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Abstract:  Creating math resources using technology is still an important issue for both teachers and experts in order 
to provide new tools for teaching that can enrich the approach of important concepts and enhance a motivating 
practice of math. But there is a huge difference between the work of a teacher and the one of an expert in such a 
process of creation. Most of the time, teachers use technology (calculators or software) in using the tools provided by 
their calculators or software to obtain immediate results (what I call push button results). So when they use technology 
to create resources, they do use a lot of the available tools (and often not the more appropriate ones) and suggest push 
button techniques to the users but not more. For example they can use the tool “integral” to evaluate the integral of a 
function or visualize its interpretation as an area because they know the tools allow that. But the experts have a global 
view of the concept to teach and know that the purpose of the use of technology “is not only to do faster what was 
possible to do by hand” in a push button approach “but to do it differently” (Colette Laborde), even if they have to 
create some microworlds not provided directly by the calculator or the software. We will see in this paper, that during 
the creation of these microworlds, the experts will be going back and forth between their technological skills their math 
knowledge: for example, in using their math knowledge to create some appropriate tools not available in their 
technology or in using some technological tricks to improve dynamically the approach of complicated concepts of 
mathematics. In this paper we will focus our attention on this dialectic during the process of creation of microworlds 
within Cabri and TI NSpire. 
 

1. Visualization of what we want to create and how to get it with technology 
 Before creating any resource about integration or any other subject using technology, an expert 
must know what technology can provide to help the process of understanding of a concept and to 
improve the paper and pencil approach. It is what we are going to do.  
1.1. In 2D with Cabri  
1.1.1. What we want to create 
For a given function f defined on a given interval [a,b], we want  
- to represent its curve and the Riemann rectangles (the two types shown in Figure 1) associated 
with this function for a given subdivision of this interval into n intervals. 
- to have the possibility to modify the function, to modify the interval and to modify the number of 
points of the subdivision with a slider (in a domain that can be also modified). 
- to be able to display the upper and lower Riemann rectangles and the sum of their areas of in the 
two cases shown in Figure 1.  
1.1.2. How to obtain it 
For example, for the blue step function (Figure 1, left), we create a formula that can allow us to 
represent one point of its curve and the curve as the locus of this point. Let us call d the length of 
the subdivision associated with the integer n: d = 

𝒃!𝒂
𝒏

 . 



If b  is the bijection defined from [a,b] to [0,n] by the formula b(x) = 
𝒙!𝒂
𝒅

 , the inverse function b -1 
is defined from[0,n] to [a,b] by the formula b -1(X)= d.X + a. 
 

                       
 

Figure 1: Riemann rectangles associated with a given function 
 
Then the blue step function BS can be defined on [a,b]  with the formula: BS(x) = f(b -1(int(b(x))). 
This formula shows that it is possible to define a step function without using the “piecewise 
function” tool available in any CAS. We will see later that knowing this trick will allow us to solve 
a problem that technology cannot solve. It is also possible to visualize with Cabri 2 Plus step by 
step why this formula is really appropriate. It can help teachers to show the power of linear 
functions in relation to proportionality in the programming process.  
At last, we construct the point (x, BS(x)) and the blue curve is the locus of this point when x moves 
along segment [a,b]. The blue Riemann rectangles corresponding to this curve are obtained as the 
locus of the dotted segment joining point x to point (x, BS(x)). 
Verification: when 𝒙 ∈ [𝑎 + 𝑘 !!!

!
,𝑎 + 𝑘 + 1 . !!!

!
] , b(x)  ∈ [k,k+1] , then int(b(x))=k and 

finally, BS(x) = f(b -1(int(b(x))) = 𝒇(𝑎 + 𝑘 !!!
!

 ). 
The same technique can be used to define similarly the red step function of Figure 1 on the right 
 
1.2. In 3D with Cabri 2 Plus (military perspective [7])  
1.2.1. What we want to create 
For a given function defined on a given interval, we want   
- to represent the solid of revolution obtained by rotation of the curve of the given function around 
the x-axis (wire representation). 
- to model dynamically this rotation from the initial curve to the entire representation of the solid 
with the help of a slider (Figure 2 on the left). 
- to be able to modify the function and its domain. 
- to model the rotation of the Riemann rectangles (obtained in 1.1.) and represent the Riemann 
cylinders (as shown in Figure 2 on the right). 
- to model the rotation of the Riemann rectangles (obtained in 1.1.) and represent the Riemann 
cylinders (as shown in Figure 2 on the right). 



- To display the volume of the solid of revolution and the sum of the volumes of the Riemann 
cylinders in the two cases corresponding to the two sorts of Riemann rectangles. 
1.2.2. How do we obtain it 
To obtain representations in military perspective (which is a parallel perspective where the objects 
included in horizontal planes are represented in true dimensions and where the vanishing line is the 
vertical axis Oz), we rotate the system of axis xOy of Cabri 2 Plus as shown in Figure 2 and we 
add the third axis Oz. To simplify our work, we chose 1 as the coefficient of the perspective. 
 

 
 

Figure 2: Solid of revolution and Riemann cylinders associated with a given function 
 
1.2.2.1. How to obtain the wire representation of a solid of revolution 
In the system xOy, we represent the curve of a given function f defined on a given interval [a,b] of 
the x-axis as the locus of point m(x, f (x)) when x moves along [a,b]. 
As shown in Figure 3, we construct the red circle centred in x having xm as a radius. 
A point p is constructed on this circle and point M is constructed with the condition hp = hM. 
Point M is the representation in military perspective of the point obtained with respect to the 
rotation around the x-axis and which angle is the angle ∠mxp. Therefore, the locus of M when p 
moves along the red circle is a circle represented by the blue ellipse in Figure 3 on the left. 
The locus of this ellipse when x moves along [a,b] gives an idea of the solid of revolution obtained 
by rotation of the curve of f around the x-axis (Figure 3 on the right)  
 

 
 

Figure 3: First representation of a solid of revolution 
 

The locus of M when x moves along [a,b] is the rotated curve of the initial one with the previous 
rotation (Figure 4 on the left). 



The locus of this curve when p moves along the red circle gives an idea of the solid of revolution 
obtained by rotation of the curve of f around the x-axis (Figure 4 on the right). 
If we superimpose all these constructions, we obtained the wire representation of the surface shown 
in Figure 2 on the left. In reality only a part thanks to the slider controlling the rotation. 

 

                     
 

Figure 4: Second representation of a solid of revolution 
 
1.2.2.2. How to approximate the wire representation of a solid of revolution (starting with a 
step function) 
Here we will explain how to obtain the representation shown in Figure 2 on the right. 
We use the technique presented in 1.1.2 to represent in the xOy plane the step function associated 
with the given function f on the interval [a,b] and associated with number n to obtain the result 
shown in Figure 5 on the left. 
To rotate this curve around the x-axis, we use now the same technique as the one described in 1.2.2. 
(Figure 5 on the right)  
Finally we use also the same techniques to give two representations of the solid obtained in rotating 
the step function around the x-axis (Figure 6 left and right). 
 

                         
 

Figure 5: representations of a step function curve and its rotated one 
 
If we superimpose all these constructions, we obtained the wire representation of the surface shown 
in Figure 2 on the right.  



 

                 
 

Figure 6: representations of the rotation of step function curves 
 

2. Pedagogical utility of such files 
 
2.1. Microworlds to improve the teaching of the concept of integral 
The files displayed in Figure 1 contain sliders controlling the value of n between 0 and 50 (this 
value can be modified and especially increased if necessary). Increasing the value of n can lead the 
observer (Figure 7) to the conjecture stating that the blue area below the blue step function and the 
red area below the red step function approach the area below the given curve. 
 

                    
 

Figure 7: How to approach the area below the curve of a function 
 
Remark 1: Within the Cabri 2 Plus environment, it is not possible to display interactively the 
previous areas, but this is possible within the TI-Nspire environment. We will show how below. 
Remark 2: We must never forget that a perceptive approach of a figure ([3]) even on a screen of a 
computer can be misleading. Here is an example suggested by Helmut Heugl illustrating this 
remark. We have constructed in Figure 8 a yellow square with side measured as 10 and therefore 
(via a deductive approach) the diagonal (represented as a part of the curve associated with the 
function f(x)=-x +10) is measured as 10 2 . But the visualization of this diagonal and the polygonal 
line representing a stair above it (a stair with n steps) leads us to the conjecture that the length of the 
diagonal is approached better and better with the length of this polygonal line when increasing the 
value of n. However the length of this polygonal line is constant and equal to 20 because the sum of 



the lengths of the horizontal steps is equal to the side of the square and same thing for the sum of 
the lengths of the vertical steps. That is a paradox. We must keep such an example in our mind to 
teach our students to be careful before stating that: “what I see is what is true!”. 
 

          
 

Figure 8: Illustration of a perceptive paradox 
 
2.2. A possible introduction of the concept of integral within TI-Nspire 
2.2.1. Linear functions and integral tools 
Here is a possible scenario (tested in 2016) and improved (in 2017) with a math teacher of the 
scientific baccalaureate level of the French curriculum ([6]). 
The student can use a double page of TI-Nspire containing a Graphs&Geometry page and a Note 
page below. A linear function f1 is provided with two sliders controlling m and p. Two other sliders 
are available to change the positions of a and b on the x-axis. The ‘integral’ tools can be used as 
black boxes: 
- In the Graphs&Geometry page, the integral of f1 between a and b displays a number (here 16.5) 
as well as a grey trapezoid (Figure 9 on the left). 
- In the Note page, the computation of the integral of f1 between a and b displays the formula 
𝑓1 𝑥 𝑑𝑥!

!  and the same number 16.5. We can check that this equality is verified even if we 
change the values of m, p, a or b but only if f1(x) is positive between a and b. 
The conjecture stating that this result could be the area of the grey trapezoid can be validated in the 
Note page in evaluating the area of this trapezoid with its geometric formula (Figure 9 on the right) 
 

           
 

Figure 9: Integral of a linear function and area of a trapezoid 
 
If we investigate figures like Figure 10, we can notice that the value obtained for the integral (-9 
here) does not correspond with the number given by the previous formula which is not unexpected. 



But, if we delete the absolute value in the previous formula, we can check that we obtain again the 
value given for the integral (Figure 10 on the right). We call this integral the algebraic area defined 
by f1, a and b. 
  

            
 

Figure 10: Integral of a linear function and algebraic area of a trapezoid 
 

Another file can be provided to students to understand the link between the value of the integral of a 
linear function and areas defined by the curve of a linear function, line x=a, line x= b and the x-
axis. The students can experiment when the sign of f1(x) is not constant on [a,b]. They can display 
the two triangles defining the previous trapezoid, a blue and a red with their areas. Therefore it is 
easy to conjecture that the value of the integral is equal to the difference of the blue area and the red 
one (Figure 11 on the left). When f1(x) is negative along [a,b], we can check that the integral is the 
opposite of the area of the trapezoid (coloured in yellow) which is coherent with the previous 
experiment (Figure 11 on the right). 
 

            
 

Figure 11: Integral and areas of trapezoids or triangles in the general case 
 
2.2.2. Other functions and integrals 
In the next file available in Figure 12, the linear function is changed for a quadratic one which is 
positive on the interval [a,b]. The value of the integral is displayed (Figure 12 on the left).  
Next, the students are asked to create a polygon with area as close as possible to the area defined by 
the curve of the function, the x-axis and the two vertical lines x=a and x=b. They can create a 
polygon like the red one of Figure 12 (on the right) and state that, again, this area seems to be given 
by the value of the integral. They can validate this conjecture by changing f1, a, b in taking care of 
the construction of the red polygon. 
 



            
 

Figure 12: Integral and area 
 
2.3. Conclusion of such work 
At the end of such investigations enhanced by the interactive files provided to the students, they can 
understand that, evaluating an integral is only evaluating an area, the opposite of an area or a 
difference of areas or… In order to simplify the purpose of my paper, we will use only positive 
functions on a domain [a,b]. 
 
3. Approximations of integrals with Riemann rectangles (TI-Nspire) 
 
3.1. Approximations with lists and scatterplots 
In the Note page shown below (Figure 13 on the left), we have defined f1, a, b evaluated 

𝒃!𝒂
𝒏

 and 
stored it in d. In the Graphs page (Figure 13 on the right), we have displayed the curve of function 
f1 and two scatterplots: s1 defined by list10 and list11 (blue points between a and b) and then s2 
defined by list10 and list1 (blue points on the curve of f1 between a and b) where list10 is defined 
by seq(x, x, a, b-d, d) and list11 by seq(0, x, 1, d1, 1). 
 

                     
 

Figure 13: Riemann rectangles and their areas with lists 
 

In yellow we can see the value of e1, which is the sum of the areas of the blue Riemann rectangles 
below f1 and the value of the integral of f1 along [a,b]. When increasing the value of n we can state 
that the value of e1 increases and approaches closer and closer to the value of the integral of f1 
(Figure 14 on the left). 



We can do the same work for to define the Riemann rectangles above f1 and state that the value of 
e2 decreases and approaches closer and closer to the value of the integral of f1 (Figure 14 on the 
left) 
 

            
 

Figure 14: Improving accuracy of areas through the use of Riemann rectangles 
 

When 𝑓1 𝑥 𝑑𝑥!
!  = 17.7032 we can obtain on the Note pages the following results 

n e1 e2 
30 17.2874 18.1251 
100 17.5779 17.8292 
1000 17.6907 17.7158 

 
3.2. Approximations with piecewise functions 
3.2.1. First approximations 
Each Riemann step function is defined by ff(k,x) in the screenshot of the Note page below (Figure 
15 on the left) and the Riemann step function approximating the given function f is the sum defined 
by g(x). Let us remark that this function is equal to 0 outside the interval [a,b]. Functions f and g are 
represented in a Graph&Geometry page by f1 and g1 (Figure 15 on the right), f1 in black and f2 
in blue. 

           
 

Figure 15: Integral and piecewise functions 1 
 



We have evaluated the area of the yellow Riemann rectangles in evaluating int1, which is the 
integral of the blue Riemann step function: here 16.3647 for a subdivision of n = 10 intervals. We 
have also evaluated int2, which is the integral of the given function: here 17.8096, which is more 
than the previous number. 
 

         
 

Figure 16: Integral and piecewise functions 2 
 

3.2.2. Second approximation  
We can do a similar work as that one shown in Figure 16: here the area of the rectangles is given by 
19.314 which is more than the integral of f. 
3.2.3. Experimenting to approximate with two areas the integral of the given function 
We increase the value of n as we did in 3.1. and we can observe the same phenomenon: The areas 
below f and the areas above f approximate increasingly well the value of the integral of the given 
function 
 
4. Solids of revolution: dynamic visualizations and volumes  
 
4.1. Dynamic visualization of solids of revolution in TI-Nspire 
To represent a solid of revolution, we use the 3D graphing tool of TI-Nspire and mostly parametric 
equations. To begin, we create the given function f1 anywhere in a page of a Problem. Then, in a 
3D page we display its curve in a domain which is an interval [a,b] in creating these parametric 
equations  
xP20(t,u) = t, yP20(t,u) = f1(t), zP20(t,u) = 0 and settings: t  ∈ [-5,5] (Figure 17 in the middle). 
For technical reasons, I have improved this representation in giving a thickness to the curve in 
modifying the previous equations of a curve onto the equations of a surface like this 
xP20(t,u) = t, yP20(t,u) = f1(t), zP20(t,u) = u and settings: t  ∈ [-5,5] and u  ∈ [0,0.05] (Figure 17 in 
the middle too). To see the trick, we can chose u  ∈ [0,1] (Figure 17 in the left).   
 



 
 

Figure 17: Solid of revolution 
 
The solid of revolution obtained by rotation of this curve around the x-axis is defined by the 
equations: xP21(t,u) = xP20(t,u), yP20(t,u) = yP20(t,u).cos(u), zP20(t,u) = yP20(t,u).sin(u) with 
the following settings t  ∈ [-5,5] and u  ∈ [0,2pi] (Figure 17 on the right)  
In order to model the rotation of the initial curve and the progressive visualization of the solid, we 
will use a trick suggested by Steve Phelps during the T3 congress of Orlando 2016 ([4]). 
We create a slider controlling k between 0 and 1 and we change the equations for these ones: 
xP21(t,u) = xP20(t,u), yP21(t,u) = yP20(t,u).cos(k.u), zP21(t,u) = yP20(t,u).sin(k.u) (Figure 18). 
 

 
 

Figure 18: Dynamic representation of a solid of revolution 
 

4.2. Representation of Riemann cylinders (beginner level) 
We focus our attention on the interval [0,5] and its subdivision into 5 intervals each with width of 1 
(Figure 19 on the left). We will show how to represent the cylinder obtained in rotating the segment 
defined by t ∈ [2,3] and xP5(t,u) = t, yP5(t,u) = f1(3) and zP5(t,u) = 0 around the x-axis. As we did 
before, we represent the dynamic cylinder with similar formulas: 
xP6(t,u) = xP5(t,u), yP6(t,u) = yP5(t,u).cos(k.u), zP6(t,u) = yP5(t,u).sin(k.u) where the settings are 
t  ∈ [2,3] and u  ∈ [0,2pi] (in light blue, Figure 19 on the right) and the slider k controlling numbers 
between 0 and 1. We can do the same work for each of the other intervals [0,1], [1,2], [3,4] and 
[4,5] (in blue, Figure 19 on the right). 
We evaluate now the volume of these cylinders: 
vapp = 𝜋.(f1(1)2+ f1(2)2+ f1(3)2+ f1(4)2+ f1(5)2) which is an approximation of half of the volume 
of the solid of revolution. The value we got for f1(x) = -0.05x2+4 is 189.901. As the exact value of 
this volume given by the integral vex = π 𝑓1 𝑥 !𝑑𝑥!

!   is 203.876, the error is less than 7%. 
 



 
 

Figure 19: Dynamic Riemann cylinders  
 

4.3. Representation of Riemann cylinders (expert level) 
It would have been easy to apply the technique presented in 4.1. to the piecewise functions already 
used in 3.2. but the 3D application of TI-Nspire does not accept piecewise functions. So I had to 
circumvent this difficulty. Here is the reasoning leading to the formula which was accepted by the 
3D application of TI-Nspire. f is the given function, [a,b] its domain and n the integer defining the 

subdivision of this domain. The points of this subdivision are: s(k) = a+k.d where d =  
𝒃!𝒂
𝒏

 . We use 
auxiliary functions: 
- The first one is defined by aux1(k,x) = (x-s(k)).(s(k+1)-x) which is a quadratic function  positive 
in ]s(k), s(k+1)[ and negative outside. 

- The second one defined by aux2(k,x) = 
𝐚𝐮𝐱𝟏 𝒌,𝒙 ! 𝐚𝐮𝐱𝟏(𝒌,𝒙)     

!"!!!𝐚𝐮𝐱𝟏 𝒌,𝒙 ! 𝐚𝐮𝐱𝟏(𝒌,𝒙)
 which value is very close to 1 

when x belong to ]s(k), s(k+1)[ and equal to 0 outside. 
- The third one is: g(k,x) = f(s(k). aux2(k,x) which value is very close to f(s(k) when x belong to 
]s(k), s(k+1)[ and equal to 0 outside. 
And eventually function h(x) = 𝒈(𝒌,𝒙)𝒏!𝟏

𝒌!𝟎  which is the blue step function defined in 3.2. 
This process is described step by step in Figure 20 on the left (in a Graphs&Geometry page of TI-
Nspire). Another issue was the fact that, while g was accepted by TI-Nspire, h was not. So, in 
order to apply to h the technique shown in 4.1., I had to replace the previous formula of h by: 
g(0,t)+g(1,t)+g(2,t)+g(3,t)+g(4,t)+g(5,t)+g(6,t)+g(7,t)+g(8,t)+g(9,t) (called ri10(x)) when n = 10. 
With this formula, it was possible to represent the 10 dynamic cylinders associated with our given 
function (Figure 20 on the right). 
 

  
 

Figure 20: Solid of revolution with the 3D graphing tool of TI-Nspire 



For f(x)= -0.05x2+4 on the domain [-5,5] and for n = 10 we have obtained: 
The volume of the ten Riemann cylinders is:   𝒃!𝒂

𝒏
𝝅(𝒇(𝒔 𝒌 )𝟐𝒏!𝟏

𝒌!𝟎  with the value of 406.31 

displayed. The exact value of the volume of the solid of revolution is given by π 𝑓 𝑥 !𝑑𝑥!
!!  for 

which the displayed value is 407.753. 
 
5. Integrals and antiderivative functions 
 
The research work (quoted in 2.2.1.) conducted with a math teacher led to the creation of the first 
activity about integrals ([6]). This activity was proposed to students of the level of baccalaureat 
during two years. The improvements we performed during the second year were very successful. 
The beginning of this activity looks like what is shown in 2.. The students had to download a tns 
file (TI-Nspire file) we have prepared for them and follow the instructions page after page. Their 
task was: 
- Each student choses a function f1 and a function f2; for each function f1 and each function f2 
chosen he or she had to evaluate the areas A1 and A2 of the trapezoids defined by the curve of the 
function, the x-axis and the verticals x = a and x = b. 
 - Then they had to find two functions F1 and F2 verifying the conditions A1 = F1(b)-F1(a) and A2 
= F2(b)-F2(a). 
- They had to conjecture a relation between functions f1 and F1 and f2 and F2. 
- Eventually, they had to fill the table of Figure 21on the right.  
For example: for the student who has chosen f2(x)= x+2 (first of the 5 students: J.A), the area A2 

must be   (𝒃!𝒂)(𝒂!𝟐!𝒃!𝟐)
𝟐

. In order to find function F2, he had to expand this expression (by hand 

or with the CAS of the calculator) and obtain −   𝒂𝟐

𝟐
− 𝟐𝒂+   𝒃𝟐

𝟐
+ 𝟐𝒃. Finally he had to write it like: 

(  𝒃
𝟐

𝟐
+ 𝟐𝒃)− (  𝒂

𝟐

𝟐
− 𝟐𝒂) to recognize F2(x) =   𝒙

𝟐

𝟐
+ 𝟐𝒙. The final conjecture for each student had to  

state that F2’(x) = f2(x) 
 

 
 

Figure 21: Conjecturing a relation between integrals and antiderivative functions 
 
The last work proposed to the students was to write down the conjecture stating that the area 
defined by the curve of a positive function f the x-axis and the vertical lines x = a and x = b is given 
by the formula F(b)-F(a) where F is a function satisfying F ’(x)=f(x) (called the antiderivative 
function of function f). As this formula had been validated for linear functions, we suggested that 
they guessed what could be the area when f(x)=x2 and a = 0 and b = 1. They had to find F(x)=   𝒙

𝟑

𝟑
 

and conjecture that the area must be equal to   !
!
 of unit which is 0.333…. 



To validate this conjecture they had to manipulate the last Graphs&Geometry page (Figure 22 on 
the left). They could check that the slider red controls the Riemann rectangles below the red step 
function and their area (here 0.285 in Figure 22 on the left). They could also check that the slider 
blue controls the Riemann rectangles below the blue step function and their area (here 0.385 in 
Figure 22 on centre). They could also check that slider d changes the number of intervals of the 
subdivision. 
 

 
Figure 22: Validation of the conjecture about f(x)𝑑𝑥!

!  
 
In order to validate the last conjecture, they had to increase the value of d and observe the values of 
the two areas of the Riemann rectangles approximating the area below f and by the way the integral 
of f between 0 and 1. If d =1000, we obtain 0.338 and 0.328 and we get a validation in the meaning 
of Popper. The value conjectured for the integral cannot be refuted. 
 
5. Conclusion 
 
In this paper, we have illustrated the fact that math knowledge is compulsory if we want to use 
technology in a transparent way. Math knowledge allows the expert to create microworlds in which  
students can experiment without worrying about their skills with the technology used. We have seen 
that technology is never perfect to respond to the desires of the teachers but tricks based on the 
expert knowledge of the used couple math-software illustrate this dialectic, this back and forth 
between math and technology. Most of the time, it is the lack of technological tools to model an 
important math phenomenon that enhances the math and technological creativity and nourishes this 
dialectic. The mathematical and technological power of proportionality and linear functions shows a 
direction for teachers to use them with their students: in doing so they will illustrate a dialectic of 
modelling between reality (the technological environment) and abstraction (pure mathematics). I 
am convinced after all the research works conducted with teachers, after all the activities created 
during these researches and tested with students that our brain filled with deep math knowledge is 
the core of a powerful use of technology to improve math teaching.  
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https://youtu.be/RIxdTTExIgA  

[7]  YouTube videos about military perspective 
                                     “T3_Chicago_MP” at http://youtu.be/vYStmrDNT8E 
                                     “T3_Chicago_1” at http://youtu.be/yXDhiOD1fvw 

                                                    “T3_Chicago_2” at http://youtu.be/3rJZZMztbng 
 

Software : 
       Cabri 2 Plus and Cabri 3D by Cabrilog at http://www.cabri.com 
       TI-Nspire by Texas Instruments at  http://education.ti.com/en/us/home 


