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Abstract 

This paper presents a simulation method using a programming language called R to help 

students understand the concepts of sampling distributions and the central limit theorem. We 

simulate an approximation of a sampling distribution by taking 1000 random samples from 

different populations, calculating the mean of each sample, and creating histograms to display 

the distributions of the sample mean. Normal probability plots of the sample mean are also 

created as a second tool for understanding the distribution of the sample mean. Students will 

observe the effects of sample size on the shape and spread of the approximate sampling 

distribution by varying the sample size.  
 

INTRODUCTION 

Students in statistics classes often struggle to understand fundamental concepts 

such as sampling distributions, central limit theorem, confidence intervals, and 

hypothesis testing. Instead of understanding fundamental concepts and applying 

statistical procedures properly, many students focus on memorizing methods of 

performing calculations using calculators or software.  This approach does not provide 

a good foundation for their future courses, conducting research, analyzing data, and 

making correct conclusions.  The traditional way of teaching using book and lecture 

based instruction does not give a good understanding of the concepts to many students. 

Advances in technology have enabled instructors to experiment with different teaching 

methods. Simulations, along with the help of computers can be a very effective tool in 

gaining a good grasp of these concepts. One of the most challenging aspects of teaching 

and learning statistics is that many statistical concepts are based on the issue of what 

would happen if a random process such as random sampling from a population were to 

be repeated a large number of times. This abstract notion is very difficult for many 

students to grasp. Technology provides the opportunity to make this abstract idea more 

concrete by enabling students to repeat such random processes a very large number of 

times and describe their observations first hand. We can use simulations to perform 

these types of experiments.  

The American Statistical Association has published the Guidelines for 

Assessment and Instruction in Statistics Education (GAISE) [7] in order to improve 

learning. These guidelines recommend the active learning of concepts as an approach 

to teach and learn statistics.  Simulations performed both manually and using computers 

are recommended in the GAISE report as a useful tool. In recent years, there has been 

much interest in the use of simulations to teach fundamental statistical concepts.  Mills 

[9] has given a comprehensive review of the literature of computer simulation methods 

used in all areas of statistics to help students understand difficult concepts. Cobb [5] 

noted that incorporating computer simulation techniques to illustrate the key concepts 
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and to allow students to discover important principles themselves enhances their 

knowledge.  For more examples of the use of simulation to teach statistics see [1], [2], 

[3], [4], and [8].  

R is increasingly being used as a tool for statistics education. Many introductory 

and higher level statistics instructors are now using R to teach and perform statistical 

calculation. Although it is bit challenging to write statements in the command line, R 

can be used in simulation effectively. R can easily generate random samples from a 

variety of probability distributions. A valuable introduction to R for introductory 

statistics is given in Dalgaard [6]. In this paper, we describe how to use R commands 

to generate different random samples from populations. Additionally, R can be used to 

compute the approximate sampling distribution of the mean in order to understand its 

properties and the central limit theorem. In later sections, we give an overview of R, a 

simulation of sampling distributions, the survey results of student opinions, and the 

comparison  of two approaches  of presenting course materials. We end with concluding 

remarks.  

                   

BRIEF OVERVIEW OF R AND SOME R COMMANDS 
R is a free software environment used for working with data. R can be used to 

create sophisticated graphs, carry out statistical analyses, and run simulations. It is also 

a programming language with a set of built-in-functions. With some knowledge on 

coding, students can write their own codes for statistical computations. For 

computationally intensive tasks, one can incorporate functions written in others 

languages such as C, C++, and FORTRAN. R compiles and runs on Windows, MacOS, 

and a  wide variety of UNIX platforms. The examples of R used in this paper come 

from the most recent version of R , R 3.4.0. R is available from http://www.r-

project.org. To install R 3.4.0 on your operating system, download R from the site 

above using the closest mirror site to your location and choose the appropriate link for 

your operating system.   

R is a relatively simple syntax-driven and case-sensitive language. Even though 

the syntax for writing instructions may be somewhat difficult initially, most students 

with little or no prior programming experience have become comfortable using R. In 

this particular course about 50% of the students are Computer Information Systems 

majors and they have taken at least one computer programming course prior to taking 

this course. The other 50% are from quantitative disciplines such as sciences and 

economics, and they have been exposed to some sort of computer logic. R is installed 

into the school computers, located in the computer labs which also serve as the location 

for this course.   

R is an object-oriented program that works with data structures such as vectors 

(one dimensional array) and data frames (two dimensional arrays). A vector contains a 

list of values.  When R is started, we will see a window that is called the R console. 

This is where we type our commands and see the text results. Graphics appear in a 

separate window.  The > is called the prompt, where R commands are written. To quit 

R we type > q( ).  

R can be used as a calculator. At the prompt, we enter the mathematical 

expression and  by hitting “enter”, it will calculate the result and display it. The 

standard arithmetic operators ‘+, -, *,’ and ‘/’ are used in expressions and ‘^’ is used 

for exponentiation. The following example demonstrates this:  
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> 2*3 -10 
[1] -4  

The results of a calculation can be assigned to a variable (object in R) using <- or =. In 

this paper, we will use <-.  Even though we can work with single numbers (scalars), R 

is primarily designed to work with vectors and functions. In R, a vector is a sequence 

of data values of the same type.  The function, c, is used to create vectors from 

scalars. The following statement creates a vector:    

 

> x <- c(2, 4, 6, 8, 10) 
> x 
[1]  2  4  6  8 10 

Once we have a vector of numbers, we can apply built-in functions to get useful 

statistical summaries and visual displays. R also provides functions for generating 

random samples from various probability distributions.  

Control Structures 

R has the standard control structures such as if, while, and for, which can be 

used to control the flow of an R code. We will demonstrate the use of control 

structures in R using the following code segment. Let’s assume that we have stored 

1000 numbers in the vector named x. The following code will compute the average of 

the nonnegative numbers in vector x. The symbol # is used to write comments. 

> sum <- 0             # variable sum initialized to 0 
> count <- 0          # variable count initialized to 0 
> for(i in 1:1000){ 
+ if (x[i] >= 0) { 
+  count <- count +1                # count the positive values 
+  sum <- sum + x[i] }     # add the positive values 
+ } 
> average <- sum/count        # compute the average 
 

In the above code segment, the for loop iterates 1000 times, selecting only 

nonnegative numbers using the  if statement. It computes the average as well. The 

variable named count counts the number of nonnegative numbers stored in x.  We will 

use the control structures when we discuss simulations in the following sections.  

 

SIMULATION OF SAMPLING DISTRIBUTION OF MEAN 

It is important that students understand the concepts behind sampling 

distributions and how they apply towards making statistical inferences. Sampling 

distributions are important because inferential statistics are based on them. Inferential 

statistics is about drawing conclusions about the population based on sample data. At 

the beginning of the class, we give the definition of the sampling distribution of the 

mean, introduce the properties, and explain the connection between sampling 

distributions and the central limit theorem. The sampling distribution of the mean is the 

probability distribution of the sample mean based on all possible simple random 



samples of the same size from the same population.  The sampling distribution of the 

mean has the following properties: 

 The mean of all sample means is equal to the population mean. 

 The standard deviation of the sample means (known as the standard error) is 

equal to the population standard deviation divided by square root of the 

sample size.  

 Sample means are more normal than individual observations. 

The central limit theorem explains the shape of the sampling distribution. This 

theorem tells that for a population of any distribution, the distribution of the sample 

mean approaches a normal distribution as the sample size increases. The larger the 

sample size, the better the approximation. Based on this theorem, we can use the normal 

distribution for inferences about the mean for larger sample sizes, even if the original 

population is not normally distributed. Many students use this fact without 

understanding the underlying concept but by having the simulation students can digest 

the material and concepts to a better extent.  

Now we demonstrate the simulation of the sampling distribution using R. R is 

installed on the school computers which the students use to follow along during the 

class time. We begin by considering different population distributions and different 

sample sizes to observe the effects of the sample size and the shape of the original 

distribution on the sampling distribution of the mean. The uniform, chi-square, and 

normal populations and sample sizes of 10, 25, and 50 values are considered. These 

three populations have uniform, skewed, and bell shapes so each student can visualize 

how as the sample size increases as well and the sampling distribution approximates a 

normal distribution for different original shapes. This is one of the main points that we 

want to teach. These three populations, their shapes, and parameters were explained in 

previous lessons. The R functions are then introduced to generate random variants 

ffrom these three populations. Table 1 gives the characteristics of the samples and the 

R functions. The value of n in R functions is the sample size. 

Table 1: Sample characteristics 

Distribution Sample 

Sizes 

Mean Std Deviation  R Function 

Uniform (0, 

100) 

10, 25, 50 50 28.87 = runif(n, 0, 100) 

Normal (100, 

10) 

10, 25, 50 100 10 = rnorm(n, 100, 10) 

Chi-square (2) 10, 25, 50 2 2 = rchisq(n, 2) 

 

Now we show the R codes for generating random samples of 10 uniform random 

numbers and computing the sampling distribution of the mean. The following code 

segment generates 1000 random samples sizes of 10 values  from the above uniform 

distribution and proceeds to compute the sample means. The R function runif is used to 

generate a random sample from the uniform distribution. The syntax of the function is 

runif(n, a, b). This function returns a random sample size of n values from the uniform 

distribution from a to b.  

> means <- c() 



> for(i in 1:1000){ 
+ y <- runif(10, 0, 100) 
+ means[i]  <- mean(y)} 
> mean(means) 
[1] 49.75268 
> sd(means) 
[1] 9.164981 
> hist(means, main = "U(0,100), n = 10") 
> qqnorm(means, main = “U(0,100), n = 10”) 

The for loop calculates means and also iterates 1000 times to generate 1000 

random samples from the uniform distribution. The means vector holds these sample 

means. The runif(10,0,100) function generates a random sample size of 10 values from 

the uniform distribution from 0 to 100. This random sample is stored in vector y for the 

ith iteration of the for loop. The means[i] variable stores the corresponding sample 

mean for each sample for the ith iteration. The mean and sd commands compute the 

mean and standard deviation of 1000 sample means. Those 1000 sample means are then 

considered as the approximate sampling distribution of the mean to verify the validity 

of the properties the mean and standard deviation (standard error) of the sampling 

distribution. To study the shape of the sampling distribution, we create a histogram of 

the 1000 sample means using the hist command.  A better way of deciding if data is 

normally distributed is by creating a normal probability plot. In R, we can create a 

normal probability plot using qqnorm command. In normal probability plot, data are 

plotted against a theoretical normal distribution in such a way that the points should 

ideally form a straight line. Departures from a straight line indicate departures from 

normality. 

 

Similarly, we generate the approximate sampling distributions, histograms, and 

normal probability plots for all the cases we have considered in this lesson. Figure 1 

and Figure 2 show histograms and normal probability plots for all the cases. In both 

figures, the first, second, and third column histograms and normal probability plots are 

created from sample means from uniform, normal, and chi-square distributions 

respectively.  The first, second, and third rows represent samples sizes 10, 25, and 50 

values respectively. These histograms allow students to understand the meaning of the 

central limit theorem. Students will be able to visualize that as the sample size increases, 

the shape of the distribution is becoming more normal and therefore the sample means 

are less variable. For skewed data such as chi-square data, the sampling distribution 

does not approach a normal distribution for sample sizes as large as 50 values. In the 

case of a symmetrical uniform distribution the sampling distribution can be 

approximated by a normal distribution for a smaller sample size such as 10 values. 

These facts can also be seen through normal probability plots. The effect of the sample 

size (n) on the standard error (σ/√𝑛) of the sampling distribution is also evident from 

the histograms. Students will notice that as sample size increases, the spread of the 

sampling distribution decreases. At the end of the lesson, students are able to 

comprehend the central limit theorem and understand the properties of the sampling 

distribution discussed in the class. 

 



 

Figure 1: Histograms for Sample Means 

 

 

Figure 2: Normal Probability Plots for Sample Means 

  



STUDENT OPINION AND COMPARISON OF TWO METHODS 

Most students in this course are either sophomores or juniors majoring in 

computer information systems, general sciences, and other quantitative disciplines. In 

the Fall 2016 semester, we introduced simulation methods whereas in previous 

semesters, we taught the same material without using simulation methods. To evaluate 

the effectiveness of simulation methods on understanding the concepts, we compare 

Fall 2016 grades with the Spring 2016 grades of the test related to sampling 

distributions and central limit theorem. The test questions are not the same, but they are 

very similar within the two semesters. Table 2 gives the test scores statistics below: 

Table 2: Test Scores Statistics 

Class n Mean Median Std. Dev. 

Fall 2016 26 77.34 73 14.25 

Spring 2016 36 70.45 68 16.41 

 

The two sample t-test was performed on test scores by using R to test the 

hypothesis that the Fall  2016 class (using simulation methods)  performs better on 

average than the spring 2016 class (not using  simulation methods).  The p-value 

produced by R was 0.0451. This p-value indicates that the Fall 2016 class performed 

better at a 0.05 significance level.  

The following survey was also conducted in Fall 2016 to measure the students’ 

opinion on simulation methods.  All 26 students answered the survey. We have not 

conducted the survey in previous semesters. Each question has three answering options, 

namely yes, no, and no opinion. Table 3 gives the summary of their responses. 

1. Method helps me to understand the concepts. 

2. Feeling like I am part of the discussion. 

3. Feeling comfortable taking part in the lesson. 

4. Visual representation of outcomes is useful in understanding. 

5. Recommend this approach to other students. 

Table 3: Summary of Responses 

Question Yes No No Opinion 

1 94% 0% 6% 

2 52% 12% 36% 

3 58% 18% 24% 

4 85% 3% 12% 

5 76% 9% 15% 

 

The majority of the students answered yes to all five questions. Looking at the 

percentages, we observe that students believe they understand the concepts better with 

this  approach. A significant majority of students answered yes to questions 1, 4, and 5, 

which indicates that visual explanations of concepts better enhance learning. We have 

to take caution in that the sample sizes for the survey and assessment statistics provided 

are not large enough to make a firm judgment on the conclusion. We plan to use larger 



sample sizes in the future in order to give a comprehensive survey and to make a formal 

assessment.  

CONCLUSION 

Many students have difficulties with understanding statistics concepts such as 

sampling distributions. Simulations can be effective learning tools for helping students 

understand abstract concepts associated with repeated random processes. We have 

demonstrated the use of simulations by  using R to teach these topics. This is a very 

useful way to visualize and understand the sampling distribution and the central limit 

theorem. These simulation methods accommodate students who have a various 

background in mathematics. More empirical studies need to be conducted to measure 

the effectiveness of using simulations as a pedagogical tool.  
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