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Abstract 
A spreadsheet program, such as Microsoft Excel, has proven to be an excellent tool for the study, 
implementation, and visualization of a wide range of mathematical concepts, as well as for 
mathematical modeling of diverse applications. We focus on the use of Excel’s powerful Data 
Table tool to present new and creative ways to study and teach a wide range of mathematical 
topics. We draw our topics from algebra, calculus, linear algebra, probability, statistics, and 
numerical analysis, as well as from business and scientific fields. Our examples have been used 
successfully in classroom teaching. Each is accompanied by interactive and animated graphics 
created in Excel. We also present additional ideas for educators and their students to pursue. 

 
Introduction 

Ever since the initial spreadsheet program, Visicalc, was launched in 1980, and especially 
following the inclusion of added features and graphic capabilities in subsequent spreadsheets, 
the educational community has constantly found innovative ways to use spreadsheets for the 
study and teaching of mathematics [1,3,5]. In this paper we provide some examples for the 
creative use of the Data Table tool of Excel and other spreadsheets for the study and teaching 
of mathematics, and provide suggestions for further areas of application of this valuable tool. 
 
Example 1. Geometric Growth 

To describe the use of the Data Table command, our first example is a standard compound 
interest model [3]. It is often advantageous to introduce a new topic through the use of a familiar 
example that we can also examine using other methods, thereby allowing us to both verify and 
compare the approaches. Our model assumes that we enter a one-time deposit that earns annual 
compound interest at a given rate for 10 years.  

In Figure 1(a) we first enter the principal and annual interest rate in Cells B1:B2. We use 
Column A to count years, while we find the annual starting balance and interest in Columns B-
C. In Figures 1(a) and 1(b) we see the resulting output and the underlying formulas in Columns 
A:C. Cell B15 contains the resulting 10th year balance. 

Now, suppose that we want to create a summary of the 10th year balance for different annual 
interest rates. Of course, we could simply change cell B2 repeatedly, and manually write down 
the resulting balance. However, the Data Table command can do this for us automatically. We 
create the data table in the Block E5:F15. In Column E we leave the top cell E5 blank, and then 
enter in the rest of Column E the interest rates that we desire to examine. While we have used 
formulas to increment the rates in steps of 1%, we can enter whatever rates are desired.  In Cell 
F5, we enter a formula, =B15, that reproduces the 10-year balance for the current rate. 

To issue the Data Table command, we first use our selection device to select the Block 
E5:F15, as shown in Figure 2. We then select the Excel command options Data, What If 
Analysis, Data Table. In the resulting Data Table display, we click in the Column Input cell 
box, and then click on the rate cell, B2. After we then click on OK, Excel repeatedly inserts 
each of the rate values in Column E into Cell B2, and records the corresponding 10th year 
balances in Column C, as shown in Figure 1(c). 



           
 

   Figure 1(a). Savings Layout   Figure 1(b). Savings Formulas    Figure 1(c). Data Table 
 

 
Figure 2. Data Table Display 

 
If this is the first time for someone to use the Data Table, it is a good exercise to create an 

additional column of the 10th year values by using the closed formula  or one of 
Excel’s built-in financial functions. We shall then see that the result agrees with our Data Table 
model.  

  
Example 2. Cramer’s Rule 

Cramer’s Rule [7] is a well-known procedure that uses determinants to solve a linear system 
of n equations in n unknowns. Unfortunately, doing this procedure by hand is both tedious and 
very inefficient for . However, using Excel’s determinant and matrix functions, together 
with the Data Table tool, makes the process quite accessible and efficient, even for rather large 
values of n. 

For an  system,  

   

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A B C D E F
prin 1000
rate 0.05

year balance interest rate 10-year
0 1,000.00 50.00 1,628.89
1 1,050.00 52.50 1%
2 1,102.50 55.13 2%
3 1,157.63 57.88 3%
4 1,215.51 60.78 4%
5 1,276.28 63.81 5%
6 1,340.10 67.00 6%
7 1,407.10 70.36 7%
8 1,477.46 73.87 8%
9 1,551.33 77.57 9%

10 1,628.89 10%

data table

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A B C D E F
prin 1000
rate 0.05

year balance interest rate 10-year
0 =B1 =$B$2*B5 =B15
=1+A5 =B5+C5 =$B$2*B6 0.01
=1+A6 =B6+C6 =$B$2*B7 =0.01+E6
=1+A7 =B7+C7 =$B$2*B8 =0.01+E7
=1+A8 =B8+C8 =$B$2*B9 =0.01+E8
=1+A9 =B9+C9 =$B$2*B10 =0.01+E9
=1+A10 =B10+C10 =$B$2*B11 =0.01+E10
=1+A11 =B11+C11 =$B$2*B12 =0.01+E11
=1+A12 =B12+C12 =$B$2*B13 =0.01+E12
=1+A13 =B13+C13 =$B$2*B14 =0.01+E13
=1+A14 =B14+C14 =0.01+E14

data table

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

E F

rate 10-year
1,628.86

1% 1,104.59
2% 1,218.96
3% 1,343.88
4% 1,480.21
5% 1,628.86
6% 1,790.80
7% 1,967.10
8% 2,158.87
9% 2,367.31

10% 2,593.72

data table
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Cramer’s Rule states that the value, , of the k-th component of the solution, can be found by 
dividing the determinant that results by replacing the entries of the kth column of the  
matrix of coefficients with the column of constants by the determinant of the coefficients, or 
 

   

 
In Figure 3 we illustrate our procedure for the 5x5 case. We enter the system in the block 

A4:F8 with Row 3 used as a counter for k. We then enter a value for k in Cell D1. In the block 
A10:F14 the entries in Column k of A are replaced by the column of constants to produce the 
matrix . To do this, in Cell A10 we enter =IF(A$3=$D$1,$F4,A4), and then copy it 
throughout the Block A10:E14. We compute the determinant of A in Cell B1 by 
=MDETERM(A4:E8) and the determinant of in Cell F1 by =MDETERM(A10:E14).  

We next create the Data Table in the Block I3:J8, entering the formula =F1/B1 for  
in Cell J3, and values for k = 1, 2, 3, 4, 5 down Column I. We then issue the Data Table 
command, selecting the Block I3:J8 and Column Input Cell, D1. Figure 3(b) shows the 
resulting display. Modifying the design for larger systems is straight-forward. We have used 
this successfully for systems of as many as 20 variables. 
 

  
                Figure 3(a). Cramer’s Rule Model Figure 3(b). Cramer Data Table 

 
Example 3. Numerical Integration via Trapezoidal Rule 

Here we present the use of the Data Table tool to significantly condense lengthy series of 
calculations. In calculus we examine a variety of ways to approximate a definite integral as the 
area beneath a curve. Using the trapezoidal rule [2,6], we approximate the area under equally-
spaced segments of a continuous curve by trapezoids, as shown in Figure 4(a), using the 
formula . 
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1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H I J
|A| 160 k 2 |Ak| -320

k    xk

1 2 3 4 5 con -2
3 2 1 8 -3 13 x1 1
5 -2 1 1 -3 22 x2 2
2 0 2 -3 -1 9 x3 3
1 1 -1 2 3 7 x4 4

-1 3 1 0 3 -1 x5 5

3 13 1 8 -3
5 22 1 1 -3
2 9 2 -3 -1
1 7 -1 2 3

-1 -1 1 0 3

data table
coefficient matrix A

matrix Ak

1
2
3
4
5
6
7
8
9

10
11
12
13
14

H I J

k    xk

-2
x1 1 4
x2 2 -2
x3 3 3
x4 4 1
x5 5 2

data table

( ) ( ) ( )( ) / 2A b a f a f b» - +



   
Figure 4(a). Trap: n = 1  Figure 4(b). Trap: n = 3  Figure 4(c). Trap: n = 9 

 
We use the trapezoidal rule to obtain an approximation for an integral by dividing the 

interval   into n equal subdivisions. As n increases we will get increasingly better 
approximations until round-off error intrudes. However, it can be inconvenient or impossible 
to increase the number of rows in a spreadsheet model beyond a certain number of divisions. 
We can overcome much of this difficulty by using a Data Table. For our illustration, we use 
the function: f(x) = 1/x2, 1 ≤ x ≤ 3. . 

In Column B of Figure 5(a) we enter the number, n, of major subdivisions (here n = 10) and 
the values of a and b. We also compute the interval width , the subdivision width or gap 
as . We divide each major subdivision into 1000 small divisions, using a step 
size of . Next, in Columns D:I we compute the trapezoidal areas for the small 
segments of the interval starting with the entry in Cell E3. We leave details left to readers. The 
basic Trapezoidal Rule formulas are given in Figure 6. 

We now create a 10-step Data Table in Columns L:M. Column L consists of the major 
interval starting points. In Cell M3 we compute the sum of Column I as =SUM(I3:I1002). We 
then issue the Data Table Command, using E3 as the Column Input cell. After this the overall 
resulting area approximation is found in Cell M15 as =SUM(M4:M13). We then reproduce this 
in Column A where we compare it with exact area found by integration. Figure 5(b) shows the 
initial Data Table. 
 

  
 

               
                                  Figure 5(a). Trapezoidal Model                           Figure 5(b). Data Table 
 

 
Figure 6. Trapezoidal Formulas 

(a,f(a))

(b,f(b))

a b

[ , ]a b

2( ) 1/ ,1 3f x x x=  £ £

b a-
( ) /gap b a n= -

/1000step gap=

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F G H I J K L M

k xl xr f(xl) f(xr) area n x area
num 10 1 1.0 1.0002 1 0.9996 0.000200 0.166667

a 1 2 1.0002 1.0004 0.9996 0.9992 0.000200 1 1.0 0.166667
b 3 3 1.0004 1.0006 0.9992 0.9988 0.000200 2 1.2 0.119048

intv 2 4 1.0006 1.0008 0.9988 0.9984 0.000200 3 1.4 0.089286
gap 0.2 5 1.0008 1.001 0.9984 0.998 0.000200 4 1.6 0.069444

step 0.0002 6 1.001 1.0012 0.998 0.9976 0.000200 5 1.8 0.055556
7 1.0012 1.0014 0.9976 0.9972 0.000199 6 2.0 0.045455

area 0.666667 8 1.0014 1.0016 0.9972 0.9968 0.000199 7 2.2 0.037879
exact 0.666667 9 1.0016 1.0018 0.9968 0.9964 0.000199 8 2.4 0.032051
error 6.42E-09 10 1.0018 1.002 0.9964 0.996 0.000199 9 2.6 0.027473

11 1.002 1.0022 0.996 0.9956 0.000199 10 2.8 0.023810
12 1.0022 1.0024 0.9956 0.9952 0.000199
13 1.0024 1.0026 0.9952 0.9948 0.000199 Area 0.666667
14 1.0026 1.0028 0.9948 0.9944 0.000199

input/output
Trapezoidal Rule data table 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

K L M

n x area
0.166667

1 1.0
2 1.2
3 1.4
4 1.6
5 1.8
6 2.0
7 2.2
8 2.4
9 2.6

10 2.8

Area 0.000000

data table

1002
A B C D E F G H I J K L M

1000 1.1998 1.2 0.6947 0.6944 0.000139

2
3
4

D E F G H I
k xl xr f(xl) f(xr) area
1 1 =E3+B$8 =1/E3^2 =1/F3^2 =$B$8*(G3+H3)/2
=1+D3 =E3+$B$8 =E4+B$8 =1/E4^2 =1/F4^2 =$B$8*(G4+H4)/2



 
There are various other numerical integration algorithms (e.g., Simpson’s method) that we 

can implement similarly. 
 
Example 4. Eigenvalues and Characteristic Polynomial 

A major topic in linear algebra is that of eigenvalues and eigenvectors of matrices [7]. A 
real number, λ, is an eigenvalue of an n´n real matrix  if there is a non-zero vector  for 
which . Any vector   that satisfies this equation is called an eigenvector 
corresponding to l . To find the real eigenvalues of a square matrix , we note that if 

, and . This happens when the determinant . We use 
this fact to find the real eigenvalues of a   matrix A. 

We illustrate our process in Figure 7 with a 4´4 matrix, and employ a data table to evaluate 
points of the characteristic polynomial . The zeroes, l, of this function then are 
the eigenvalues of A. We enter the values of A in the Block B2:E5, and formulas to compute 
the entries of in the block B7:E10. We compute  in Cell E1. 

We next use the Data Table command to compute the (x,y) coordinates of f(x), with steps in 
the x-values of size 0.1, over the interval -4 £ x £ 4. Cell B2 is the column input cell for the 
data table.  
 

  
Figure 7(a). Char. Polynomial (layout) Figure 7(b). Char. Polynomial (Formulas) 

 
In Figure 8 we see the initial values of the resulting output. From this we can use Columns 

G:H to generate the xy-graph, shown at the left in Figure 9(a). 
 

 
Figure 8. Characteristic Polynomial from Data Table 
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( )Av v I vl l= = ( ) 0A I vl- = 0A Il- =

n n´

( )f x A xI= -

A Il- A Il-

1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H
λ 2 |A–λI| = -38 x f(x)
A 1 5 1 1 -38

1 -2 1 0 -4.0
1 1 0 1 -3.9
1 1 1 1 -3.8

-3.7
A–λI -1 5 1 1 -3.6

1 -4 1 0 -3.5
1 1 -2 1 -3.4
1 1 1 -1 -3.3

-3.2

1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H
λ 2 |A–λI| = =MDETERM(B7:E10) x f(x)
A 1 5 1 1 =E1

1 -2 1 0 -4
1 1 0 1 =0.1+G3
1 1 1 1 =0.1+G4

=0.1+G5
A–λI =B2-B1 =C2 =D2 =E2 =0.1+G6

=B3 =C3-B1 =D3 =E3 =0.1+G7
=B4 =C4 =D4-B1 =E4 =0.1+G8
=B5 =C5 =D5 =E5-B1 =0.1+G9

=0.1+G10

1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H
λ 2 |A–λI| = -38 x f(x)
A 1 5 1 1 -38

1 -2 1 0 -4.0 88
1 1 0 1 -3.9 72.32
1 1 1 1 -3.8 58.23

-3.7 45.64
A–λI -1 5 1 1 -3.6 34.44

1 -4 1 0 -3.5 24.56
1 1 -2 1 -3.4 15.91
1 1 1 -1 -3.3 8.412

-3.2 1.978



   
 

Figure 9(a) Char. Polynomial Figure 9(b). Estimate of Zeroes Figure 9(c). Zeroes 
 

From the graph of Figure 9(a), we can estimate manually the values of the eigenvalues as 
the points where the curve crosses the x-axis as in Figure 10(a). We then use the Data Table 
command again to get the y-values corresponding to these points, as shown in Figure 10(b) 
where we have used rough estimates of the zeroes of the function. We incorporate these into 
our graph as markers only in Figure 9(b). We could use estimates of x-values other than those 
in our given list. 
 

     
 Figure 10(a).Estimates Figure 10(b). Data Table Figure 10(c). Solver 
 

We next use Excel’s Solver command to find a better fit, as illustrated in Figure 10(c). To 
do this we compute the sum of the squares of the y-values that result from our estimates for x. 
In the Solver we set the goal of making the sum of the squares (Cell K8) to 0 by varying the x-
values (I3:I6). We set the Solver type to GRG nonlinear. To ensure that no two of the values 
converge to the same zero, we include constraints such as, I3 £ -3 and I3 ³ -3.5 in the Solver’s 
Constraints section. We then press Solve to generate the estimates in Figures 9(c) and 10(c). 
As another valuable project, we also can implement traditional algorithms from numerical 
analysis [2] for computing eigenvalues and compare them with our results. 

 
Example 5. Calculus: Newton’s Method 

Newton’s Method [2,6] provides us with a means for estimating the zeroes of a 
differentiable function. Thus, if y = f(x) is such a function, then we start with a reasonable 
estimate, x0, of a zero. Next, as illustrated in Figure 11(a), we find where the tangent line to the 
curve at the point  intersects the x-axis, . This will generally 
be a better approximation. We then repeat this process, which usually converges quickly to the 
desired zero. However, sometimes this method may fail to converge. Also, in some cases, even 
a small changes in the choice of  can produce very different points of convergence, as shown 
in Figures 11(b) and 11(c), using . We investigate this phenomenon in an Excel 
model using a data table. 
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-38
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0.8
3.5

sse

1
2
3
4
5
6
7
8

I J K
x y y2

-38
-3.3 8.412 70.76
-1.2 -5.21 27.11
0.8 -7.27 52.86
3.5 -10.4 108.9

sse 259.7

1
2
3
4
5
6
7
8

I J K
x y y2

-38
-3.166 1E-03 1E-06
-0.858 0.002 6E-06
0.407 -0 2E-06
3.616 -0 1E-07

sse 9E-06
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 Figure 11(a). Newton Figure 11(b). Newton (𝑥"=0.3)Figure 11(c). Newton (𝑥"=0.31) 
 

Figure 12 presents a model for Newton’s Method in Columns A:D  with  and 
. We enter an initial estimate  in Cell B1. This becomes the first value for x 

in Cell B4. We find  and  in Columns C:D and the next value of x in Column B of 
the following row. Our implementation extends through an extensive number of rows, by which 
time Newton’s Method usually will have converged, say in Cell B24, to the resulting zero. 
Then in Columns F:G we create a data table for various initial -values, using the resulting 
approximation from Cell B24 as the returned value.  

We can see that if our initial estimate is x0 = 0.30 then the algorithm will converge to x ≈ -
4.71 (i.e., -3π/2), while if x0 = 0.31 then it converges to x ≈ 7.85 (i.e., 5π/2). We can study this 
phenomenon further by using a data table in Columns F:G. We generate a range of the initial 
values, x0, down Column F with the resulting point of convergence x1 in Column G. We 
produce the source of the x1 values for the Data Table tool in Cell G4 as =B24. 
 

  
Figure 12(a). Newton’s Method (Formulas) Figure 12(b). Newton’s Method (Data Table)  

 

 
Figure 13. Points of Convergence for Newton’s Method 

 
To complete our model, we create an xy-graph from Columns F:G plotting markers to get 

the picture of Figure 13 showing how the point of convergence varies for a range of initial 
estimates x0. 
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( ) cosf x x=
( ) sinf x x¢ = - 0x

( )f x ( )f x¢

0x

1
2
3
4
5
6
7
8
9

10

A B C D E F G
x0 0.31

n x f(x) f'(x) x0 x1

0 =B1 =COS(B4) =-SIN(B4) =B24
=1+A4 =B4-C4/D4 =COS(B5) =-SIN(B5) -7
=1+A5 =B5-C5/D5 =COS(B6) =-SIN(B6) =0.01+F5
=1+A6 =B6-C6/D6 =COS(B7) =-SIN(B7) =0.01+F6
=1+A7 =B7-C7/D7 =COS(B8) =-SIN(B8) =0.01+F7
=1+A8 =B8-C8/D8 =COS(B9) =-SIN(B9) =0.01+F8
=1+A9 =B9-C9/D9 =COS(B10) =-SIN(B10) =0.01+F9

data table
points

1
2
3
4
5
6
7
8
9

10

A B C D E F G
x0 0.31

n x f(x) f'(x) x0 x1

0 0.31 0.9523 -0.31 7.854
1 3.432 -0.9582 0.286 -7 -7.85
2 6.78 0.8790 -0.48 -6.99 -7.85
3 8.623 -0.6958 -0.72 -6.98 -7.85
4 7.655 0.1979 -0.98 -6.97 -7.85
5 7.857 -0.0027 -1 -6.96 -7.85
6 7.854 0.0000 -1 -6.95 -7.85

data table
points

-2p -3p/2 -p -p/2 0 p/2 p 3p/2 2p

--4p

-3p

-2p

--p

0

p

2p

3p

4p



 
Example 6 – Random Model of Coin Flip 

We can use Excel’s RANDOM function to simulate events and concepts that are included 
in the study of probability and statistics [8]. When combined with the Data Table tool, we are 
able to produce summaries of sets of repeated random trials. Here we create a simulation of 
1000 sets of 100 flips of a fair coin (i.e., with probability p = 0.5 of obtaining a head). 

In the model of Figure 14 we count the flips in Column A and generate random numbers 
between 0 and 1 in Column B. We set the probability of success p (here p = 0.5) in Cell C2. 
Next, in Cell C5 we use the =IF function to generate a head, “H”  if the current random number 
is less than p, and “T” otherwise. We then copy this expression down Column C. Next, in Cell 
C1 we determine the number of heads using the =COUNTIF function. Finally, we create a data 
table in the Block E4:F1004 to find the number of heads in each of 1000 repetitions. In Cell F1 
of the data table we use the =AVERAGE function to compute the mean number of heads in the 
1000 flips. 

It is also instructive to look at the distribution of the number of heads, n, obtained in the 
1000 flips. We create this summary in Columns H:I using the =COUNTIF function. Here we 
have computed this for 30 ≤ n ≤ 70 in order to produce the graph of Figure 16 that is broad 
enough to include all outcomes. We can simulate other binomial events by changing the value 
of p in Cell C2. In this case we may need to modify the range of our graph. 

 

               
          Figure 14(a). Coin Flip (layout)     Figure 14(b). Coin Flip (Data Table) 
 

 
Figure 15. Coin Flip Simulation (formulas) 

 

 
Figure 16. Typical Coin Flip Simulation (graph) 

 
 

1
2
3
4
5
6
7
8

A B C D E F G H I
heads 53 mean ##### mean 0

p 0.5 sum 0
n rand coin rep head head num

53
1 0.716 T 1 30 0
2 0.261 H 2 31 0
3 0.411 H 3 32 0
4 0.366 H 4 33 0

1
2
3
4
5
6
7
8

A B C D E F G H I
heads 53 mean 49.89 mean 49.89

p 0.5 sum 1000
n rand coin rep head head num

53
1 0.716 T 1 46 30 0
2 0.261 H 2 59 31 0
3 0.411 H 3 46 32 0
4 0.366 H 4 44 33 0

1
2
3
4
5
6
7
8

A B C D E F G H I
heads =COUNTIF(C5:C104,"H") mean =AVERAGE(F5:F1004) mean =SUMPRODUCT(H5:H45,I5:I45)/1000
p 0.5 sum =SUM(I5:I45)

n rand coin rep head head num
=C1

1 =RAND() =IF(B5<C$2,"H","T") 1 =TABLE(,A2) 30 =COUNTIF($F$5:$F$1004,H5)
=1+A5 =RAND() =IF(B6<C$2,"H","T") =1+E5 =TABLE(,A2) =1+H5 =COUNTIF($F$5:$F$1004,H6)
=1+A6 =RAND() =IF(B7<C$2,"H","T") =1+E6 =TABLE(,A2) =1+H6 =COUNTIF($F$5:$F$1004,H7)
=1+A7 =RAND() =IF(B8<C$2,"H","T") =1+E7 =TABLE(,A2) =1+H7 =COUNTIF($F$5:$F$1004,H8)
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Example 7. Two-Dimensional Data Table (Generalized Birthday Problem) 
The Data Table examples that we have presented so far have examined changes in a single 

variable. However, we also can vary two variables by using a two-dimensional data table. Here 
we look at a generalized version of the classical birthday problem [3,8]. As typically presented, 
in a group of m people chosen at random, we determine the probability that at least two people 
will share the same birthday. Here we present a model that will determine the smallest number, 
m, of people that must be selected for the probability that least one duplicate exceeds p = 0.5. 

In fact, we generalize the process to the case of selecting m positive integers at random from 
the set of the first n positive integers (n = 365 gives the birthday problem), and finding the 
value of m that ensures that the probability of obtaining at least one duplicate value among the 
m selections exceeds a given probability, p. This is useful for illustrating the ideas of the 
birthday problem with a small class of size m by having the students in the class choose 
individual integers at random from the set {1, 2, …, n} instead of using birthdays. We start 
with the model of Figure 17. 

First, we enter values for n (Cell A3) and p (Cell B3). In Column A we let k be a counter 
for the numbers of items that we are selecting.  In Column B we compute the probability, P(k)  
that all of the first k selections are different. Clearly, P(1) = 1. Then, in computing P(k+1), we 
notice that the previous values must all be different, and that n–k will remain. Thus, the 
probability that the first k+1 are all different is . We enter this formula in Cell 
B7 and copy the current entries down their respective columns. The probability that there is at 
least one repeated value among the first k is computed in Column D as . We find the 
desired number, m, of values needed for the probability to exceed p in Cell C3 by using the 
form of a table lookup function as in Figure 17b.  
 

'    
Figure 17(a). Birthday (output)  Figure 17(b). Birthday (formulas) 

 
Here =LOOKUP(B3,C6:C105,A6:A105)+1 looks for the value of B3 in the Block C6:C105, 

and returns the corresponding value in the Block A6:A105. This returns the value of m that 
gives the last probability that is less than or equal to the probability, p, that is being sought. 
Consequently, we add 1 in order to find the first value that exceeds p. 

Now we create a 2-dimensional data table as shown in Figure 18(a). In Column F we create 
ranges of values of n down Column F and probabilities p in Row 2. We then use Excel’s Data 
Table tool (see Figure 19) to fill in the number of integers that must be selected to ensure the 
probability that there is at least one duplicate exceeds p. First, in Cell F2 we enter the formula 
=C3, to obtain that number from our choices for n and p in Cells A3:B3.  

 

P( )( ) /k n k n-

1 P( )k-

1
2
3
4
5
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7
8
9

10

A B C
Output

n p num
365 0.5 23

k all diff dups
1 1 0
2 0.9973 0.0027
3 0.9918 0.0082
4 0.9836 0.0164
5 0.9729 0.0271

Input 1
2
3
4
5
6
7
8
9

10

A B C
Output

n p num
365 0.5 =LOOKUP(B3,C6:C105,A6:A105)+1

k all different duplicates
1 1 =1-B6
=1+A6 =($A$3-A6)*B6/$A$3 =1-B7
=1+A7 =($A$3-A7)*B7/$A$3 =1-B8
=1+A8 =($A$3-A8)*B8/$A$3 =1-B9
=1+A9 =($A$3-A9)*B9/$A$3 =1-B10

Input



  
 Figure 18(a). 2-D Birthday (start) Figure 18(b). 2-D Birthday (Data Table) 

 
 

 
Figure 19. Two Dimensional Data Table Setup 

 
As in Figure 19, we then use our selection device to highlight the array F2:L12 and select 

the Data Table command as before, this time entering the values for both n and p as shown in 
Figure 19. We obtain the output of Figure 18(b). For example, the number of integers that must 
be selected at random from a set of n = 100 integers that will ensure that the probability of at 
least one duplicate exceeds p = 0.70 is 16. 
 
Example 8. Euler’s Phi Function 

The field of number theory provides many opportunities to employ a data table approach to 
classical topics. In this example we look at Euler’s phi function [4]. For a positive integer, n, 
φ(k) is the number of positive integers that are less than k and are relatively prime to k (i.e., that 
have no common divisors with k other than 1. Thus φ(6) = 2 since only 1 and 5 have no divisors 
other than 1 in common with 6. In our example we use Excel’s greatest common divisor 
function, = gcd().. 

In our model of Figure 20(a) we enter a value for k in Cell A2. We then generate consecutive 
positive integers, i, down Column A and the value of gcd(i,k) in Column B. In Column C for 
each i we produce the number 1 if and only if only k and i are relatively prime and i < k. Then, 
in Cell B2, we compute φ(k) as the sum of the entries in Column C. The formulas appear in 
Figure 20(b). 

We then use the Data Table command using Columns E:F where the formula in Cell F2 is 
simply =B2. We augment our model to indicate prime integers in Column H as those integers, 
n, for which φ(n) = 1. Figure 21 is a graph of the Euler Phi Function, formed from Columns 
E:F of our model,  with points (n,φ(n)) for n ≤ 1000. 
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60 9 10 11 13 14 17
70 9 11 12 14 15 18
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90 10 12 14 15 17 21
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400 21 24 28 32 36 43
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Figure 20(a). Phi Initial.  Figure 20(b). Phi Formulas. 

 

  
  Figure 20(c). Phi Data Table 

 

 
Figure 21. Euler Phi Function Graph 

 
Example 9: Greatest Common Divisor 

In Example 8 we used Excel’s built-in greatest common devisor function [4]. However, we 
can use also use a data table together with Euclid’s GCD algorithm to produce these greatest 
common values. That algorithm can be expressed in a sequence of operations that we can 
implement naturally in a spreadsheet: Suppose that m and n are positive integers with m > n. 
Then, by the standard division algorithm, there are non-negative integers qi and ri so that  
 

m = q1n + r1 with 0 ≤ r1 < n 
n = q2r1 + r2 with 0 ≤ r2 < r1 
r1 = q3r2 + r3 with 0 ≤ r3 < r2 

 
and so on. Since the ri values are continually decreasing, eventually there is a first value of k 
for which rk+1 = 0. and rk is the sought for greatest common divisor of m and n. See [4]. 
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A B C D E F
k φ(k) n φ(n)
9 6 6
i gcd(k,n) count 2
1 1 1 3
2 1 1 4
3 3 5
4 1 1 6
5 1 1 7
6 3 8
7 1 1 9
8 1 1 10
9 9 11
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A B C
k φ(k)
9 =SUM(C4:C1003)
i gcd(k,n) count
1 =GCD(A4,$A$2) =IF(AND(A4<$A$2,B4=1),1,"")
=1+A4 =GCD(A5,$A$2) =IF(AND(A5<$A$2,B5=1),1,"")
=1+A5 =GCD(A6,$A$2) =IF(AND(A6<$A$2,B6=1),1,"")
=1+A6 =GCD(A7,$A$2) =IF(AND(A7<$A$2,B7=1),1,"")
=1+A7 =GCD(A8,$A$2) =IF(AND(A8<$A$2,B8=1),1,"")
=1+A8 =GCD(A9,$A$2) =IF(AND(A9<$A$2,B9=1),1,"")
=1+A9 =GCD(A10,$A$2) =IF(AND(A10<$A$2,B10=1),1,"")
=1+A10 =GCD(A11,$A$2) =IF(AND(A11<$A$2,B11=1),1,"")
=1+A11 =GCD(A12,$A$2) =IF(AND(A12<$A$2,B12=1),1,"")
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k φ(k) n φ(n)
9 6 6 prime
i gcd(k,n) count 2 1 2
1 1 1 3 2 3
2 1 1 4 2
3 3 5 4 5
4 1 1 6 2
5 1 1 7 6 7
6 3 8 4
7 1 1 9 6
8 1 1 10 4
9 9 11 10 11
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In Figures 22(a) and 22(b) we present an Excel model for this algorithm. Using this in Figure 
22(c) we use the Data Table tool to find the greatest common divisors of m and n for n = 1, 2, 
3, … 
 

    
Figure 22(a). Euclid Figure 22(b). Formulas Figure 22(c). GCD Data Table 

 
Final Remark 

In this paper we have presented only a few topics that can be explored creatively using the 
Data Table tool. In particular, examples such as creating Bezier curves for numerical analysis, 
implementing the Sieve of Eratosthenes in number theory, and executing legislative 
apportionment algorithms are discussed in [3]. Another interesting application lies in the 
computation of the probabilities of obtaining false positives in drug testing. 
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A B C D
Input m n

36 10
Output locate gcd(m,n)
Locate 5 2

Large Small Rem
36 10 6
10 6 4
6 4 2
4 2 0
2 0 #DIV/0!
0 #DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0!
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A B C
Input m n

36 10
Output locate gcd(m,n)
Locate =MATCH(0,B7:B28,0)=INDEX(B7:B28,B4-1)

Large Small Rem
=B2 =C2 =MOD(A7,B7)
=B7 =C7 =MOD(A8,B8)
=B8 =C8 =MOD(A9,B9)
=B9 =C9 =MOD(A10,B10)
=B10 =C10 =MOD(A11,B11)
=B11 =C11 =MOD(A12,B12)
=B12 =C12 =MOD(A13,B13)
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A B C D E F
Input m n

36 10
Output locate gcd(m,n)
Locate 5 2

n gcd(m.n)
Large Small Rem 2
36 10 6 1 1
10 6 4 2 2
6 4 2 3 3
4 2 0 4 4
2 0 #DIV/0! 5 1
0 #DIV/0! #DIV/0! 6 6

#DIV/0! #DIV/0! #DIV/0! 7 1


