
Realizing Computational Thinking
in the Mathematics Classroom:

Bridging the Theory-Practice Gap

Weng Kin Ho∗† Chee Kit Looi∗ Wendy Huang∗

wengkin.ho@nie.edu.sg cheekit.looi@nie.edu.sg wendy.huang@nie.edu.sg

Peter Seow ∗ Longkai Wu∗

peter.seow@nie.edu.sg longkai.wu@nie.edu.sg
National Institute of Education

Nanyang Technological University
Singapore

15 August 2019

Abstract

With the impact of computer technology on human civilization in the 21st century,
Computational Thinking has become an important topic of research and discussion in the
area of education over various non-computer science disciplines; for example, mathematics,
sciences, languages, social sciences, etc. By now, Computational Thinking has often been
referred to as a paradigm of knowledge and problem solving by which the problems and
their solutions can be implemented using an effective means, e.g., by a computer, though it
never really possess a universal definition. In this paper, we invite the reader to revisit the
original meaning of the word Computational Thinking as intended in 1980 by its inventor,
Seymour Papert. By so doing, we bring into focus the concrete issues that a mathematics
teacher need to consider so as to realize Computational Thinking in his or her lessons.
We analyze the design principles put forth earlier by the authors, and understand these
principles in the context of mathematics teachers professional development and classroom
implementation.

1 OECD bids us to relook at mathematics education

As to what mathematical competence is viewed, different countries in the world hold different
stands and have various visions. These differences give rise to different ways in which education

∗This work is supported by funding OER 10/18 LCK for the project “How to bring Computational Thinking
(CT) into Mathemtiacs classrooms: Designing for disciplinary-specific CT”.
†Corresponding author

systems are organized around the objective of teaching mathematics at schools so that the future
generations acquire some set level of mathematical competence. Mainstream education systems
in the past had always recognized mathematical competence to include basic mastery of the four
arithmetic operations, manipulations of fractions, decimals and percentages, and mensuration
of simple geometric shapes. However, in the present dominance of technology in our civilization,
the use of data in all aspects of life has become indispensable: education, career-planning, health
and financial management, medicine, data analytic, climatology, international economics, etc.
Because of the ubiquity of data in life, we can only expect that the next generation not only
be digitally literate but also digitally creative and competent to solve the future problems!
Because of the worldwide need to bring up the digitally competent ‘next generation’, many
countries have worked collaboratively towards defining the future of education.

The Organization for Economic Cooperation and Development is a special forum where the
governments of 34 different economies work with one another, together with another 70 non-
member economies to promote economic growth, prosperity and sustainable development. One
particular area of importance and interest to the OECD is that of education. The Programme
for International Student Assessment (PISA) is a worldwide study by OECD in member and
non-member economies to evaluate educational systems by measuring 15-year-old students’
scholastic performance on mathematics, science and reading. The first PISA was performed
in 2000, and then repeats every three years. PISA provides comparable data so as to enable
participating countries to improve their education policies and outcomes.

With regards to mathematics education, two questions are of particular interest to policy
makers and teachers alike. The first question is:

Question 1 What mathematics do students need learn mathematics, and which students need
to learn mathematics? [10, p. 4]

To this question, the most frequently given answer is to have all students learn mathematics
by appealing to the versatility mathematics in practical situations. Interestingly, OECD in
drafting the new PISA 2021 mathematics framework, remarks that

“this argument alone gets weaker with time – a lot of simple activities have been
automated” [10, p. 4],

and bids us to relook at the aforementioned question more seriously. The paradox lies in the
statement that advancement in computer technology has unexpectedly become an impediment
to the learning of mathematics – the very discipline that fuelled it! Perceiving mathematics to
be merely a useful toolbox is far too restrictive, often confining teachers and learners to a rigid
list of mathematical topics and procedures, and is deemed to be too narrow for the needs of
today.

The second question is:

Question 2 Are some mathematics teaching methods more effective than others? ([9, p. 18])

This question concerns the teaching practice, i.e., exactly what do mathematics teachers employ
to engage students in deep learning.

It is of central interest to the ATCM community to explore novel, meaningful and effec-
tive ways by which mathematics can be taught to students with the affordance of computer
technology. The authors thus expects that this conference community would be interested in

hearing out our answers to the above questions. To answer these questions, we tap further into
the wisdom of certain OECD’s publications on PISA, e.g., [9, 10].

With regards to the first question, we start with OECD’s official definition of mathematical
literacy in PISA 2021 – this new definition has expanded the scope of the older versions:

Mathematical literacy is an individual’s capacity to reason mathematically and to
formulate, employ, and interpret mathematics to solve problems in a variety of real
world contexts. It includes concepts, procedures, facts and tools to describe, explain
and predict phenomena. It assists individuals to know the role that mathematics
plays in the world and to make well-founded judgements and decisions needed by
constructive, engaged and reflective 21st century citizens. [10, p. 7]

There are two emphases: (1) the individual’s capacity to reason mathematically, and to engage
in the processes of problem solving, and (2) the 21st century citizens’ responsibility to apply the
mathematics that they learnt. Here, reasoning refers to the use of mathematics content knowl-
edge to recognise the mathematical nature of a situation or problem, especially in real world
contexts, and to formulate it using mathematical terms. Additionally, reasoning is involved in
the selection of mathematical tools and how they are applied to solve the problem.

As for the second question, an answer comes from the comparison of the PISA 2021 frame-
work with those of PISA 2003 and PISA 2012. We note that PISA 2021 recognises the movement
of the current world trends towards a world that is constantly driven by new technologies in
which citizens are creative and engaged. Because of the growing role of technology in students’
lives, PISA 2021 acknowledges that the “long-term trajectory of mathematical literacy should
also encompass the synergistic and reciprocal relationship between mathematical thinking and
computational thinking” ([10, p. 7]). Thus, PISA 2021 has included a new expectation that
students ought to “possess and be able to demonstrate computational thinking skills that in-
clude pattern recognition, decomposition, determining which (if any) computing tools could be
employed in the analysing or solving the problem, and defining algorithms as part of a detailed
solution”. [10, pp. 8–9]

Additionally, [9] raises teachers’ attention to the importance of teaching strategies that “give
students a chance to think deeply about problems, discuss methods and mistakes with others,
and reflect on their own learning”. This class of teaching strategies is termed as cognitive
activation, which is typified by the processes of summarising, questioning and predicting as
students are engaged in problem solving. Importantly, cognitive activation strategies stresses
on the practice of engaging students in genuine problem solving over an extended period of
time – this is when students are encouraged to think and reason, the new emphasis highlighted
in the PISA 2021 Mathematics Framework.

The first thing we gather from the PISA documents is that skills related to computational
thinking will be of paramount importance in the mathematical training of the future generation,
especially in view of the technology-driven world we live in – this is the theoretical aspect. The
second thing we learn from the PISA documents is that the means by which mathematics can
be taught must be effective – this is the practical aspect. This then leads us to the natural
question of how we, as 21st century mathematics educators, can bridge this theory-practice
gap by realizing computational thinking in the mathematics classroom as an effective means of
teaching mathematics.

In this paper, we set out to bridge this theory-practice gap. In Section 2, we make clear what
we mean (or not mean) by computational thinking (at least, as far as this paper is concerned).

Next, in Section 3, we lay down four design principles that can guide teachers in designing
mathematics lessons that incorporate computational thinking – these lessons, we call them
“Math + C”1 lessons. We then argue that cognitive activation is encouraged in these Math +
C lessons that are constructed from our proposed design principles. To further convince the
reader of the practicality of these principles, we manufacture some sample Math + C lessons
in Section 4. Lastly, in Section 5, we end with some remarks for recommendations for future
study and considerations.

2 Rethink computational thinking

While the new PISA 2021 draft posits computational thinking skills as an essential skill set
to be mastered by the 21st century students, it has never put in its own official definition of
computational thinking as it does for the definition of mathematical literacy. Indeed, the draft
document simply adopts Wing’s definition ([15]) of computational thinking as the somewhat
universally accepted version (see [10, p. 7]). Specifically, Wing’s version of computational
thinking refers to “the way computer scientists think” and is regarded as a thought process
entailed in formulating problems and designing their solutions in a form that can be executed
by a computer, a human, or a combination of both ([16]).

In this paper, we do not go the easy way of taking the lock, stock and barrel of Wing’s
interpretation of computational thinking. Instead, we first revisit Papert’s original formulation
of computational thinking, and then proceed to retain those parts of Wing’s interpretation that
is applicable to our present context.

Returning to [12], Papert originally intended that “the goal is to use computational thinking
to forge ideas”. In other words, computational thinking is a paradigm which is intended to
“change patterns of access to knowledge” ([11]). This justifies that computational thinking,
like any other existing ways of thinking, should be taught to everyone – the sooner the better.

Computational thinking, the way Wing perceives, possesses distinctive features and dispo-
sitions and it encompasses four fundamental components: Decomposition, Pattern recognition,
Abstraction, Algorithm design. Since these are computer science jargon, one easily falls into
the trap of straight-jacketing computational thinking into ‘computer science’. At this juncture,
we point the reader to Papert’s theory of constructionism. Constructionism is an offspring of
Piaget’s theory of constructivism, which asserts that the learner can improve his or her learn-
ing if he or she is fully engaged in “constructing a meaningful product”. Because meaning is
specific to the domain of knowledge in which it lives, we assert that computational thinking is
domain-specific – in our present paper, it is computational thinking in mathematics.

In this paper, computational thinking in mathematics is thus understood as follows.
Decomposition is the process by which the mathematics problem is broken down into smaller

sub-problems or sub-tasks. Problem solving heuristics such as simplifying the problem, making
suppositions, trying out on smaller cases/numbers can be regarded as specific actions of problem
decomposition. Through decomposition, the original problem, which at first seems complicated,
now becomes more tractable since each of the smaller sub-problems/tasks can be managed
easily.

Pattern recognition involves seeking out common patterns, structures, trends, characteristics

1“Math + C” stands for “Mathematics and Computational thinking”

or regularities in the sea of mathematical data. The disciplinarity of mathematics trains the
students to be sensitive to the regularity of structures and patterns. Pattern recognition is
involved in every mathematical practice: teasing out the patterns from what seems messy data
is the very thing a mathematician does. Data, of course, manifest in various forms, such as
numbers, vectors, shapes, algebraic expressions, mathematical structures, etc.

Abstraction is the process of generalizing recognized patterns in the form of theorems or
formulae. In particular, abstraction takes place when a problem in real world context is re-
formulated in mathematical terms. The act of formulating an “everyday content” using the
language of mathematics is called mathematizing.

Algorithm design involves the planning and development of a set of precise and step-by-step
instructions for solving the problem. We call such a set of instructions a program which can be
executed by a computer (machine or human being) in an insightless manner. In the language
of recursion theory, we say that the problem we are solving is said to be effectively calculable
or computable.

Having stated what computational thinking in our paper, we must caution the reader to the
situation that there is no universally accepted definition for the term computational thinking.
This problematic situation arises partly because of the varied interpretations of the term over
different domains and disciplines (e.g., science, mathematics, etc.), and of the connections of
these disciplines with computer science, as well as those issues centred on the degree of involve-
ment of the computer. A point to note: recently, a team of researchers led by Weintrop has
defined computational thinking in terms of a taxonomy of practices focusing on the applications
of computational thinking in mathematics and science ([13]). We shall return to this taxonomy
later in our description of the lesson design principles in Section 3.

In summary, we highlight the main features of what we believe characterizes Computational
Thinking in Mathematics:

• Computational thinking is a paradigm of knowledge that is supported by constructivism,
i.e., computational thinking in action results in the creation of a final product – physical
or not.

• Computational thinking cannot take place in vacuum, and must be discussed with respect
to a specific domain of knowledge. In our present paper, we speak of computational
thinking in mathematics.

• Computational thinking in mathematics is visibly manifest in problem decomposition,
pattern recognition, abstraction and algorithm design, which results in the creation of
mathematical knowledge (e.g., understand mathematical concepts, learning a mathemat-
ical procedure), and mathematics problem solving.

3 Designing “Math + C” lessons

3.1 Four design principles

One of the classroom teacher’s main concerns is instructional design. This section presents four
design principles to guide practitioners who plan lessons for their students to think computa-
tionally in mathematics. These design principles hinge on the four key components of compu-

tational thinking: decomposition, pattern recognition, abstraction and algorithm design. We
phrase these design principles in the form of questions to which the teacher answers.

Complexity Principle. Does the mathematical concept give rise to sufficiently complex
problem? The problem should involve the use of the identified concept, and be complex enough
so that decomposition of this main problem into sub-problems is a needful step. If the problem
or task is routine or too simple, e.g., there exists a ready-made solution or method, then
decomposition is uncalled for.

Data Principle. Can the mathematical concept occur in various forms so that it is possible
to collect data for its occurrence? The topic should involves observable and quantifiable data
that can be collected, created, analyzed, and shared.

Mathematics Principle. Can the problem associated to the mathematical concept be math-
ematized? Mathematization is the formulation of the problem using mathematical terms. It
turns a problem in real world context in an abstract and precise manner to a mathematics
problem. We do not restrict mathematics to mean only numbers, algebra, geometry, and so on.
Rather, mathematics can have a more inclusive meaning of encompassing abstract concepts and
structures which are definable, representable, and can be reasoned about within some logical
framework.

Computability Principle. Does there exists an effectively calculable solution to the mathe-
matized problem? By ‘effective calculable’ we use it in the sense of Recursion (or Computability)
Theory, that is, there exists a a computer program that can calculate a solution to the problem
through a finite procedure via a physical agent (e.g., machine, human being).

3.2 Construction of meaningful product

Based on the Papert’s maxim that learning can be enhanced when the learner is engaged in
constructing meaningful product, each Math + C lesson designed based on the preceding set
of principles must engage students in constructing some product. This product (physical or
not) should be observable, i.e., there must be visible or testable quantities to allow teacher’s
assessment of students’ understanding of the mathematical concept. Visible products need not
be restricted to final products, as they can refer to a variety of entities that are expressed as
evidence of computational thinking. Here we rely heavily on Weintrop’s taxonomy of practices
associated to computational thinking in mathematics classroom.

Data practices. According to [6, p. 27], “all sciences share certain common features at the
core of their problem solving and inquiry approaches. Chief among these is the attitude that
data and evidence hold a primary position in deciding any issue”. Data play an important role
in the conduct of mathematical inquiry in that it allows one to seek for patterns and regularities
present in the observed data – a crucial first step in making guesses, conjectures and claims.
The subprocesses in data practices are listed in Figure 1.

Figure 1: Weintrop’s taxonomy of practices related to computational thinking in mathematics
and sciences, Source: [13, p. 135]

Modelling and simulation practices. Mathematicians frequently manufacture, refine and
use mathematical models of phenomena. Models manifest in many forms, e.g., flowcharts,
diagrams, equations, computer simulations, as well as physical models ([7]). Computational
models have been employed by mathematicians to understand concepts, find and test solu-
tions. Problems that cannot be solved analytically often have effective numerical solutions that
are generated by computer simulations, e.g., by Monte Carlo methods. The subprocesses in
modelling and simulation practices are listed in Figure 1.

Computational problem solving practices. The power of computers can now be exploited
to make quick and tedious calculations, which would have otherwise not been possible. Com-
putational strategies become part of the problem solving toolkit of mathematicians. Research
has also flagged up evidence that students who employed computational problem solving ap-
proaches, e.g., used programming, developed algorithms, etc., developed deep understandings of
mathematical phenomena ([14]). The subprocesses in computational problem solving practices
are listed in Figure 1.

Systems thinking practices. Real world problems of the present age are often highly com-
plex that involve a large number of variables, depend on many direct and indirect effects and
factors, and comprise several parts. Systems thinking approach, unlike traditional approaches,
allow the problem solver to focus on an “inclusive examination of how the system and its con-
stituent parts interact and relate to one another as a whole” ([3]). The subprocesses in systems
thinking practices are listed in Figure 1.

3.3 Math + C and cognitive activations

Recall from [10, p. 19] that cognitive activation concerns teaching pupils generic problem
solving strategies such as making a summary, asking question to clarify, and making predictions.
These skills are essential to their later success in mathematics problem solving. Figure 2 shows

the OECD average for the percentage of students who reported their teachers use cognitive-
activation strategies in every lesson or most lesson.

Figure 2: Cognitive-activation instruction

Even if a lesson is very well-designed with every intention for the best learning outcome,
it will remain useless until it is being implemented in the classroom. Math + C lessons are
crafted by giving due consideration on the complexity of the problem at hand. This would
entail that a typical Math + C lesson would engage students over an extended period of
time in problem solving. Because the problem selected cannot be solved using ready-made
methods or procedures, students can focus on linking the new information (e.g., assumptions
and requirements of the problem) to information that they have already learned, and applying
their skills to a new context. Making connections between mathematical facts, procedures and
ideas will result in enhanced learning and a deeper understanding of the concepts ([4]). The
authors hold to the belief that the richness of the Math + C lessons allow teachers ample
opportunity to incorporate cognitive-activations which are listed in Figure 2.

4 Sample Math + C lesson

We now employ the design principles described in Section 3, keeping in mind Weintrop’s tax-
onomy of practices for computational thinking in mathematics as well as the use of cognitive-
activations in lessons.

Due to page constraints, we show only one sample lesson. For the sample lesson, we shall
employ the questions listed in the design principles as a checklist, and highlight the related
practices. Suggestions will also be provided for the classroom teacher concerning the choice of
cognitive-activations in the sample lesson.

4.1 Students’ profile

In Singapore, students aged 16 sit for a national examination based on the Cambridge ‘O’ level
Mathematics syllabus. In schools, computer laboratories are available and Microsoft excel is
‘ubiquitous’ in desktop computers. To keep the computer-science/technology overheads low,
we use only excel spreadsheets for simple coding. Just-in-time computer skills will be taught
to the students on a need basis; we do not assume any pre-requisite knowledge from Computer
Science for this section.

The ‘O’ level Mathematics syllabus ([8]) includes a subtopic called “primes and prime fac-
torisation” under the strand “Number and Algebra”. We shall select this subtopic for our lesson
design, and apply the lesson design principles proposed earlier to craft a Math + C lesson.

Students are expected to know the definition of prime numbers, and be able to recognize,
by sight, all the prime numbers less than 100. The syllabus suggests explicitly that students
should have opportunities to classify whole numbers based on their number of factors, and
be able to explain why 0 and 1 are not primes. Students are also expected to obtain highest
common factor (HCF) and lowest common multiple (LCM), squares, cubes, square roots and
cube roots by prime factorisation. Figure 3 shows a typical assessment item used in schools to
this level of students.

Sample question.
Find the smallest whole number k such that 1274

k
is a perfect square.

Figure 3: Sample question for prime factorisation

The above sample question assesses the student’s ability to perform prime factorisation of
1274, i.e., 1274 = 2× 72 × 13. Since a perfect square (greater than 1) has an even multiplicity
of prime factors, it follows that the least positive integer value of k is 2 × 13 = 26. Because
this question is considered a routine task for even a 13-year-old, it would not be seen as an
unfamiliar problem to a 16-year-old.

4.2 Main problem

We propose the computational thinking may help forge students’ deeper understanding of prime
factorisation. The complexity of the above sample question is not sufficiently high for us to
design a Math + C lesson that incorporates cognitive-activation.

In order to create a problem for which the student has no ready solution, we consider replac-
ing the dividend 1274 by an expression which is not so familiar and yet not incomprehensible
for a 16-year old. We select the sum of consecutive cubes:

Sn = 13 + 23 + 33 + · · ·+ n3,

which is an algebraic expression in n. In the ‘O’ level syllabus, students are accustomed to
number patterns and sequences, and so in this respect, students of this level understand the
meaning of the expression. However, they are not expected to know the closed formula for Sn.

The above sum of consecutive cubes is suitable because the computer (either human being
or machine) can be tasked to compute its value for a given value of n. To test the student’s
understanding of prime as ‘irreducibles’, it would be appropriate to ask for what value(s) of n is

the above sum divisible by a fixed prime p. Although a complete answer to this question requires
the knowledge of the closed formula for the sum, the student can exploit computational thinking
to perform computational problem solving. A simple enumeration of n and the evaluation of
the corresponding sum Sn = 13 + 23 + 33 + · · · + n3, followed by a test of divisibility by the
fixed prime p would yield the answer by brute force.

We now craft this item formally below.

Problem. (Prime factorisation)
A student is playing with the number pattern generated by summing the first n perfect cubes:

Sn = 13 + 23 + . . . + n3.

(a) In the midst of her investigations, she wishes to find out the smallest value of n such that
S(n) is a multiple of the prime number p, for each of the following cases:
(i) p = 5; (ii) p = 11; (iii) p = 13.

(b) Relying on your preceding experience, can you formulate a simple rule that one can apply
to find the smallest value of n for which S(n) is a multiple of a given prime p?

(c) Later the student discovered from a textbook that the general formula for Sn is given by

Sn =
1

4
n2(n + 1)2.

Can you use this new information to explain why your rule always work?

4.3 Applying design principles

The lesson is intended to be pair work, where two students work on the problem with suitable
scaffolding provided by the teacher. We assume that the students have the background knowl-
edge of prime numbers and prime factorisation. We now invoke the four design principles in
turn to validate the lesson task, and generate the desired lesson plan.

Complexity Principle. The topic of summation and series is not within the scope of the ‘O’
level syllabus, and students are expected not to have an immediate solution to this problem.
This problem involves prime numbers, which is the identified subtopic within the given strand.
This problem can be broken down naturally into smaller sub-problems:

(1) Given the value of n, can we calculate the value of Sn?

(2) Can we test whether the given prime p divides the value of Sn?

(3) Can we spot a pattern as one runs ‘down’ the possible values, by brute force, i.e., k =
1, 2, . . . , n, and test the divisibility of each Sk by p?

Data Principle. The data involved are all positive integers. In this problem, it is crucial to
generate the consecutive cubes and sum them up. So, the sum Sn is a derived datum from n.
Additionally, the boolean value of the test of divisibility of Sn by p is a crucial derived datum.

The list of consecutive positive integers forms a new data. The required data can be created
using spreadsheet tools. The tests of divisibility will yield a list of boolean values which can be
analyzed to tease out the salient pattern.

Mathematics Principle. The given problem deals with the number-theoretic properties and
not a problem in real world context, and hence the mathematization is straightforward.

Computability Principle. Summation and test of divisibility are computable functions,
which can be done by hand or using a computer. Just-in-time skills need to be taught to the
students:

(1) Recursive definition in excel can be used to generate the list of consecutive integers.

(2) Functions can be defined by using equation applied to arguments of designated cells.

(3) Test of divisibility can be carried out using a program.

In addition, the part (b) of this problem requires the student to write down a simple “rule of
the thumb” to determine the least value of n for a given p so that the divisibility criterion is
met. In actuality, the question item demands the student to adopt an algorithmic mind-set by
manufacturing a rule or a recipe.

4.4 Meaningful Math + C product

One important feature of a Math + C lesson is the students’ product that mechanises the part
(a) of the problem. This would allow the students to play with different prime values, and
solve the problem computationally. In this case, the teacher displays the finished product –
an excel spreadsheet which is constructed for the purpose of determining the least positive
value of n for which the given prime divides the value of Sn. The lesson package comprises
of three sessions (about 50 minutes each). This would allow an extended time period for the
students to explore the problem and produce a replica of the product shown by the teacher at
the beginning of the first lesson. Figure 4 shows the desired finished product.

Figure 4: Desired finished product in excel form

The three sessions can be organized by the teacher to guide the students in producing the
students’ version of the above product. Just-in-time excel coding skills need to be taught to
the students in order to achieve each of the smaller goals below. For each of these goals, we
indicate clearly the practices under the Wientrop’s taxonomy.

• Data practices (Subprocess: Creating data). The column A contains the consecutive
whole numbers, starting from 1, situated at Cell A2. The crucial command is given in Cell
A3 by the equation = A2 + 1. By “dragging” the content of Cell A3, excel automatically
creates a recursive call by repeating the pattern of the equation. In other words, the
sequence generated in column A is the recurrence relation:

Tk+1 = Tk + 1, T1 = 1

and, so Tk = k for all k = 1, 2,

• Data practices (Subprocess: Creating data). The column B stores the values of
S(n). This achieved through the excel realization of the recurrence relation:

Sk+1 = Sk + Tk+1
3.

Since Tk+1 = k + 1, it follows that

Sk+1 = Sk + (k + 1)3

so that Sk =
∑k

r=1 r
3, which is the value of S(k). Hence Cell B2 is defined by the

equation = A2^3, and Cell B3 is defined by the equation = B2 + A3^3. The column B is
then produced by recursion.

• Data practices (Subprocess: Manipulating data), and Computational Problem
Solving (Subprocess: Preparing problems for computational solutions). Each
of the columns D, E, F stores the remainders when S(n) is divided by the corresponding
prime in D1, E1, F1. It suffices to see how this can be done for column D. In Cell D2,
the equation = MOD(B2,D1) is used. When a recursive ‘drag’ is applied on Cell D2 to
produce more cells in column D, the value of D1 is fixed for each subsequent cell.

• Computational problem solving practices (Subprocess: Programming). Once
the appropriate data have been created as in Figure 4, data analysis is performed on the
entries in columns D, E, F. The first value of n in column A for which the corresponding
cell in column D, E, F is zero will be the required answer. For example, the least value
of n for which S(n) is a multiple of p = 5 is n = 4 (Cell D5 contains the first 0 in the
column D).

• Data practices (Subprocess: Analyzing data). The pattern of occurrence of the
first 0 in each column is regular. For p = 5, 11, 13, the observed least value of n is given
by p − 1. It is tempting to conjecture that for all prime p, the least positive value of n
so that p divides S(n) is p− 1. This is where the teacher cautions the students to check
their solutions by testing the conjecture for different values of p – smaller values: e.g.,
p = 2, 3, and larger values: e.g., p = 17, 19. For this sub-goal, the students are expected
to state the complete rule of the thumb as required in (b) of the main problem.

• Computational problem solving practices (Subprocess: Assessing different so-
lutions to a problem). Given the closed formula for Sn (in terms of n) as in (c) of
the problem, the students are guided to use their understanding of prime factorisation
to locate the possible occurrence of p within the expression 1

4
n2(n + 1)2. The goal of the

lesson is for the students to mathematically reason about the regularity in the occurrences
of the 0’s under each column D, E, F.

4.5 Checking the cognitive activations

Does the proposed lesson package offer ample opportunity for the teacher to incorporate cog-
nitive activations as an effective teaching method? We validate this lesson using the features
highlighted in Figure 2.

• The teacher asks us to decide on our own procedures for solving the complex
problem. Although the teacher guides the student to achieve the desired excel spread-
sheet, the students are free to exercise their own discretion and decide what formulae to
use in order to generate the required data.

• The teacher presents problems for which there is no immediately obvious
solution. The students of this level do not possess immediate solution methods for this
problem.

• The teacher gives problems that require us to think for an extended time.
The given problem is of a sufficient complexity and difficulty that requires the students
to work out the solution over three separate sessions, totalling 150 minutes.

• The teacher asks questions that make us reflect on the problem. This problem
consists of many small sub-problems, and the solutions to these sub-problems require
mathematical reasoning. The teacher can take the opportunity to ask questions of a
reflective nature, leading students to deeper thinking.

• The teacher gives problems that can be solve in several different ways. This
problem can be solved in two ways. The first one relies on computational means, and the
second by analytical means. Both these methods require mathematical reasoning, e.g.,
deciding which calculations must be made, how programs should be written to solve the
problem, and how prime numbers play a role in explaining what they observe during their
computational experiences.

• The teacher helps us to learn from the mistakes we make. The teacher plays
the role of a facilitator as well as the knowledgeable one. Mistakes in programming are
inevitable, and thus students would have ample opportunity to learn from the mistakes
they make in their programming experience; not to forget: trouble-shooting and debug-
ging is one of the computational problem solving processes the computationally thinking
students must go through.

• The teacher presents problems that require us to apply what we have learned
in new contexts. Prime numbers and prime factorisation form part of the pre-requisite
knowledge to be applied to solve this problem. This problem is unfamiliar to the students
and hence presents a new context for them, i.e., concerning the sum of consecutive cubes.

• The teacher asks us to explain how we have solved the problem. During each
lesson, the teacher consistently visits each pair, and asks students questions, inviting them
to explain how they arrived at the program and the solution. In the last session, each
pair will be asked to present their finished product, and to demonstrate the versatility of
their program to tackle new problems.

5 How do we move on from here?

PISA documents have given us a lot of insights and recommendations – in this case, they call to
our attention the use of computational thinking in teaching and learning mathematics, as well
as the use of cognitive-activations in effective teaching of mathematics. Herein, we propose four
design principles to guide the classroom teacher in crafting mathematics lessons that crucially
target mathematics learning via computational thinking. We have been intentional in the
incorporation of cognitive-activations in our Math + C lessons.

So far, what we have taken are first steps in bridging the theory-practice gap of realizing
computational thinking in the 21st century mathematics classroom. Where can we go from
here? Definitely in many different ways!

Firstly, we must put our design principles to the test by inviting mathematics teachers to
implement them in authentic classroom situations. In our on-going OER project, the project
team has already shared with them the four design principles, and the teacher has also started
designing their own Math + C lessons. The implementation of these lessons will happen in the
near future, which we shall report in the next ATCM.

Secondly, we must validate whether students actually have deeper learning experience in
these Math + C lessons. Again, for this to happen, we have to make field observations for
those Math + C lessons to be actually implemented. We plan to interview both the students
and the teachers of the Math + C lessons to find out how they feel about teaching and learning
mathematics using computational thinking.

Thirdly, we must figure out how to assess the students’ learning and, hence how to measure
the effectiveness of this teaching innovation that exploits computational thinking. This requires
us to draft a set of assessment rubrics for crediting students’ effort in applying computational
thinking in their Math + C lessons. At the moment, the project team is studying the APOS
theory (Action-Process-Object-Schema) pioneered by Dubinsky and his collaborators ([5, 1, 2]),
and looking into the possibility of applying this framework as a basis of observing the hierarchies
of cognition associated to computational thinking in mathematics.

Fourthly, we see that the teacher plays a crucial role in the Math + C lessons. It cannot
be assumed that the teacher is equipped with necessary pedagogical content knowledge or the
mathematical content knowledge (especially, the computational thinking aspect of it). Further
support must be given by the project team in building the teaching competencies of the teachers
who wish to implement Math + C lessons.

References

[1] Arnon, I., Cottrill, J., Dubinsky, E., Okta c, A., Roa Fuentes, S., Trigueros, M., and Weller,
K. (2014). APOS Theory. Availabe at https://doi.org/10.1007/978-1-4614-7966-6.

https://doi.org/10.1007/978-1-4614-7966-6

[2] Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., and Matthews, D. (1997). A Framework
for Research and Curriculum Development in Undergraduate Mathematics Education (Vol.
40).

[3] Assaraf, OB-Z., and Orion, N. (2005). Development of system thinking skills in the context
of earth system education. J. Res. Sci. Teach., 42(5), pp. 518 – 560.

[4] Burge, B., Lenkeit, J., and Sizmur, J. (2015). PISA in practice – Cognitive activation in
maths: How to use it in the classroom, National Foundation for Educational Research in
England and Wales (NFER), Slough.

[5] Dubinsky, E., and McDonald, M. A. (2001). APOS: A constructivist theory of learning in
undergraduate mathematics education research. The Teaching and Leaning of Mathematics
at University Level, 275–282.

[6] Duschl., R. A. , Schweingruber, H. A., Shouse, A. W. (2007). Taking science to school:
learning and teaching science in grades K-8. National Academies Press, Washington, DC.

[7] Harrison, A. G., Treagust, D. F. (2000). A typology of school science models. Int. J. Sci.
Educ., 22(9), pp. 1011 – 1026.

[8] Ministry of Education. (2012). Mathematics Syllabus: Secondary One to Four – Express
Course, Normal Academic Course. Singapore.

[9] OECD. Ten Questions for Mathematics Teachers ... and how PISA can help answer them.
PISA, OECD Publishing, Paris.

[10] OECD. PISA 2021 Mathematics Framework (Draft). November 2018.

[11] Papert, S. (1980). Mindstorms: children, computers, and powerful ideas, Basic Books, Inc.
New York.

[12] Papert, S. (1996). An Exploration in the Space of Mathematics Educations, International
Journal of Computers for Mathematical Learning, 1(1), 95 – 123.

[13] Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., and Wilensky,
U. (2016). Defining Computational Thinking for Mathematics and Sciences Classrooms.
Journal of Science Education and Technology, 25(1), 127–147.

[14] Wilensky, U. (1995) Paradox, programming, and learning probability: a case study in a
connected mathematics framework. J. Math. Behav., 14(2), pp. 253 – 280.

[15] Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 35–35.

[16] Wing, J. (2011). Computational Thinking – What and Why?, The Mag-
azine of Carnegie Mellon Universitys School of Computer Science, March
2011. The LINK, Research Notebook. https://www.cs.cmu.edu/link/

research-notebook-computational-thinking-what-and-why.

https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

	OECD bids us to relook at mathematics education
	Rethink computational thinking
	Designing ``Math + C" lessons
	Four design principles
	Construction of meaningful product
	Math + C and cognitive activations

	Sample Math + C lesson
	Students' profile
	Main problem
	Applying design principles
	Meaningful Math + C product
	Checking the cognitive activations

	How do we move on from here?

