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Abstract 

Though mankind’s knowledge of sphere volume had begun from the great Archimedes 

2200 years ago, the proof of corresponding formula has been indirect. Even if Chinese 

mathematician Zu Geng (lived in the 5th century AD) and Italian mathematician 

Cavalieri (lived in 14-15th century AD) arrived at a useful principle (so-called 

Cavalieri’s principle in western world and Zu Geng’s principle in China) 

independently, their models were not direct either. This paper introduces a model of 

tetrahedron, whose volume equals to a sphere directly. This method may benefit high 

school students in understanding the sphere volume formula more easily without the 

preparation of calculus. 

1. Zu Geng’s & Cavalieri’s methods 

Early in 212 BC, Archimedes was able to find the volume of a sphere given the volumes 

of a cone and cylinder. His method borrows some notions from physics. Afterwards, in 

the 5th century AD, Zu Chongzhi and his son Zu Geng established a method named Zu 

Geng’s principle to find a sphere's volume. It may be the first effort for the mankind in 

solving volume of sphere in pure geometry way. However Zu Geng’s model is 

somewhat awkward. About 1100 years later, this principle was generalized by an Italian 

Mathematician Cavalieri to both 2-dimensional and 3-dimensional cases. 

Unfortunately, only Cavalieri’s name is known as this principle’s discoverer in western 

world. 

So in geometry, Cavalieri's principle (or Zu Geng’s principle) is as follows [2]: 

 2-dimensional case: Suppose two regions in a plane are included between two 

parallel lines in that plane. If every line parallel to these two lines intersects both 

regions in line segments of equal length, then the two regions have equal areas. 

 3-dimensional case: Suppose two regions in three-space (solids) are included 

between two parallel planes. If every plane parallel to these two planes intersects 

both regions in cross-sections of equal area, then the two regions have equal 

volumes. 

However, as to apply the above theory in calculating sphere volume, neither Zu Geng’s 

nor Cavalieri’s method is direct. They both calculated the volume of a sphere by linear 

combination of two other solids. (Fig.1 - Fig. 2.) 

 



Figure 1    Zu Geng’s method 

 

 

 

 

Figure 2    Cavalieri’s method 

2. New model for sphere volume 

Now I will introduce a model different from what have mentioned above. 

Following Cavalieri's principle, we only need to find another equivalent solid sharing 

the same area of parallel cross-section with sphere. 

Given the radius of a sphere r and the distance between the intersection plane and the 

equatorial plane h, the radius of the cross-section circle would be√𝑟2 − ℎ2（Fig. 3）. 

Thus, it an area of  

𝑆 = (𝑟2 − ℎ2)𝜋.                                            （2.1） 

Note that the right hand of equation （2.1）can be rewritten as (𝑟 + ℎ)(𝑟 − ℎ)𝜋 which 

suggests an area of rectangle. 

To construct a solid with more symmetric features, I would like replace π with √𝜋√𝜋 

so that the length and width of rectangle equals to (r+h)√𝜋 and (r-h) √𝜋 respectively. 

 
Figure 3 small circle at height h 

Thus we have finally defined a special tetrahedron with 4 right-triangle faces: Letting 

A, B, C, D be 4 points in 3 dimension satisfying AB=CD=2r√𝜋, BC=2r, and AB, BC

，CD perpendicular to each other (Fig. 4), tetrahedron ABCD is defined. 



(In ancient China, any tetrahedron having 4 right-triangular faces is named as a 鱉臑 

(biē nào). however in western world they are included in a collection of Schläfli 

orthoscheme. 

Schläfli orthoscheme is a type of simplex defined by a sequence of mutually orthogonal 

edges, i.e. (v0, v1), (v1, v2), …, (vn-1,vn). So, a Schläfli orthoscheme in 2D is any right 

triangle.) 

 

 

Figure 4 A 3D Schläfli orthoscheme in special gesture 

It is easy to verify that the tetrahedron we have just defined has a volume equals to that 

of a sphere, since  
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Now we can put both solids in between two parallel planes shown in Fig 5. Note that 

the tetrahedron is set in an “unbalanced” gesture: it has two edges lie on upper and 

lower planes and none of its 4 faces is in the two planes (Fig. 6). 

So we just need to prove that the cross-sections of this tetrahedron from a third parallel 

plane at height h has area of(𝑟2 − ℎ2)𝜋. 

 

Figure 5 A sphere and its equavalent tetrahedron in between two parallel planes 



 

Figure 6 both solids have same area of intersection 

Since EF∥AB, FG ∥CD, yet AB⊥CD, So ∠EFG=90°. Similarly, ∠FGH=∠GHE=

∠HEF=90°. It is obviously that the quadrilateral EFGH at the height h is a rectangle. 

Furthermore, since 

EF:AB=CF:CB=(r-h):2r，EF=AB×(r-h)/2r=(𝑟 − ℎ)√𝜋；similarly we can also get 

FG:CD=BF:BC=(r+h):2r, FG=CD×(r+h)/2r=(𝑟 + ℎ)√𝜋, Thus SEFGH=EF·FG=(𝑟2 −
ℎ2)𝜋. 

   

 

Figure 7 picture of a real model 

Such a tetrahedron can be easily made from a sheet of paper. Here is a template for this 

construction in Figure 8. (Note: Dash lines is for valley folds, solid lines for mountain 

folds. Extra tab is for gluing.) 

 

Figure 8 template for a paper model 



3. Some variations 

The above model is not the only tetrahedron having equal cross-section area with a 

sphere. Actually there are infinite such tetrahedra. The reason is by Cavalieri’s 

principle, there are infinite tetrahedra equivalent to each other as their cross-section 

area are concerned. 

First variation is to make a more symmetric tetrahedron: Each of the new tetrahedron 

face will be congruent isosceles triangle.  So it will no longer be a Schläfli 

Orthoscheme, but the distance between upper and lower edge remains to be 2r. (See 

Fig. 9.) 

 

Figure 9 the tetrahedron model can be more symmetry 

Tracing Zu Geng’s method and comparing with mine, another modified model can be 

found. i.e., combine 4 uniform orthoschemes into a ring of tetrahedral. Since the whole 

volume should be the original sphere, every single tetrahedron should have a narrowed 

upper and lower edges like illustrated in Fig. 10. 

By origami, the crease pattern shown will bring a structure much like Zu Geng’s model 

i.e., a cube with two pyramids removed (Fig. 11). To make such a structure, one need 

first stick the left and right edge to form a hollow prism with sleeve turned up. Then a 

twist need to make from the upper and lower crease of the sleeve. Finally, the two ends 

meet at the center part and make a seam. 

Note that the elements of each tetrahedron equal to 1/4 of last tetrahedron model in Fig. 

9. 

 



Figure 10 another template of a complex model 

 

  

Figure 11 a real complex model and its inner parts  

 

Another interesting variation is to identify a sphere to a regular square pyramid with 

base edge of 2r and height of πr (Fig. 12). When using this model it should be placed 

in between the two parallel planes laterally, with its base square perpendicular to them. 

The proof is similar to that of the tetrahedron model. 

 

Figure 12 sphere and its regular pyramid equavalent  

4. Conclusion 

Archimedes himself once deducted that a disk should have an area of a right triangle 

whose two legs equal to radius and circumference respectively (See Fig.13) [5]. This 

amazing result now get generalize to 3D and has a lot of different forms. When taking 

disk as a 2D ball, right triangle as a 2D Orthoscheme we can parallel the result to 3D: 

disk corresponding to sphere and right triangle to biē nào.  



 

Figure 13 Archimedes’ circle area model 

 

A sphere can also transformed into other convex identities like a regular square 

pyramid. These convex polyhedra always stand on their edges rather on base faces 

when investigating by Cavalieri’s principle. It remind one the Fubini’s Theorem in 

integral that confirms two repeated integrals of a function of two variables are equal. 

On one hand, one repeated integral equals to volume of a sphere following Cavalieri’s 

principle, on the other hand, another repeated integral equals to a pyramid with is easy 

to calculate by simple formula. 

I wish this is heuristic for mathematics teachers while they teach sphere volume in the 

future. 
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