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Abstract

In this paper, we use some college entrance exam practice problems from China to
highlight some essential algebraic manipulation skills that are required by high school
students from China. Next we explore various scenarios by assuming if technological tools
are available to learners, how we may see many unexpected surprising outcomes. For
many countries, requiring college entrance exams is inevitable and sometimes is the only
fair channel of selecting quali�ed students to enter a college. However, we hope examples
provided in this paper can serve a purpose of advising the decision makers in education
systems by allowing students to explore mathematics with available technological tools.
After all, creativity and innovation do not come by giving one correct answer alone.

1 Introduction

Finding a curve de�ned by the locus of a moving point has been popular and often asked in
Gaokao (a college entrance exam) in China. Typically students should not spend more than
10 minutes to solve one problem. Under such circumstances, it is not hard to imagine that
many students may lose interest or even decide to give up solving these types of problems all at
once. There have been several exploratory activities (see [4] [6], and [8]) derived from Chinese
college entrance exam practice problems ([7]). In this article, we typically start with a practice
problem originated from ([7]) to initiate our discussions. We demonstrate how a problem can be
solved by hand �rst, which shall demonstrate those crucial algebraic manipulation skills that
are required by high school students from China. Indeed those algebraic manipulations are
very much appreciated and needed for solving even more challenging problems. One question,
however, many educators or researchers may ask naturally is as follows: Assume students are
not pressured in a �xed time frame to solve a problem, and if both DGS (Dynamic Geometry
System) and CAS (Computer Algebra System) are available to students to explore, how can



technological tools assist students�learning in this case? We conjecture the outcomes of the
question can be summarized as follows, which will be validated by many examples presented in
this paper:

1. Students would have many opportunities to ask �what if�scenarios and properly make
their conjectures before proving them analytically.

2. Many students will not feel frustrated either when they cannot complete or make mistakes
on some complicated algebraic manipulations.

3. Students would have been given credits by knowing how to make geometric construc-
tions and knowing what to do next by relying on a technological tool to complete the
complicated algebraic manipulations.

Author believes that seeing pictures �rst before asking complete analytic or algebraic solu-
tions is much more accessible, convincing and intuitive to students. In this paper, in addition
to solving simple cases by hand, we typically construct a potential solution geometrically using
the trace feature of a DGS. Or we ask for a symbolic answer if possible (for example using [2]).
Finally, we use a CAS (such as [5]) to verify that our analytic solutions are identical to those
obtained by using the DGS [2].

2 Locus When Fixing Two Points On A Curve

We start with the original entrance practice problem as follows:

Example 1 We are given a �xed ellipse, say x2

a2
+ y2

b2
= 1; BE is the major axis and F is a

moving point on the ellipse. We construct two lines passing through B and E respectively and
two lines intersect at I such that ]IBF = ]FEI = 90�:If J is the midpoint of BI; �nd the
locus of J:[Note that the red curve in Figure 1(a) or 1(b) represents the scattered plot of J that
can be traced by using [1]]

Figure 1(a). Locus, ellipse and
two �xed points when t = t1

Figure 1(b). Locus, ellipse and
two �xed points when t = t2



We remark here that if this problem is presented as a mathematics experiment class instead,
more students would have enjoyed exploring it if technological tools are available to learners.
For example, before answering this question analytically, they can play and learn how a locus
might look like, which makes the learning process much more enjoyable. In fact, one may adopt
the following steps when exploring a problem:

1. Start with a DGS (say [1] in this case) for necessary geometric constructions and next
use the scattered plot to conjecture what the locus should look like. Further experiment
with a symbolic DGS such as [2] to generate a possible symbolic solution.

2. Solve the problem analytically by hand for simple scenario or solve it analytically with a
CAS such as [5] if the problem becomes algebraically intensive.

We now present how one may solve this simple case by hand without the presence of techno-
logical tools. We let B = (�a; 0); E = (a; 0) and the moving point on the ellipse F = (x0; y0):
We denote the slopes of FB and FE to be kFB and kFE respectively, then kFB =

y0
x0+a

and
kFE =

y0
x0�a : Thus, the the line equations for BI and EI are

y = �x0 + a
y0

(x+ a) (1)

and
y = �x0 � a

y0
(x� a) (2)

respectively. We substitute 1 into 2 and yield the followings:

�x0 + a
y0

(x+ a) = �x0 � a
y0

(x� a)

(x0 + a) (x+ a) = (x0 � a) (x� a)
2ax+ 2ax0 = 0:

We see if a 6= 0; x =�x0: In other words, if we assume a 6= 0; then I = (�x0;� 1
y0
(a+ x0) (a� x0) :

The midpoint for BI is thus

J = (X; Y ) =

�
�x0 � a
2

;� 1

2y0
(a+ x0) (a� x0)

�
:

This implies that Y = 1
y0
X (a� x0) : To obtain the parametric form for the locus J; we note

that x
2
0

a2
+
y20
b2
= 1; which implies that x0 = a cos t and y0 = b sin t: Thus we obtain the parametric

equation for the locus to be8><>:
X =

�a cos t� a
2

=
�a(cos t+ 1)

2

Y =
X(a� a cos t)

b sin t
=
aX(1� cos t)

b sin t

:

Exploration 1. It is not di¢ cult to extend our result if we ask for the locus J = (X; Y )
satisfying

�!
BJ = s

�!
BI for some 0 < s < 1: In view of

�!
BJ = s

�!
BI; we have

(X + a; Y ) = s

�
�x0 + a;�

1

y0
(a+ x0) (a� x0)

�
J = (X; Y ) = (�s(x0 � a)� a) ;

s

y0
(x0 + a) (x0 � a)



Since x
2
0

a2
+
y20
b2
= 1; we set x0 = a cos t and y0 = b sin t; where t 2 [0; 2�]; to obtain the parametric

equation for the locus J to be

X = �s (a cos t� a)� a (3)

Y =
s
�
(a cos t)2 � a2

�
b sin t

:

Remarks:

1. We use the DGS Geometry Expressions [2] to construct the locus J above through geom-
etry constructions. We depict some screen shots when s = 0:25 and 0:75 in the following
Figures 2(a)-(b).

2. We use the CAS [5] and the analytic derivation 3 to verify that the Figures 2(a)-(b)
obtained by using [2] are identical to the corresponding ones obtained by using [5].

Figure 2(a). Locus when
s = 0:25

Figure 2(b). Locus
when s = 0:75

Exploration 2. We leave it as an exercise to readers to verify that if we set ]IBF =
]FEI = �; the parametric equation for the locus should be proved to be the one obtained by
Geometry Expressions [2] as follows:0BBBB@
X = �(1� s) jaj �

2a2s sin(t) cos(t) jbj
�2a2 sin(t)2 sin(�) cos(�) + 2b2 sin(t)2 sin(�) cos(�)� 2 sin(t) jaj jbj+ 4 sin(t) sin(�)2 jaj jbj
Y =

s (�a2 sin(�)2 jaj+ a2 sin(�)2 cos(t)2 jaj � b2 sin(t)2 cos(�)2 jaj � 2a2 sin(t) sin(�) cos(�) jbj)
(�a2 sin(t) sin(�) cos(�) + b2 sin(t) sin(�) cos(�) + (� jaj+ 2 sin(�)2 jaj) jbj) sin(t)

1CCCCA :
The DGS Geometry Expressions [2] has the capability of linking to a CAS [5] computation, an
implicit equation can also be displayed by Geometry Expressions [2] for this example. Since
it is too long to display, we will omit it here. Therefore, one may think that with a powerful
symbolic geometry software such as Geometry Expressions [2] at hand, learners can visualize
how graphs may change according to various parameters a; b; s; t and �:



2.1 When we replace the ellipse by a cardioid

Assuming technological tools are available to learners, it is natural to ask what if the ellipse,
discussed earlier, is replaced by another curve, say a cardioid. In particular, we consider the
following

Example 2 We are given the cardioid r = 1�cos t; t 2 [0; 2�] in Figure 3. Suppose the moving
point C is on the cardioid and two lines passing through B = (0; 0) and A = (a; 0) respectively,
and intersect at G so that the angles ]CAG = ]CBG = 90�. If J is the midpoint of AG; �nd
the locus for J: [Note the red curve is a scattered plot of the locus of J; when A = (�2; 0) ; and
has been obtained using [1]]

Figure 3. Locus and a
cardioid

Since A = (a; 0) and B = (0; 0); and the moving point C = (x0; y0); we denote the slopes
for CB and CA to be kCB =

y0
x0
and kCA =

y0
x0�a respectively: Thus, the the line equations for

CB and CA are respectively
y = �x0

y0
x; (4)

and

y = �(x0 � a)
y0

(x� a) (5)

respectively. We substitute 4 into 5 and yield x0
y0
x = (x0�a)

y0
(x� a). By assuming a 6= 0; we see

x = a�x0; then y =
�
x0
y0

�
(x0 � a) ; in other words, the intersection G = (a�x0;

�
x0
y0

�
(x0 � a)):

Then midpoint for AG is

J = (X; Y ) =

�
2a� x0
2

;
x0 (x0 � a)

2y0

�
:

We note that C is a point on r = f(t) = 1 � cos t; which implies that x0 = f(t) cos t and
y0 = f(t) sin t: Thus we obtain the parametric equation for the locus to be

X =
2a� (1� cos t) cos t

2

Y =
(1� cos t) cos t ((1� cos t) cos t� a)

2 (1� cos t) sin t :



Exploration 1. It is not di¢ cult to extend our result if we ask for the locus J = (X; Y )
such that

�!
AJ = s

�!
AG for some 0 < s < 1: In view of

�!
AJ = s

�!
AG; we see X = a � sx0 and

Y = s
�
x0
y0

�
(x0 � a). Since (x0; y0) is a point on the cardioid r = f(t) = 1� cos t; the locus J

in this case is

X(a; s; t) = a� s (1� cos t) cos t (6)

Y (a; s; t) =
s (1� cos t) cos t
(1� cos t) sin t ((1� cos t) cos t� a)

We show some screen shots when a = �2 and s = 0:3; 0:7 and 1:5 respectively in Figures 4(a)-
(c) by using [2] below, which we have veri�ed that they are identical to those corresponding
ones when using the CAS [5].
Further Remarks:

1. We notice that the curve of r = 1� cos t has a point of non-di¤erentiabilty at B = (0; 0);
what will be the corresponding point for the locus J?

2. In view of the derivation in equations 6, we encourage readers to explore how the graphs
varies according to the parameters a; s; and t respectively.

Figure 4(a). Locus and
cardioid when s = 0:3

Figure 4(b). Locus and
cardioid when s = 0:7

Figure 4(c). Locus and cardioid
when s = 1:5

Exploration 2. We leave it as an exercise to readers to verify that if we set ]CAG =
]CBG = � and a = �2; the parametric equation for the locus is shown as follows, which is
obtained from Geometry Expressions [2]:0BBBBBBBB@

X = �2 + 2s�
2s(�(�2� (1� cos(t)) cos(t)) sin(�) + (1� cos(t)) sin(t) cos(�))(�(1� cos(t)) sin(t) sin(�)

�(1� cos(t)) cos(t) cos(�))
2 sin(t)� 4 sin(t) sin(�)2 � 2 sin(t) cos(t) + 4 sin(t) sin(�)2 cos(t)� 2 sin(t)2 sin(�) cos(�)

Y =

�s
�
2 sin(�) + sin(�) cos(t)� sin(�) cos(t)2

+(sin(t)� sin(t) cos(t)) cos(�)

�
(� sin(�) cos(t) + sin(t) cos(�))

sin(t) + (sin(�) + sin(�) cos(t)) cos(�)� 2 sin(t) cos(�)2 :

1CCCCCCCCA



3 Locus And Combinations of Shifting And Scaling

Here we are given two �xed points and a moving point on a smooth convex curve, and we need
to �nd the locus of a point lying on the line segment connecting one �xed point and a moving
point. We �rst present the original problem and solve it by hand �rst and see how the problem
can be extended to other scenarios in 2D. Next, we summarize how the problem is related to
the translation and scaling of �gures.

3.1 Generating a circle with two �xed points

The following locus problem is when we �x a point on a circle and �x another point that is
not on the circle. In particular, we consider the following Example 3, which has been slightly
modi�ed from the original practice problem (see [7]).

Example 3 We are given a �xed circle in blue (see Figure 5), the circle is of the form (x �
a)2 + (y � b)2 = r2; the moving point D = (x0; y0) is on the circle. Furthermore if we choose
the �xed point C = (c; d) that is not on the circle and let E be the midpoint of CD: Find the
locus of E.

Figure 5. Circle and two �xed
points

We �rst see how students solve this problem by hand in an exam. We note that the
midpoint E of CD can be written as E =

�
c+x0
2
; d+y0

2

�
: Let x = c+x0

2
and y = d+y0

2
: Then we

see ((2x� c)� a)2 + ((2y � d)� b)2 = r2; which implies that

(2x� c)2 � 2a (2x� c) + a2 + (2y � d)2 � 2b (2y � d) + b2 = r2

4x2 � 4cx+ c2 � 4ax+ 2ac+ a2 + 4y2 � 4dy + d2 � 4by + 2bd+ b2 = r2

After simplifying, we see�
x�

�
a+ c

2

��2
+

�
y �

�
b+ d

2

��2
=
1

4
r2;

Indeed the locus is a circle with center
�
a+c
2
; b+d
2

�
and radius r

2
:



Exploration. Following the discussions from Example 3, if we let the point E satisfying��!
CE = s

��!
CD with s 2 (0; 1) and we would like to �nd the locus of E; then it is easy to verify

that the locus for E will be as follows:�
x� s2 (a+ c)

�2
+
�
y � s2 (b+ d)

�2
= (sr)2 :

3.2 Locus as a result of simple translation and scaling

In fact, we may view the discussions in the preceding Example 3, as a simple translation
and scaling from a given curve to the other. For instance, if we consider a given �xed point
C = (c; d) and the circle C1, centered at A = (a; b) (another �xed point) with radius r and
C 6= A: By taking the moving point D to be on the circle C1, our objective is to �nd the locus
of the midpoint F of CD: If O denotes the origin (0; 0);then the locus

�!
OF =

�!
OA +

�!
AF =

�!
OA +

�!
AC +

�!
CF =

�!
OA +

�!
AC + 1

2

��!
CD =

�!
OA +

�!
AC+ 1

2

���!
AD ��!AC

�
=
�!
OA + 1

2

��!
AC +

��!
AD
�
.

Suppose A is at the origin O; we see the locus
�!
OF = 1

2

��!
OC +

��!
OD

�
will be a translation of a

circle from the center at A = O to the center at 1
2

�!
OC; and the radius is being scaled to 1

2
of

the original radius. (See Figure 6). It is clear now that if we were to �nd the locus of the point
F satisfying

�!
CF = s

��!
CD 2 (0; 1); it is equivalent to asking the locus of �!OF = �!OA+�!AF; where

�!
AF =

�!
AC + s

��!
CD

=
�!
AC + s

���!
AD ��!AC

�
=
�!
AC (1� s) + s��!AD;

we see the locus of
�!
OF can be viewed as a result of the combination of translation and scaling

(see Figure 7 for translation and scaling of s = 1
4
).

Figure 6. Locus F when
s = 1

2

Figure 7. Locus G when
s = 1

4

We encourage readers to explore when we replace the circle with an ellipse as follows:



Exercise 4 Suppose we are given an ellipse and two �xed points A and C respectively (see
Figure 8 or 9), where A is the center of the ellipse and C 6= A: We let D be a moving point on
the ellipse and F be a point such that

�!
CF = s

��!
CD; s 2 (0; 1) : Then the locus �!OF = �!OA+�!AF is

a result of simple translation and scaling from the original ellipse. The Figures 8 and 9 shows
the locus

�!
OF in red when s = 1

2
and 3

4
respectively.

Figure 8. Ellipse, translation and
s = 1

2

Figure 9. Ellipse, translation and
s = 3

4

4 The Locus Of Lines Passing Through A Fixed Point

The original problem from [7] has been modi�ed slightly from the following general setting.
Again, we start with the original locus problem with an algebraic solution and explore other
2D scenarios in the subsequent sections when technological tools are available.

Example 5 We are given a �xed circle in black and a �xed point A in the interior of the circle
(x� a)2 + (y � b)2 = r2 (see Figure 10(a)). A line passes through A intersects the circle at C
and D respectively, and the point E is the midpoint of CD: Find the locus E:

Figure 10(a). Locus and
lines passing through a �xed

point
Figure 10(b). Locus, circle

and perpendicular



We let the �xed point A to be (x0; y0); and let the line passing through A and intersect the
circle at C and D respectively (see Figure 10(a)). We set E = (x; y) to be the midpoint of CD:
If we denote the center for the circle to be O = (a; b); then we using the fact that

�!
AE � ��!OE = 0;

(see Figure 10(b)) and we see

(x� x0)(x� a) + (y � y0) (y � b) = 0: (7)

The equation 7 can be reduced as�
x� a+ x0

2

�2
+

�
y � b+ y0

2

�2
=
1

4
a2 � 1

2
ax0 +

1

4
b2 � 1

2
by0 +

1

4
x20 +

1

4
y20;

which shows that the locus is a circle.
Exploratory Activity. Suppose we change the scenario to �nd the locus of E satisfying��!

ED = s
��!
CD; where s 2 (0; 1) ; then the problem becomes more complicated, which may not

be suitable as an exam question. However, it is a perfect example for students to explore with
technological tools. Precisely, suppose C;D are two points on a circle, say x2 + y2 = r2; and
the �xed point A = (u0; v0) is not the center of the circle. We let E be the point on the line
CD passing through A; we want to �nd the locus of E = (x; y) satisfying

��!
ED = s

��!
CD; where

s 2 (0; 1) : We note that the parametric solution for the locus E obtained from Geometry
Expressions [2] can be obtained as follows:0BBBBBB@
X(r; s; t; u0; v0) = (1� s)

�
�2 (�v0 + sin(t) jrj) (u0 sin(t) jrj � v0 cos(t) jrj)
�r2 � u20 � v20 + 2v0 sin(t) jrj+ 2u0 cos(t) jrj

� cos(t) jrj
�

+s cos(t) jrj

Y (r; s; t; u0; v0) = (1� s)
�
2 (�u0 + cos(t) jrj) (u0 sin(t) jrj � v0 cos(t) jrj)
�r2 � u20 � v20 + 2v0 sin(t) jrj+ 2u0 cos(t) jrj

� sin(t) jrj
�

+s sin(t) jrj

1CCCCCCA :

We shall show how this formula is derived:
Step 1. We label C = (r cos t; r sin t); D = (x1; y1); and E as (x; y); and observe from��!

DE = s
��!
CD 2 (0; 1) that

x� x1 = s (x1 � r cos t)
x� rs cos t = x1 � sx1

= x1 (1� s) ;
y � rs sin t = y1 � sy1

= y1 (1� s) :

Step 2. Next we note that D = (x1; y1) lies on the line equation AC of

y � v0 =
�
r sin t� v0
r cos t� u0

�
(x� u0) ;



that is passing through the �xed point A = (u0; v0): Therefore, we see

y1 � v0 =

�
r sin t� v0
r cos t� u0

�
(x1 � u0) ;

y1 = v0 +

�
r sin t� v0
r cos t� u0

�
(x1 � u0) :

Step 3. Now, since the line AC intersects the circle of x2+y2 = r2; we rewrite the equation
of the circle by using the line equation AC as follows:

x2 +

�
v0 +

�
r sin t� v0
r cos t� u0

�
(x� u0)

�2
= r2:

We label k =
r sin t� v0
r cos t� u0

and rearrange the quadratic equation as follows:

k2u20 � 2k2u0x+ k2x2 � 2ku0v0 + 2kv0x� r2 + v20 + x2 = 0; (8)�
1 + k2

�
x2 �

�
2k2u0 � 2kv0

�
x+

�
k2u20 � 2ku0v0 � r2 + v20

�
= 0:

Step 4. We solve the quadratic equation involving x and notice that both x1; r cos t are
two roots of the quadratic equation 8 above, thus

x1 + r cos t =
2k2u0 � 2kv0
1 + k2

x1 =
2k2u0 � 2kv0
1 + k2

� r cos t:

Step 5. We write x by using x1 and substitute this into x� rs cos t = x1 (1� s) yields

x(r; s; t; u0; v0) = rs cos t+

�
2k2u0 � 2kv0
1 + k2

� r cos t
�
(1� s)

= rs cos t+

0BBB@
2

�
r sin t� v0
r cos t� u0

�2
u0 � 2

�
r sin t� v0
r cos t� u0

�
v0

1 +

�
r sin t� v0
r cos t� u0

�2 � r cos t

1CCCA (1� s)
= rs cos t+

 
2 (r sin t� v0)2 u0 � 2 (r sin t� v0) (r cos t� u0) v0

(r cos t� u0)2 + (r sin t� v0)2
� r cos t

!
(1� s)

= rs cos t+

�
2 (r sin t� v0) ((r sin t� v0)u0 � (r cos t� u0) v0)
r2 cos2 t� 2ru0 cos t+ u20 + r2 sin2 t� 2rv0 sin t+ v20

� r cos t
�
(1� s)

= rs cos t+

�
2 (r sin t� v0) (ru0 sin t� rv0 cos t)
r2 + u20 + v

2
0 � 2ru0 cos t� 2rv0 sin t

� r cos t
�
(1� s)

Step 6. We�nd y1 express y accordingly: We substitute x1 into y1 = v0+
�
r sin t�v0
r cos t�u0

�
(x1 � u0)

to get y1 and yield

y1 = v0 +

�
r sin t� v0
r cos t� u0

��
2k2u0 � 2kv0
1 + k2

� r cos t� u0
�
;



we then substitute y1 into

y � rs sin t = y1 � sy1
= y1 (1� s) :

to get y as follows:

y(r; s; t; u0; v0) = rs sin t+

�
v0 +

�
r sin t� v0
r cos t� u0

��
2k2u0 � 2kv0
1 + k2

� r cos t� u0
��

(1� s) :

We have used [5] to verify that, when setting r > 0; indeed we have [X(r; s; t; u0; v0); Y (r; s; t; u0; v0)] =
[x(r; s; t; u0; v0); y(r; s; t; u0; v0)]. We show some screen shots of the locus in red, with respective
values of s, in the Figures 11(a)-(c) when using [2]

Figure 11(a) Locus and
s = 0:25

Figure 11(b) Locus and
s = 0:9

Figure 11(c) Locus and
s = 0:95

4.1 Exploration with a DGS for the case of an ellipse

Here we turn to the scenario when we replace a circle with an ellipse.

Example 6 We are given a �xed ellipse in blue and the �xed point A is in the interior of the
ellipse. A line passes through A and intersects the ellipse at C and D respectively. If the point
E is the midpoint of CD: Then �nd the locus of E (see Figures 12(b)).

Without loss of generality, we consider the case when the ellipse is in the standard form of
x2

a2
+ y2

b2
= 1: We let the line pass through the �xed point A = (x0; y0) and intersect the ellipse

at C and D respectively. In addition, we assume CD is not a vertical line perpendicular to the
x axis. If we let the slope CD to be k; then the line equation of

 !
CD is y � y0 = k(x � x0): If

we write C = (x1; y1) and D = (x2; y2); then we use the technique of di¤erence of squares
to �nd the equation of the locus. Since C;D are points on the ellipse, we have

x21
a2
+
y21
b2

= 1; (9)

x22
a2
+
y22
b2

= 1: (10)



We subtract 10 from 9 and see

(x1 � x2) (x1 + x2)
a2

= �(y1 � y2) (y1 + y2)
b2

=) y1 � y2
x1 � x2

=
�b2
a2
(x1 + x2)

(y1 + y2)

=) k =
�b2
a2
(x1 + x2)

(y1 + y2)
:

If we denote the midpoint E as (X;Y ) then k = �b2
a2

X
Y
: Since the midpoint E satis�es the line

equation
 !
CD passing through the �xed point A; we see Y � y0 = �b2

a2
X
Y
(X � x0): Hence, we

have a2Y (Y � y0) = �b2X(X � x0) or a2(Y � y0
2
)2 + b2(X � x0

2
)2 =

a2y20+b
2x20

4
; which yields the

followings:

(Y � y0
2
)2

b2
+
(X � x0

2
)2

a2
=

a2y20 + b
2x20

4a2b2
;

(Y � y0
2
)2

a2y20 + b
2x20

4a2

+
(X � x0

2
)2

a2y20 + b
2x20

4b2

= 1:

Therefore, the locus E is an ellipse centered at
�
x0
2
; y0
2

�
with major and minor lengths

p
a2y20+b

2x20
2b

and
p
a2y20+b

2x20
2a

respectively.

Exploratory Activity: Suppose we would like to �nd the locus E = (X; Y ) so that
��!
CE =

s
��!
CD; where s 2 (0; 1). We invite readers to apply the algebraic techniques, which we used for
the circle case, to derive the equation of the locus analogously in this case. Consequently, the
derived equation of the locus should be identical to the one obtained by Geometry Expressions
[2], which we show here:0BBBBBBBBBB@

X = (1� s)

0BB@ 2 (v0 � sin(t) jbj) (�v0 cos(t) jaj+ u0 sin(t) jbj)

b2
�
�1� u

2
0

a2
� v

2
0

b2
+
2u0 cos(t) jaj

a2
+
2v0 sin(t) jbj

b2

� � cos(t) jaj
1CCA+ s cos(t) jaj

Y = (1� s)

0BB@ 2 (�u0 + cos(t) jaj) (�v0 cos(t) jaj+ u0 sin(t) jbj)

a2
�
�1� u

2
0

a2
� v

2
0

b2
+
2u0 cos(t) jaj

a2
+
2v0 sin(t) jbj

b2

� � sin(t) jbj
1CCA+ s sin(t) jbj

1CCCCCCCCCCA



We use the following screen shots to show the locus in red when s = 0:4; 0:5; and 0:8 respectively
in Figures 12(a)-(c).

Figure 12(b). Locus, ellipse and
s = 0:4

Figure 12(b). Locus, ellipse and
s = 0:5

Figure 12(c). Locus, ellipse and
s = 0:8

4.2 Special case when the �xed point is at the origin

Now we attempt to replace the ellipse by a more complex closed curve. In the following example,
we show an easier case when the �xed point is at the origin, and line

 !
AB passes through the

origin. We see in the following Example 7 how we may generalize the method we adopted earlier,
when solving the circle case, to �nd the locus for a curve that has both polar (or parametric)
and implicit form of f(x; y) = 0. Speci�cally, we consider

Example 7 We recall the cardioid of r = f (t) = 1�cos t has the implicit form of (x2 + y2 + x)2�
x2 � y2 = 0: If we A and B are two points on the cardioid and the line

 !
AB passes through the

�xed point I = (0; 0). Find the locus M = (x; y) that satis�es
��!
BM = s

�!
BA; where s 2 (0; 1) :

Figure 13. Locus, cardioid
and the �xed point at (0; 0)

We �rst remark that the following locus can actually be derived by hand for those students
who are not afraid of tedious algebraic manipulations. Next we show how the DGS such as [2]



can help students visualize the interesting loci. Finally, we use the CAS such as [5] to show
analytically that both answers from [2] and [5] coincide with each other.
Step 1. We label A = (f(t) cos t; f(t) sin t) and B = (x1; y1) to be two points on r = f(t).

Also we label locus M as (x; y) and observe from
��!
BM = s

�!
BA that�

x� x1
y � y1

�
= s

�
f(t) cos t� x1
f(t) sin t� y1

�
(11)

x� f(t)s cos t = x1 � sx1
= x1 (1� s) ;

y � f(t)s sin t = y1 � sy1
= y1 (1� s) :

Step 2. Since
 !
AB passes through the �xed point I at the origin; we write the line of

 !
AB

as y = mx;
Step 3. Now, we plug y = mx into the implicit equation of the cardioid,�

x2 + y2 + x
�2 � x2 � y2 = 0�

x2 +m2x2 + x
�2 � x2 �m2x2 = 0

x2
�
m4x2 + 2m2x2 + 2m2x�m2 + x2 + 2x

�
= 0

If x = 0 then B = (0; 0) which implies B = I; the problem becomes a simple exercise to
explore, and we leave it to readers to verify.
If x 6= 0; then

x2
�
m4 + 2m2 + 1

�
+
�
2m2 + 2

�
x�m2 = 0; (12)

and we consider the discriminant of the quadratic equation in x 12 as follows:

D =
�
2m2 + 2

�2
+ 4

�
m4 + 2m2 + 1

�
m2 > 0:

Furthermore, since two roots x�1 and x
�
2 from 12 satisfying x�1 + x

�
2 =

�(2m2+2)
(m4+2m2+1)

; we write

x�1 =
� (2m2 + 2)

(m4 + 2m2 + 1)
� f(t) cos t

=
� (2 tan2 t+ 2)

(tan4 t+ 2 tan2 t+ 1)
� f(t) cos t

y�1 = (tan t)x�1

= (tan t)

�
� (2 tan2 t+ 2)

(tan4 t+ 2 tan2 t+ 1)
� f(t) cos t

�
Step 4. We write x by using x�1 in 11, in other words, we have x � f(t)s cos t = x1 � sx1

= x1 (1� s) ; which implies the following:

x(s; t) = f(t)s cos t+ x�1(1� s)

= s (1� cos t) cos t+ (1� s)
�

� (2 tan2 t+ 2)
(tan4 t+ 2 tan2 t+ 1)

� f(t) cos t
�

= s (1� cos t) cos t+ (1� s)
�

� (2 tan2 t+ 2)
(tan4 t+ 2 tan2 t+ 1)

� (1� cos t) cos t
�



Step 5. We use y�1 to �nd y 11 In other words, we have

y(s; t) = sf(t) sin t+ y�1 (1� s)

= s(1� cos t) sin t+ (1� s)
�
tan t

�
� (2 tan2 t+ 2)

(tan4 t+ 2 tan2 t+ 1)
� f(t) cos t

��
= s(1� cos t) sin t+ (1� s)

�
tan t

�
� (2 tan2 t+ 2)

(tan4 t+ 2 tan2 t+ 1)
� (1� cos t) cos t

��
Step 6. We remark that the output of the parametric equation for the locus from [2] is

shown below �
X(s; t) = (�1 + 2s) cos(t)� cos(t)2
Y (s; t) = (�1 + 2s� cos(t)) sin(t)

�
:

After using simplify command in [5], we see x(s; t) = X(s; t) and y(s; t) = Y (s; t): We show
various screen shots of the locus obtained from the CAS Maple [5], which corresponding to
their respective value s below.

Figure 14(a) Maple
plot with s = 0

Figure 14(b) Maple
plot with s = 0:25

Figure 14(c) Maple
plot with s = 0:5

Figure 14(d) Maple
plot with s = 0:75

5 Acknowledgements

The author would like to thank Dao Hoang and Phil Todd (founder of [2]) for creating instru-
mental dynamic �gures using Geometry Expressions ([2]). The author also would like to thank
Qiuxia Li for providing the proofs of some examples and numerous inspiring discussions about
the level of high school math content knowledge from her teaching experiences in China.

6 Conclusion

It is clear that technological tools provide us with many crucial intuitions before we attempt
more rigorous analytical solutions. Here we have gained geometric intuitions while using a
DGS such as [1] or [2]. In the meantime, we use a CAS such as Maple [5], for verifying that
our analytical solutions are consistent with our initial intuitions. The complexity level of the
problems we posed vary from the simple to the di¢ cult. Many of our solutions are accessible



to students from high school. Others require more advanced mathematics such as university
levels, which are excellent examples for professional trainings for future teachers.
Evolving technological tools de�nitely have made mathematics fun and accessible on one

hand, but they also allow the exploration of more challenging and theoretical mathematics. We
hope that when mathematics is made more accessible to students, it is possible more students
will be inspired to investigate problems ranging from the simple to the more challenging. We do
not expect that exam-oriented curricula will change in the short term. However, encouraging
a greater interest in mathematics for students, and in particular providing them with the
technological tools to solve challenging and intricate problems beyond the reach of pencil-and-
paper, is an important step for cultivating creativity and innovation.
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