
 

Table 5 The scores of 8 set of exams 
 

        problems 
 

exams 

multiple-choice 
problems 

 (8*5) 

fill-in-the-blanks 
problems  

(5*5) 

calculation or proof 
problems 

(13+13+13+13+14+14) 

total 
points 
(150) 

BJ2013 8*5 4*5 13+0+13+13+7+0 106 
BJ2014 7*5 4*5 13+13+8+6+14+14 123 
BJ2015 6*5 5*5 13+13+0+14+13+14 122 
BJ2016 8*5 5*5 13+13+0+13+6+8 118 
BJ2017 8*5 4*5 13+9+13+4+14+8 121 
SD2017 9*5 4*5 5+12+7+10+6+6 111 

QG22017 12*5 4*5 0+12+0+12+12+0 116 
BJ20170722 7*5 5*5 13+13+6+14+13+8 127 

 
5.  Conclusion and Discussion 
 
RMCEE contains a series of contributions and innovations, which are discussed here. 
 
First, an elementary mathematics knowledge graph covering nearly all the knowledge points in 
current textbooks is constructed. It includes about 800 entities and relations, 1700 rules and 300 
cognitive models. Therefore, it can provide semantic support for natural language comprehension and 
automatic problem solving. 
 
Second, a math relation comprehension model is presented. It integrates math relation templates with 
entity combinations based on a knowledge graph. Consequently, it can effectively solve the natural 
language understanding of math problems.  
 
Third, a hybrid cognitive reasoning model is presented. It integrates logical reasoning, symbolic 
computation, and deep learning. Consequently, it can generate readable problem solving processes.  



RMCEE is implemented based on the above innovations. It can solve single-choice problems, fill-in-
the-blanks problems and report the final results directly. It can also solve calculation problems, proof 
problems, with human-like readable solving processes generated step by step.  
 
RMCEE attended the college entrance exam in China on June 7th, 2017, which scored 105 points out 
of 150 in just 22 minutes, while the average score of students was 105.15 points out of 150, but they 
took 120 minutes. 
 
For further research, it is interesting to consider natural language understanding and problem solving 
of elementary mathematics problems motivated from real life and commonsense knowledge (see [35], 
[36] and [37]).  
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