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Abstract: R is a language and environment for statistical computing and graphics. R has proven to be an excellent 
tool for understanding and visualizing statistical concepts. In this paper, we present how to use R for data analysis, 
elementary simulation, and understanding concepts in an introductory level statistics course. We consider 
examples from descriptive statistics, normal distributions, sampling distributions, confidence intervals, and 
hypothesis testing to demonstrate the use of R.  

1. Introduction 
Difficulty in understanding statistics concepts has been a major problem for instructors for 
many years.  This has driven them to explore new techniques to deliver instructions that would 
improve the academic performances of students. Using technology as a tool to teach statistics 
was one of those techniques. Nowadays, it is hard to imagine teaching statistics at a college 
level without using some form of technology. Research has shown that the use of technology 
enhances a student’s ability to grasp the abstract concepts of statistics [1]. Many instructors use 
technology in their classrooms to explain difficult statistical concepts such as sampling 
distributions, confidence intervals and hypothesis testing at an introductory level.  Due to the 
abstract nature of these topics, traditional way of teaching using books and lecture-based 
instructions does not give a good understanding of the concepts to many students [2]. While 
software has been available for doing statistical analysis, the use of technology in teaching and 
learning statistics is continuously evolving. There are several types of technology being used 
in statistics instructions, including but not limited to: statistical packages and spreadsheets, 
Web or computer-based tools, graphing calculators, and programming languages. Calculators 
and computers reduce the computational burden and allow more extensive exploration of 
statistical concepts. Statistical packages such as SAS, SPSS and MINITAB have been widely 
used in statistics classes at a college level. Presently, R is increasingly being used in statistics 
instruction including in an introductory level.  In this paper, we describe how to use R to teach 
introductory statistics concepts.  

There are many good reasons to use R for teaching statistics [8]. R is a free and multi-platform 
(Windows, Unix/Linux, Mac OS X) and programming language. It has excellent graphical 
capabilities that are very useful in learning statistical concepts. R offers much more 
opportunities to modify and optimize graphs and charts. R charts are easily made interactive 
which allow users to play with data. In SPSS and Excel, graphs and charts are not that 
interactive as in R where you can create only basic and simple charts. R can read data files 
from many different formats. It has an extensive collection of add on packages as well. These 
are some of the pedagogical benefits offered by R over other software packages. Many 
introductory and higher level statistics instructors are now using R to teach and perform 
statistical data analysis. Although it is an initial challenge for students to write statements in 
the command line, R can be used to conduct data analysis effectively. R can easily generate 
random samples from many data sets and a variety of probability distributions. A valuable 



introduction to R for introductory courses is given in [5]. We use examples to demonstrate the 
use of R in teaching statistics in several important topics. 

 

2. Examples 
2.1 Descriptive Statistics 
To describe how to use R, our first example is calculating descriptive statistics and creating 
related graphical tools. Variables with small data sets can be directly entered at the keyboard, 
but this approach is limited. R has many other ways to input data. Data can be read from text 
files, csv (comma-separated values) files, and attached packages.  

R works with data structures such as vectors (one-dimensional array) and data frames (two-
dimensional arrays).  When R is started, we will see a window that is called the R console. This 
is where we type our commands and see the text results. Graphics appear in a separate window.  
The > is called the prompt, where R commands are written. The results of an R command can 
be assigned to a variable using <- or =. In this paper, we will use <-. In R, a vector is a sequence 
of data values of the same type.  The function, c, is used to create vectors from scalars. The 
following statements create a vector and display it.  

> x <- c(2, 4, 6, 8, 10) 
> x 
[1]  2  4  6  8 10 

Once we have a vector of numbers, we can apply built-in functions to get useful statistical 
summaries and visual displays.  

In this paper we read data input from csv (comma-separated values) files. read.csv  function 
imports data from a csv file.  To read data into a data frame named mydata from a csv file, we 
type 

> mydata  <-  read.csv(file.choose(), header = TRUE) 

After typing the above command, you can manually select the directory and the file where your 
dataset is located. The first line of the file should have a name for each variable. However, if 
the first row does not contain the names of the variables then the header argument should be 
set to FALSE. The attach function can be used to make objects contained in data frames 
accessible. The following command allows the user to access data in mydata data frame: 

> attach(mydata) 
 
Now we read the contents of a csv file named HealthData into a data frame named mydata 
using the above commands. This file has the health data information (gender, age, height, 
weight, waist and pulse rate) of 80 individuals. Figure 2.1 shows an R snapshot of the data. 
 



 
Figure 2.1: Snapshot of HealthData File 

 
To find the descriptive statistics of a variable (say Age), we can use the command summary 
in following way. It computes the mean, median, quartiles, minimum and maximum. 
 
> summary(Age) 
 
   Min.   1st Qu.   Median     Mean   3rd Qu.     Max.  
  12.00    23.75    32.00    34.35    42.50    73.00 
 
We can find the mean, median, minimum and maximum individually using the mean, median, 
min and max commands respectively. The quantile command returns the quartiles 
corresponding to given probabilities.  The sum command returns the sum of the values in the 
vector. The table command returns the frequency table 

To find the standard deviation and variance, the following commands can be used: 

 > sd(Age) 

[1] 13.17564 

> var(Age) 

[1] 173.5975 

R can be used to create graphical displays. The hist command creates a histogram while stem 
command creates a stem and leaf plot. The number of bars in a histogram can be specified 
using the breaks. The main option displays a title. 

> hist(Age, breaks = 10, main = "Histogram of Age") 



 
> stem(Age) 

  1 | 2677788899 
  2 | 0000223333455566778889999 
  3 | 11122222334466777 
  4 | 00011112455678 
  5 | 2223345566789 
  6 |  
  7 | 3 
 
To create a bar graph of a categorical variable, first count the frequencies using table command 
and then use the barplot command. 

> y  <- table(Gender) 
> barplot(y, main = “ Bar Graph of Gender”) 
 
 

 

To obtain the relative frequencies for each category (M and F in this example), we could use 
> y/length(Gender) 
Gender 
  F   M  
0.5 0.5 
The boxplot is used to summarize a dataset using the five number summary. The five number 
summary of a dataset include the minimum value, first quartile, median, third quartile, and the 
maximum value. The boxplots allow us to check the symmetry or the skewness of a dataset 
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and identify possible outliers.  The following commands compute five number summary and 
create the boxplot. 

> fivenum(Age) 
[1] 12.0    23.5    32.0    43.0    73.0 

> boxplot(Age, main = "Boxplot of Age") 

 
The above boxplot indicates that the Age data is slightly skewed to right and has one outlier. 

 
2.2 Normal Distribution 
Normal distribution is a very important topic in introductory statistics. Many instructors still 
use normal probability tables to find the normal probabilities. In this example, we show how 
to use R commands to find normal probabilities, quantiles and generating normal random 
variates. In a similar manner with appropriate commands, one can work with other probability 
distributions.  
The following R code segment plots the standard normal distribution (µ = 0, σ = 1) between -
3.5 and 3.5. 

> z <- seq(from = -3.5, to = 3.5, by = 0.01) 
> y <-  dnorm(z,0,1)  
> plot(z,y, type = "l", main = "Standard Normal Distribution") 
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The seq command creates a vector values from -3.5 to 3.5 with an increment of 0.01. The 
dnorm(x, µ, σ) function gives the height of the density function (pdf) at a value of x of the 
normal distribution with mean µ and standard deviation σ. The plot function plots the points 
and type = “l” option connects the points.  

pnorm(x, µ, σ) function gives the area under the normal curve (cdf) with mean µ and standard 
deviation σ to the left of x. This is the probability that P(X ≤ x).  

To calculate the probability P(X ≤15) of the normal distribution with µ = 20 and σ = 4, we use 
the following command. The area representing P(X ≤ 15) is shown in Figure 2.2 

> pnorm(15, 20, 4) 
[1] 0.1056498 

 
Figure 2.2: Area representing P(X ≤ 15) 

To compute the area above 15, (P(X > 15)), simply subtract the probability above from 1. In 
other words, it is 1 – pnorm(15, 20, 4). 

The qnorm(p, µ, σ) function gives the value at which the cdf { P(X ≤ x)} of the normal 
distribution with mean µ and standard deviation σ is p. In other words, it computes the pth 
quantile of the normal distribution.  

To find x such that P(X ≤ x) = 0.90 in the normal distribution with µ = 20 and σ = 4: 

> qnorm(0.90, 20, 4) 
[1] 25.12621 
 
rnorm(n, µ, σ) function generates n random numbers from the normal distribution with mean 
µ and standard deviation σ. To generate 10 random numbers from the normal distribution with   
µ = 20 and σ = 4: 

> S  <-  rnorm(10, 20, 4) 
> S 
 [1] 27.42365  19.44874  21.67754  21.58621  14.44868  27.54056  24.74141  29.02238 
 [9] 17.90459  14.52994 
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2.3 Sampling Distributions 
Sampling distributions is a difficult concept for many students at an introductory level. 
Sampling distributions are important because inferential statistics are based on them. The 
sampling distribution of the mean is the probability distribution of the sample mean based on 
all possible simple random samples of the same size from the same population. We can use 
simulations to understand and visualize the following properties of the sampling distributions: 

• The mean of all sample means is equal to the population mean (µ). 
• The standard deviation of the sample means (known as the standard error) is equal to 

the population standard deviation divided by square root of the sample size(𝜎 √𝑛)⁄ . 
• Sample means are more normal than individual observations. 

The central limit theorem explains the shape of the sampling distribution. This theorem tells 
that for a population of any distribution, the distribution of the sample mean approaches a 
normal distribution as the sample size increases. The larger the sample size, the better the 
approximation. 
 
As an example, we generate random samples from exponential distribution (with parameter λ 
= 2) and show that the sampling distribution of sample mean approaches a normal distribution 
as the sample size increases. We consider sample sizes of 10, 25, and 50. In each case we 
generate 10,000 random samples, compute the sample mean, and observe the distributional 
shape using histograms and normal probability plots. We use a for loop to generate 10,000 
samples and compute sample means. The following R code does the simulation of the process 
described above.  
  
> means <- c() 
> for(i in 1: 10000)  
{ 
+   y <-  rexp(10,2) 
+   means[i] <- mean(y) 
 } 

In the above code, rexp(10,2) command generates sample of 10 exponential random numbers 
with parameter λ = 2. The means vector holds 10,000 sample means. This gives the 
approximate sampling distribution of the sample mean. The approximate mean and standard 
deviation of the sampling distribution can be obtained by computing the mean and standard 
deviation of the sample means. They should be equal (or approximately equal) to µ ( 1/λ = 1/2 
= 0.5) and (𝜎 √𝑛)⁄  ( = (1/2)/√10 = 0.15811) respectively as indicated in the properties of 
sampling distribution. R produces the mean and the standard deviation of the sample means 
using following commands: 

> mean(means) 
[1] 0.4963717 
> sd(means) 
[1] 0.1558105 



 
To observe the shape of the approximate sampling distribution, we can create a histogram and 
a normal probability plot of sample means. This can be done using the command sequence 
given below. The qqline command adds the theoretical normal QQ-line.   
  
> hist(means) 
> qqnorm(means) 
> qqline(means) 
 
Figure 2.3 shows the histograms and normal probability plots for n = 10, 25, and 50. Students 
will be able to visualize that as the sample size increases, the shape of the distribution is 
becoming more normal and the sample means are less variable. Furthermore, they notice that 
for skewed data such as exponential data, the sampling distribution does not approach a normal 
distribution for sample sizes as large as 50 values. 
 
 
 

 
Figure 2.3: Histograms and Normal Probability Plots for n = 10, 25 and 50. 

2.4 Statistical Inferences 
A statistical inference is the process of making conclusions about population parameters based 
on sample information. Statistical inference topics such as confidence intervals and hypothesis 
testing play a major role in introductory statistics classes.   Many students at an introductory 
level struggle to understand the concepts of statistical inferences [3].  R can enhance their 
understanding of concepts by allowing them to experiment and obtain the required results and 
visualizing them. In this section, we show how to use R in confidence intervals and hypothesis 
testing. 
 



2.4.1 Confidence Intervals 
Confidence intervals are commonly used to estimate the values of unknown population 
parameters. In this discussion, we consider estimating the population mean. Garfield, delMas 
& Chance [4] have noted that students should understand that the confidence interval estimates 
the unknown mean based on a random sample from the population. The level of confidence 
tells the probability that the method produces an interval that includes the true population 
parameter. We assume the population standard deviation (σ) is known. Confidence interval for 
mean µ is given as  𝑋( 	±	𝑍,/.𝜎/√𝑛 , where 𝑍,/.	is the value of the standard normal curve with 
the area (1-α) between critical points – 𝑍,/.  and 𝑍,/., n is the sample size.  The confidence 
level (1-α) is the probability that the confidence interval actually does contain the population 
mean µ, assuming the estimation process is repeated a large number of times. 
 
Performing a simulation using R will allow students to understand the true meaning of 
confidence intervals. We use the same dataset (HealthData file) used in section 2.1 and 
consider the Age variable. This variable represents age of respondents. This will be considered 
as our population or sampling frame. We generate many samples of size 50 from this population 
and compute 95% confidence intervals for the mean age. The sample size 50 is large enough 
to assume that the sampling distribution of mean is approximately normal. The normality of 
the sampling distribution of mean is necessary for the validity of the confidence intervals. 
Normality of sample means can be verified using the following R code. It generates 10,000 
random samples and computes the mean. The sample command generates a random sample 
from the population. 
 
> means <- c() 
> for(i  in  1:10000) 
 { 
+   x <- sample(Age, 50, replace = FALSE) 
+   means[i] <- mean(x)  
} 
 
The histogram and the normal probability plot in Figure 2.4 confirm the approximate 
normality of the sampling distribution of means. 

> hist(means) 
> qqnorm(means) 
 



 
Figure 2.4: Histogram and Normal Probability plot of 10,000 Sample Means 

The end points of the 95% confidence interval are estimates of the 2.5th and 97.5th percentiles 
of the distribution of	𝑋(. The 95% confidence interval limits can be obtained using the quantile 
function in the following R code segment. The quantile function computes the sample 
percentiles for the given probabilities. For a 95% confidence level, we identify the values at 
the 2.5th and 97.5th percentiles of the means vector (these values could be adjusted to obtain 
confidence interval limits for different confidence levels).  

> limits <- c(quantile(means,0.025), quantile(means, 0.975)) 
> limits 
 2.5%  97.5%  
32.12 36.56 

To get a better understanding of the meaning of confidence intervals, we can compute a 
confidence interval for each sample and find the proportion of intervals containing the true 
mean. This proportion should be the confidence level (95% in this case) if the process is 
repeated a large number of times. For a 95% confidence level, the confidence interval formula 
is	𝑋( 	± 1.96 𝜎 √𝑛⁄ . The following R code simulates this process. 
 
> lLim <-  c() 
> uLim <- c() 
> for(i in 1:10000)  
{ 
+   x <- sample(Age, 50, replace = FALSE) 
+   lLim[i] <- mean(x) - 1.96*sd(Age)/sqrt(50) 
+   uLim[i] <- mean(x) + 1.96*sd(Age)/sqrt(50)  
} 
> count <- 0 
> for(i in 1:10000)  
{ 
+    if(lLim[i] < mean(Age) & uLim[i] > mean(Age)) 
+        count <- count + 1 



} 
> count/10000 
[1] 0.9602 
 
In the first for loop of the above code segment, 10,000 samples are drawn and confidence 
intervals are computed. The second for loop counts the number of intervals containing the 
actual mean. In this simulation run, this proportion is 0.9602 (96%). This indicates that in long 
run, approximately 95% (assumed confidence level) of the intervals will contain the population 
mean. This process will give students a better understanding of the confidence intervals and 
the confidence level. 
 
2.4.2 Hypothesis Testing  
Hypothesis testing is another key topic of statistical inferences although it is one of the more 
difficult concepts to understand. A sound knowledge of terms such as null and alternative 
hypotheses, significance level, and p-value is essential in performing a hypothesis test and 
making the correct decision. Since all statistical software calculate p-values, now more and 
more instructors are using the p-value approach to make decisions. Many students do not have 
a good understanding about the p-value and they blindly use the rejection criterion that “if the 
p-value is less than the significance level, rejects the null hypothesis”.  The definition of the p-
value is the probability, assuming the null hypothesis is true, that the test statistics would take 
a value as extreme or more extreme than that actually observed [7]. We demonstrate the use of 
R in hypothesis testing using following example. 

One sample t test. Data for this example are reading times [7]. 
Does using fancy fonts slow down the speed of reading text from a computer screen? Adults 
can read four paragraphs of text in an average time of 22 seconds in the common Times New 
Roman font. 25 adults were asked to read this text in the ornate font named Gigi. Here are their 
times:  
23.2,  21.2,   28.9,   27.7,   23.4,  27.3,   16.1,   22.6,   25.6,  32.6,  23.9,  26.8,  18.9,  27.8,   
21.4,  30.7,   21.5,  30.6,   31.5,   24.6,   23.0,  28.6,   24.4,   28.1,   18.4. 
Suppose that reading times are normally distributed. Is there good evidence that the mean 
reading time for Gigi fonts is greater than 22 seconds? In other words, is µ greater than 22 
seconds for Gigi fonts? 
 
The null and alternative hypotheses are:  H0:  µ = 22 seconds and H1:  µ > 22 seconds. The test 
statistics used for this test is (𝑋( − 𝜇) (𝑠 √𝑛)⁄⁄   and that follows the t-distribution with 24 
degrees of freedom. s is the sample standard deviation. The value of the test statistics based on 
the above sample assuming the null hypothesis is 3.6742.  
 
In R, t.test command performs the t-test and produces the test statistic and the p-value. The 
reading times are stored in a csv file under the column heading named ‘Times’. Following are 
the results: 

> t.test(Times, mu = 22, alternative = 'greater') 
        One Sample t-test 



data:  Times 
t = 3.6724, df = 24, p-value = 0.0006001 
alternative hypothesis: true mean is greater than 22 
 
To perform a left tailed or two tailed test, ‘greater’ should be replaced with ‘less’ or ‘two.sided’.  
Since the p-value (0.0006) is less than the significance level α (say 0.05), we  have sufficient 
evidence to reject the null hypothesis and conclude that the mean reading time is greater than 
22 seconds.  
 
To get a better understanding of the p-value and to assess the evidence of this sample, we 
generate new samples that are consistent with the null hypothesis that the population mean is 
22 [6]. The sample mean of the original sample is 25.152. To ensure that the null hypothesis 
(µ = 22) is satisfied, we subtract 3.152 from each reading time to produce a new set of times 
with a mean exactly equal to 22. To generate a randomization distribution of sample means 
while assuming that the null hypothesis is true, we select samples of size 25 at a time (with 
replacement) from the modified data and compute the mean of each sample. A set of sample 
means generated by this process will be a randomization distribution of values produced at 
random under the null hypothesis that µ = 22.  The R code below simulates this process.  
 
> NewTimes <- Times - 3.152 
> means <- c() 
> for(i in 1:10000)  
{ 
+    x <- sample(NewTimes,25, replace = TRUE) 
+    means[i] <- mean(x)  
} 
 
Figure 2.5 shows a dot plot of the sample means for 10,000 samples generated by this 
randomization process. As expected, the distribution is centered at the null value 22.  
 

 
Figure 2.5:  Dot Plot of 10,000 Sample Means 
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We compute the proportion of sample means that are as large (or larger) than the original 
sample mean 25.152. This proportion is equivalent to the p-value of the hypothesis test. The 
following code segment computes this proportion.  

> count <-  0 
> for(i in 1:10000) 
 { 
+   if(means[i] >= 25.152) 
+      count <- count + 1  
} 
> count/10000 
[1] 0 
 
This p-value (0) gives strong evidence against the null hypothesis (as noted using t.test 
command) and supports the alternative hypothesis that the average reading time is greater than 
22 seconds. While the t.test command allows students to perform the hypothesis test, the above 
described randomization process provides a better understanding of the p-value. 
 

3. Final Remark 
In this paper, we have presented ways of using R in several important topics in introductory 
statistics. Many students have difficulties in understanding the concepts, in particular statistical 
inferences. We believe students get a better feel about the concepts using examples in their 
lessons. Using R to perform simulation allows students to visualize the concepts in sampling 
distributions, confidence intervals, and hypothesis testing. These simulation methods can be 
adopted in a variety of introductory level classes. 
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