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Abstract

An outbox of a given convex quadrilateral is a rectangle such that each vertex of the
quadrilateral lies on one side of the rectangle and all the vertices lie on different sides,
with all the sides of the rectangle external to the quadrilateral. This paper reports on a
new geometrical result concerning outboxes of convex quadrilateral – the Outbox Centroid
Theorem, and gives a new proof of an existing result of M. F. Mammana. Interestingly,
the investigation that leads to this new result comes from dynamic-geometry explorations.

1 Introduction

An outbox of a given convex quadrilateral ABCD is a rectangle PQRS such that each vertex
of ABCD lies on one side of PQRS and all vertices lie on different sides, with all sides of
PQRS being external to ABCD. An example is shown in Figure 1 and two non-examples1 in
Figure 2.

Figure 1: An example of an outbox

Coined by D. Zhao in [7], the notion of ‘outbox’ is not new; already in the Book IV of
“Elements” Euclid recorded the following definitions:

1Such non-examples are sometimes termed as ‘illegal’ outboxes.



Figure 2: Two ‘illegal’ outboxes

Definition 1 (Inscribing rectilinear figure) A rectilinear figure is said to be inscribed in a
rectilinear figure when the respective (vertices) angles of the inscribed figure lie on the respective
sides of the one in which it is inscribed.

Definition 2 (Circumscribing rectilinear figure) A rectilinear figure is said to be circum-
scribed about a rectilinear figure when the respective sides of the circumscribed figure pass
through the respective (vertices) angles of the one about which it is circumscribed.

In this ancient lingo, the ‘modern’ definition of an outbox can be given as follows: An outbox
of a convex quadrilateral ABCD is a rectangle PQRS circumscribed to it. A quadrilateral
is rectangle-inscribable (r-inscribable, for short) if it has an outbox. We use all the above
terminologies in our ensuing discussion.

A maximal outbox, if it exists, is one with the largest area. D. Zhao in [7] posed the maximal
outbox problem asking for the area of the maximal outbox for a given convex quadrilateral.
Therein, he provided a flawed ‘solution’ using calculus. Firstly, Zhao assumed implicitly that
every convex quadrilateral is r-inscribable. A deeper analysis carried out by Mammana in [4]
already characterized r-inscribable convex quadrilateral to be those for which the sum of every
pair of consecutive angles (i.e., angles adjacent to each other) is less than three right angles.
Indeed this characterisation is visually compelling – it is impossible for the corner (right angle)
of a rectangle to ‘fit in’ so as to circumscribe an isosceles trapezium with each base angle mea-
suring 40� each (see Figure 3) because the angle at which the two non-parallel sides (extended)
meet already exceeds 90�. Secondly, it was never verified whether the stationary configuration

Figure 3: A non-r-inscribable convex quadrilateral

obtained by the calculus approach in [7] yields a configuration is actually attainable in a given
situation. Also, the maximal outbox problem arises from a geometrical situation and so a
purely geometrical solution is more natural. Note that Mammana ([4]) already gave a complete



solution by characterising those convex quadrilaterals whose maximal outbox exists based on
geometry and trigonometry.

This paper exploits a DGS (Dynamic Geometry System) for geometrical exploration into
the geometrical properties of outboxes. Via DGS exploration, we discover and prove a novel
theorem in geometry – Outbox Centroid Theorem. Using this, not only do we obtain the
formula for the area of the maximal outbox provided it exists but also re-establish Mammana’s
characterisation theorem for r-inscribable convex quadrilaterals to admit maximal outboxes [4,
Theorem 4]. Throughout, we adopt a sign convention for angles: counterclockwise angles are
positive. To illustrate this convention, we refer to Figure 3. The angle =DAP has an anti-
clockwise sense and is defined to be positive; the implicit reference line being AP . Thus,
=PAD is negative. The background knowledge for this paper includes high-school geometry
and trigonometry.

2 DGS-aided discovery

Solving the maximal outbox problem inevitably compels one to the drawing board. Tradi-
tional paper-and-pencil method in seeking any geometrical invariants is tedious. We turn to
Geometer’s Sketch Pad (GSP, for short) – a DGS. The application of DGS as an experimental
approach to theoretical thinking has recently been given a thorough treatment in [1, 6]. To
consider all possible outboxes of ABCD, if they exist at all, we construct a dynamic prototype
of an outbox. The “dragging” feature of GSP allows the user to range over all the outboxes
of a fixed r-inscribable convex quadrilateral and observe any geometrical invariants associated
with it.

To understand the logical dependence of the elements involved in the construction of an
outbox for a given r-inscribable convex quadrilateral, the reader can follow the steps in Figure 4.
The segment XY controls the direction of the side PQ of the outbox by moving the point Y .
Dragging Y enables us to range over all possible outboxes (including ‘illegal’ ones). Using the
area-measuring facility of GSP, one adjusts the direction of XY to obtain the maximum area
by trial-and-error.

Figure 4: Step-by-step construction of a dynamic outbox



3 Outbox centroid theorem

To determine the position of the maximal outbox of a given r-inscribable convex quadrilateral
ABCD, one may wish to ‘parameterize’ the position of an outbox by the motion of a single
point. The special point we choose is the centroid of an outbox (the intersection of the medians,
or equivalently, the diagonals). But we have two questions:

A. Can we determine if a point is the centroid of some outbox?

B. Given that a point is the centroid of some outbox, can the position (and dimensions) of
this outbox be determined?

To answer these, the locus of the centroid of an outbox for a fixed r-inscribable convex quadri-
lateral must be fully determined. By dragging Y and tracing the centroid K, one pleasantly
discovers that K traces out what seems to be circular arc:

Figure 5: Locus of the centroid of an outbox

To develop the proof for this observation, we modify a geometrical setup due to Mammana [4,
p.84–86]. Given a convex quadrilateral ABCD, where =BAD � α, =CBA � β, =DCB � γ
and =ADC � δ, assume without loss of generality that α � maxtα, β, γ, δu.

Clearly, α � π
2

or α is obtuse; otherwise, α   π
2
, together with α ¥ β, γ, δ, implies that

α � β � γ � δ   2π – a contradiction. If α � π
2
, then it could not be the case that one of the

angles β, γ and δ is acute (i.e., strictly less than α); otherwise, α � β � γ � δ   2π, another
contradiction. So, if α � π

2
, it must be that β � γ � δ � π

2
or equivalently that ABCD is a

rectangle. Since a rectangle clearly has an outbox, we restrict to the case where α is obtuse.
Because α ¥ β, γ, δ, it follows that α� β ¡ β � γ and α� δ ¡ γ � δ. Thus, the maximum

sum of the adjacent pairs of interior angles must be equal to maxtα � β, α � δu. Here, we
deviate from the labelling convention of [4] in that α � β need not be the largest amongst the
sum of adjacent interior angles.

Suppose PQRS is an outbox of ABCD as shown in the Figure 6. Since =PQR � π
2
, the

locus of Q is a subset of the open semicircular arc ΓAB whose diameter is AB and which lies
external to ABCD. As to which subset this is, we shall subsequently determine it.

Since PQ is a straight line segment, =DAP � =BAD � =BQA � =ABQ � π
2
� pπ �

=CBA � =RBCq and thus, α � β � =BAD � =CBA � 3π
2
� =DAP � =RBC. Since AQ

(respectively, QR) is external to the quadrilateral ABCD, we have =DAP ¡ 0 and =RBC ¡ 0
and so,

α � β  
3π

2
. (1)



Figure 6: A particular outbox of an r-inscribable quadrilateral

Analyzing each remaining side of the quadrilateral similarly, we have:

β � γ  
3π

2
, γ � δ  

3π

2
& δ � α  

3π

2
. (2)

Thus, it is necessary that the sum of any adjacent pair of interior angles is less than 3π
2

.
This condition turns out to be sufficient for ABCD to be r-inscribable. To see this, note

that Q is the vertex of an outbox of ABCD with =BQA � π
2

if and only if

(1) the line QA (respectively, QB) extended is external to ABCD, and

(2) the perpendicular to QA (respectively, QB) that passes through D (respectively, C) is
external to ABCD.

In (1), the straight line QA extended is external to ABCD if and only if =QAB   π � α.
Denoting by A1

1 the point of intersection of DA produced with the semicircle ΓAB (see either of
the diagrams in Figure 7), the upper bound described by the preceding inequality corresponds
to one extreme position where =A1

1AB � π � α.

Figure 7: A � A2: =A1

1AB   =A”AB (left), =A1

1AB ¥ =A”AB (right)

For the necessary and sufficient condition for the straight line QB extended to be external
to ABCD, one considers two mutually exclusive cases.

• β � π
2

or obtuse. Then the line segment BC is tangential to ΓAB or meets ΓAB at some
point B1 � B. This extreme position B1 gives rise to a lower bound for =QAB, i.e.,
=QAB ¡ =B1AB � β � π

2
. (See Figure 8 (Case 1).)



Figure 8: Case 1: β � π
2

or obtuse; Case 2: β is acute

• β is acute. Then the perpendicular to BC through B meets Γ at some point A1

2. This
extreme position A1

2 gives rise to an upper bound for =QAB, i.e., =QAB   =A1

2AB � β.
(See Figure 8 (Case 2).)

In summary, when π
2
¤ β   π, the condition (1) holds if and only if Q lies on the open arc �A1

1B
1;

and when 0   β   π
2
, the condition (1) holds if and only if Q lies on the open arc �A1

1B X�A1

2B.
As for the condition (2), one must consider the perpendicular to CD through A (respectively,

through B), and label A2 (respectively, B2) the point of intersection of this perpendicular with
the semicircular arc Γ. Note that AB is parallel to CD if and only if A � A2 and B � B2.
Taking logical negations, this would mean that AB is not parallel to CD if and only if A � A2

or B � B2. In this case, the first possibility of A � A2 entails that B � B2; (see Figure 7)
and by symmetry of the situation, the second possibility of B � B2 entails that A � A2 (see
Figure 9). Note that Figures 7 and 9 illustrate only the case where π

2
¤ β   π.

Figure 9: B � B2: =B1AB ¡ =B2AB (left), =B1AB ¤ B2AB (right)

So, (2) is equivalent to Q lying on the open arc �A2B2 of ΓAB. Three notations:

(i) x� y :�

#
x� y, x ¡ y;

0, x ¤ y.
(ii) β̂ :� π

2
�
�
π
2
� β
�
. (iii)φ :�

#
3π
2
� pα � δq, α � δ ¡ π

π
2
, α� δ ¤ π.

Thus, we have:

Proposition 3 The following are equivalent for a given convex quadrilateral ABCD and a
point Q on ΓAB:



1. Q is the vertex of an outbox for ABCD with =BQA � π
2
.

2. Q lies on the non-empty intersection of the open arcs �A1

1B
1, �A1

1B, �A1

2B and �A2B2 of ΓAB.

3. The acute angle =QAB satisfies the inequalities:

maxt=B1AB,=B2ABu   =QAB   mint=A1

1AB,=A
1

2AB,=A
2ABu.

4. The acute angle =QAB satisfies the inequalities:

maxtβ �
π

2
, β � γ � πu   =QAB   mintπ � α, β̂, φu.

In particular, when α � β is the largest amongst possible sums of adjacent interior angles, the
condition α � β   3π

2
is equivalent to (4), and hence (1), i.e., ABCD has an outbox.

Note that ABCD has an outbox if and only if (2) holds, i.e., the intersection of the open
arcs �A1

1B
1,�A1

1B,�A1

2B and �A2B2 is non-empty. Denote this non-empty intersection of these open
arcs by the open arc �A3B3, where A3 ie either A1

1, A
1

2 or A2, depending on the comparison
between =A1

1AB, =A1

2AB and =A2AB, and B2 is either B1 or B2 depending on the comparison
between =B1AB and =B2AB.

From this point till the end of Section 5, we assume that the convex quadrilateral ABCD
is not a parallelogram. The case of a parallogram is an easy exercise for the reader. Let W be
the intersection of the diagonals AC and BD of the given r-inscribable convex quadrilateral.
In addition to that labelling convention of =DAB :� α being the largest interior angles, from
this point onwards we also adopt the orientation of =AWB :� ϑ is either π

2
or obtuse. Our

labelling convention coincides with [4, Section 3].

Lemma 4 Let ABCD be an r-inscribable convex quadrilateral.

1. For each point Q of ΓAB (as described above), the centroid KQ of the rectangle RQ :�
PQRS, formed by the extensions of QA and QB, and the perpendiculars to QA through
D and to QB through C, lies on the circle with diameter LN .

2. The assignment Q ÞÑ KQ in (1) defines an injective function K : ΓAB ÝÑ Λ.

Proof. (1) Given Q on ΓAB, let P , R and S be the rest of the vertices of the rectangle RQ

formed by the extensions of QA and QB, and the perpendiculars to QA through D and to QB
through C. Note that RQ :� PQRS may not be an outbox of ABCD since it might well be
the case that Q lies outside the open arc �A3B3. For the ensuing argument, refer to Figure 10.
Let U be the midpoint of PQ, V that of RS, X that of PS and Y that of QR. It is clear that
the line segments XY and UV are respectively parallel to PQ and QR. Moreover, XY is the
perpendicular bisector of PQ and SR, while XY is the perpendicular bisector of PS and QR.
Clearly, the centroid KQ of the rectangle RQ :� PQRS is the intersection of UV and XY .

We first show that XY meets AC at L the midpoint of AC. To this end, construct the
perpendicular AA1 to SR that passes through A. Since XY bisects PS and QR, it must also
bisect AA1 at E. Since LE is parallel to CA1, it follows that the triangle LAE is similar to
the triangle CAA1. Moreover, because E bisects AA1, one has that L bisects AC as desired.



Figure 10: A construction used in the proof of (1)

Similarly, one can conclude that UV meets BD at N , the midpoint of BD. Since XY and UV
are perpendicular, together with L lying on XY and N on UV , it follows that =NKQL is a
right angle. Because Q is an arbitrary point on ΓAB, it then follows from Thale’s theorem that
the locus of KQ is a subset of the circle Λ with diameter LN .

(2) Since every rectangle RQ possesses only one centroid KQ and by (1) KQ P Λ, it follows
that the assignment K : Q ÞÑ KQ is a function from ΓAB to Λ. It remains to show that it is
injective. Let lA be the perpendicular to AB through L and lB be the parallel to AB through
L (see Figure 11). Denote by KA (respectively, KB) the intersection of lA (respectively, lB)

Figure 11: KA and KB in the proof of (1)

with the circle Λ (other than the point L whenever there are two points of intersection). Since
lA and lB are perpendicular by construction, it follows that =KBLKA �

π
2

so that by Thales
theorem KA and KB are diametrically opposite.

We claim that =QAB�=KQKAKB for all Q P ΓAB. There are two possible cases to prove:

• KA and L are on the same side with respect to the chord KBKQ (see Figure 11 (top)).
By the inscribed angle theorem, =KQKAKB � =KQLKB. Notice that the latter angle is
that made between the lines lB and KQL produced. Since these two lines are respectively
parallel to AB and AQ, it follows by the virtue of corresponding angles that =QAB �
=KQLKB and hence =QAB � =KQKAKB.

• KA and L are on opposite sides of the chord KBKA (see Figure 11 (bottom)). By the
cyclic quadrilateral theorem, =KQKAKB � π �=KBLKQ. But the latter angle is equal
to the acute angle between the line KQL and lB, and in turn this equal to =QAB due to
corresponding angles. Hence =QAB � =KQKAKB.



Suppose that KQ � K 1Q for some Q,Q1 P ΓAB. Then, by the preceding result, =QAB �
=KQKAKB � =K 1

QKAKB � =Q1AB. Since Q and Q1 P ΓAB, we must have Q � Q1. This
then completes the proof that the function K : Q ÞÑ KQ is injective.

We now turn to the problem of determining the locus of the centroid KQ of an outbox
PQRS of ABCD, where Q P ΓAB. This is equivalent to locating all the possible positions of
KQ on the circle Λ as Q moves on the open arc �A3B3 as described earlier. In what follows,
we continue to denote by RQ the rectangle formed by the extensions of QA and QB, and
the perpendiculars to QA through D and to QB through C (where Q is a point on the open
semi-circular arc ΓAB). We also use the notations KA and KB as described above.

Define the open semi-circular arc ΛKAKB
of Λ to be that with diameter KAKB such that

for every point M on it, 0   =MKAKB   π
2
. Note that by our sign convention of angles,

=MKAKB has a counterclockwise sense and so the open semi-circular arc ΛKAKB
is uniquely

determined.

Proposition 5 Let ABCD be an r-inscribable convex quadrilateral. Then, the co-restriction
of the function K on the open semi-circular arc ΛKAKB

, i.e., K : ΓAB ÝÑ ΛKAKB
, Q ÞÑ KQ is a

bijection between ΓAB and ΓKAKB
. Indeed, the locus of KQ as Q varies on the open semi-circular

arc ΓAB is exactly the open semi-circular arc ΛKAKB
.

Proof. By Lemma 4, it suffices to show that this co-restriction of K on ΛKAKB
is surjective.

To this end, let M be any point on ΛKAKB
. Construct a line k parallel to LM through A.

Since =MKAKB is equal to the acute angle between KBL and LM , it follows that the angle
between k and AB which is equal to =MKAKB is acute. Thus, k meets ΓAB non-emptily at
some point QM . We now show that KQM

� M . First construct the rectangle RQ :� PQRS
which is formed by the lines AQ and QB produced and the perpendiculars to AQ and QB
through D and C respectively. It follows that PQ is parallel to LM and to SR. Since L is
the midpoint of AC, it follows from arguments involving similar triangles that LM extended
bisects QR at a point Y , and PS at a point X so that XY is a median of the rectangle RQ.
Similarly, the line MN extended bisects PQ at a point U and SR at a point V since N is the
midpoint of BD. So, UV is the other median of the rectangle RQ. Since M is the intersection
of the medians XY and UV by construction, it follows that M is the centroid of the rectangle
RQ. This proves that KQM

�M , and thus the co-restriction K : ΓAB ÝÑ ΛKAKB
is surjective,

as desired.
Since Q P ΓAB is completely determined by =QAB and KQ P ΛKAKB

by =KQKAKB,
the equality =QAB � =KQKAKB then allows one to perceive the bijection K as the iden-
tity map on the open interval

�
0, π

2

�
. Proposition 3 asserts that Q P ΓAB is the vertex of

an outbox PQRS (with =AQB � π
2
) if and only if maxt=B1AB,=B2ABu   =QAB  

mint=A1

1AB,=A
1

2AB,=A
2ABu. Applying the bijection K, it follows that

maxt=KB1KAKB,=KB2KAKBu   =KQKAKB   mint=KA1

1
KAKB,=KA1

2
KAKB,=KA2KAKBu

or equivalently, =KB3KAKB   =KQKAKB   =KA3KAKB, i.e., =B3AB   =KQKAKB  
=A3AB. Thus, by Proposition 5, we have established the main theorem of this paper:

Theorem 6 (Outbox Centroid Theorem) Let ABCD be an r-inscribable convex quadri-
lateral. The locus of the centroid KQ of an outbox PQRS of ABCD is an open arc �KA3KB3

of the semi-circular arc ΛKAKB
such that =KB3KAKB   =KQKAKB   =KA3KAKB.



Remark 7 1. Every parallelogram has an outbox since the sum of adjacent angles is always
π (which is less than 3π

2
). In the case where ABCD is a parallelogram, the points L and

N coincide with K. Thus, the locus of the centroid of an outbox reduces to a point (i.e.,
the radius of the circle Λ is zero). Thus, the case of a parallelogram can be seen as a
limiting case of what we are considering in this section.

2. Theorem 6 answers both questions (A) and (B) raised at the beginning of this section.

3. Our DGS-aided discovery made in the preceding theorem exploits the wandering dragging
approach – a method described in [1] as “moving the basic point(s) on the screen randomly,
without plan, in order to discover interesting configurations or regularities in the figures”.
In our case, the basic point is Y and the regularity is the locus of the centroid of the
outbox. For the use of dragging in dynamic geometry environment, the reader is referred
to [3].

4 Characteristic triangles

Amongst all the possible outboxes of a given r-inscribable convex quadrilateral ABCD, which,
if it exists, is the one with the maximum area? Further experimentation using GSP reveals
more. Let I (respectively, J) be the foot of the perpendicular from L (respectively, N) to the
diagonal BD (respectively, AC). See Figure 12 (left). Recall also that =DAB :� α is the
largest of the interior angles of ABCD and =AWB :� ϑ is either π

2
or obtuse.

By construction =LIB � =LIN � π
2

and LN is the diameter of the circle Λ (as defined in
the preceding section), it follows that I coincides with the point of intersection of the diagonal
BD with the circle Λ. Likewise, J coincides with the point of intersection of the diagonal
AC with the circle Λ. DGS experiments allow us to observe something very special about
4IKJ that corresponds to a given outbox PQRS (we call this the characteristic triangle of
PQRS). Here K is the centroid of the outbox PQRS. Whenever the area of PQRS (denoted
by rPQRSs) collapses to 0 (in which case this is an illegal’ outbox), the area of IKJ (denoted
by rIKJs) is 0. This leads us to conjecture that the ratio of the area of an outbox to that of
its characteristic triangle is a constant – which is further reinforced by compelling evidence via
DGS (see Figure 12). Our observations made in Figure 12 using DGS show clearly that as K
moves along the circle Λ, the angle IKJ is constant by virtue of the inscribed angle theorem.
This indicates that the lengths of IK and JK are the only measurements which completely
determine the area of the triangle IKJ by virtue of the sine rule. This train of thought leads
us to the following lemma.

Lemma 8 Let ABCD be a fixed r-inscribable convex quadrilateral as shown in Figure 13. The
point U (respectively, V ) is the midpoint PQ (respectively, SR) while the point X (respectively,
Y ) is the midpoint of PS (respectively, QR). Then for any outbox PQRS of ABCD,

IK

XK
�
LN

DN
&

JK

VK
�
NL

CL
,

where IKJ denotes the characteristic triangle of PQRS. In particular, these ratios are invari-
ants over all possible outboxes PQRS of ABCD.



Figure 12: Two characteristic triangles

Figure 13: Characteristic triangle of PQRS

Proof. Since the segment IL subtends both =IKL and =INL, by the inscribed angle theorem
it follows that =IKL � =INL. So, =XKI � =DNL. Next we show that DXLI is a cyclic
quadrilateral. To this end, note that =LXD � π

2
by construction. Also, =LIN � π

2
because

I is the foot of perpendicular to BD from L. Since D, N and I (irrespective of the order)
are collinear, it follows that =LID � =LIN � π

2
. By the cyclic quadrilateral theorem,

DXLI is a cyclic quadrilateral and so, by the inscribed angle theorem, =LDI � =LXI . So,
=LDN � =KXI. Hence 4IKX is similar to 4LND. Consequently, IK

XK
� LN

DN
. Since the

points D, L and N are fixed for a given r-inscribable convex quadrilateral ABCD, it follows
that the ratio IK

XK
is invariant over all outboxes PQRS of ABCD. Similarly, one can show that

JK
VK

� NL
CL

is also invariant over all possible outboxes PQRS of ABCD.

Theorem 9 Let ABCD be a fixed r-inscribable convex quadrilateral. Then the ratio of the
area of any outbox PQRS to that of its characteristics triangle, i.e., rPQRSs : rIKJs, is an
invariant over all possible outboxes PQRS.

Proof. Suppose PQRS is an outbox of ABCD and K is the centroid of PQRS. By the sine
rule, the area of 4IKJ is 1

2
IM � JM sin=IKJ . Because IJ is a fixed chord of the circle Λ,

=IKJ and hence sin=IKJ is a constant over all possible outboxed by the inscribed angle
theorem. Applying Lemma 8, it follows that

rIKJs �
1

2

�
XM �

LN

DN


�
VM �

NL

CL



sin=IKJ � 2

�
LN2

CL �DN



sin=IKJ � rPQRSs.



Since k � 2
�

LN2

CL�DN

	
sin=IKJ is an invariant over all outboxes PQRS, we are done.

Corollary 10 Let ABCD be a fixed r-inscribable convex quadrilateral, and the points I and
J are defined as above. Then the maximal outbox of ABCD, if it exists, is achieved when its
centroid K is at the point M on Λ which is furthest away from the chord IJ .

Proof. Assume the existence of some maximal outbox of ABCD. By Theorem 9, a charac-
teristic triangle with the maximum area yields a maximal outbox. In turn, a characteristic
triangle (with a fixed base IJ) attains maximum area when the vertex K is the point on Λ
which is furthest away from IJ .

Assuming for the moment the given r-inscribable convex quadrilateral has a maximal outbox,
we derive the formula for its area. Denote the point of intersection of the diagonals of the given
r-inscribable convex quadrilateral by W . To analyze the position of the centroid of the maximal
outbox (assuming it exists), we zoom into the circle Λ and a characteristic triangle IJK, where
K lies on the major arc subtended by the chord IJ . Since =AWB :� ϑ is π

2
or obtuse, either

(1) I and N are on the same side with respect to W along the diagonal BD, or (2) I and N are
on opposite side with respect to W along the diagonal BD. Assume first that I and N are on
the same side with respect to W , as shown in the two situations of Figure 14. In first situation
as shown in Figure 14 (left), I and N lie on the same side of W along the diagonal BD. By the
inscribed angle theorem, =IKJ � =INJ . So =IKJ � =INJ � =JWI�=WJN � ϑ� π

2
. In

the second situation as shown in Figure 14 (right), I and N lie on opposite sides of W along the
diagonal BD. So, =IKJ � π �=INJ � π � p=NWJ �=NJW q � π �

�
π �=AWB � π

2

�
�

ϑ� π
2
. Thus, we have:

Figure 14: Zoom-in

Lemma 11 Let ABCD be a given r-inscribable convex quadrilateral and the points W , I and J
as defined above. Then for any outbox PQRS with centroid K, we have =JKI � =AWB� π

2
.

Theorem 12 Let ABCD be an r-inscribable convex quadrilateral whose diagonals AC and BD
are of length d1 and d2 respectively, and make an angle of =AWB :� ϑ (where π

2
  ϑ   π).

Then, the maximal outbox of ABCD, if it exists, has area 1
2
d1d2p1� sinϑq.

Proof. From Lemma 8, we have JK
VK

� LN
LC

and IK
XK

� LN
DN

. Because LC � 1
2
d1 and DN � 1

2
d2,

we have V K � JK
LN

� 1
2
d1 and XK � IK

LN
� 1

2
d2. Denoting the radius of the circle Λ by r ,

we have LN � 2r � 2 � OK. When K represents the centroid of the maximal outbox, K
is the furthest point on the circle Λ away from IJ by Corollary 10. Thus, by Lemma 8,
=OKJ � =IKO � 1

2

�
ϑ� π

2

�
. So, at this position where K is the centroid of the maximal



outbox, V K � 1
2
d1 � cos 1

2

�
ϑ� π

2

�
and XK � 1

2
d2 � cos 1

2

�
ϑ� π

2

�
. Finally, by the sine rule and

the double angle formula, the area of the maximal outbox, if it exists, is given by 4 � 1
2
d1 �

cos 1
2

�
ϑ� π

2

�
� 1
2
d2 � cos 1

2

�
ϑ� π

2

�
� 1

2
d1d2p1� sinϑq.

Remark 13 The formula for the area of the maximal outbox derived in [7] by D. Zhao was
d1d2

��cos
�
π
4
� ϑ

2

�
sin
�
π
4
� ϑ

2

���, which is equivalent to ours via the factor formula.

5 Existence of maximal outbox

We now turn to characterizing those r-inscribable convex quadrilaterals that admit maximal
outboxes. By Proposition 3 and Corollary 10, it suffices to find the necessary and sufficient
condition for the inequalities maxtβ � π

2
, β � γ � πu   =QAB   mintπ � α, β̂, φu to hold

when KQ is the furthest point on Λ from the chord IJ . For this purpose, it is important to

Figure 15: Analysis of the size of =KQKAKB

relate the size of =KQKAKB (which is equal to =QAB in size) with the geometrical structure
of ABCD. Let H be the diametrically opposite of M with respect to O (see Figure 5). Since
H and M are diametrically opposites (respectively, KA and KB), it follows that the chords
HKA and MKB are of the same length. Thus, the angles subtended by these chords are equal
in size, i.e., =MKAKB � =HMKA. But we have =HMKA � =HMI � =IMKA. Now,
=HMI � 1

2
=JMI , and =JMI � =JLI � ϑ� π

2
. Also, =IMKA � =ILKA � =DBA. Thus,

=HMKA � 1
2
pϑ� π

2
q �=DBA � 1

2
pϑ� π

2
q � π �=BAC � ϑ � 3π

4
� 1

2
ϑ�=BAC.

Hence ABCD has a maximal outbox if and only if each of the six inequalities are satisfied
for the acute angle =HMKA:

maxtβ �
π

2
, β � γ � πu   =QAB � =HMKA   mintπ � α, β̂, φu.

These inequalities can be presented as follows:

1. 0   =HMKA   π
2
. This is equivalent to 0   3π

4
� 1

2
ϑ � =BAC   π

2
ðñ π

4
� 1

2
ϑ  

=BAC   3π
4
� 1

2
ϑ. But ϑ ¥ π

2
so that 1

2
ϑ ¥ π

4
. Since =BAC ¡ 0, it follows that

=BAC ¡ π
4
� 1

2
ϑ is already satisfied. Thus, =BAC   3π

4
� 1

2
ϑ.

2. β � π
2
  =HMKA.

(i) If β ¥ π
2
, we have β � π

2
  3π

4
� 1

2
ϑ�=BAC if and only if

=BAC � β � π �
1

2
ϑ  

π

4
ðñ

1

2
ϑ�=ACB  

π

4
ðñ =ACB ¥

1

2
ϑ�

π

4
.



(ii) If β ¤ π
2
, we have 0   3π

4
� 1

2
θ � =BAC ðñ =BAC   3π

4
� 1

2
ϑ, which is

equivalent to (1). Notice also that if this condition holds, then one also has =ACB ¡
π � β � 3π

4
� 1

2
ϑ ðñ =ACB ¡ 1

2
ϑ� π

4
�
�
π
2
� β
�
¥ 1

2
ϑ� π

4
so that the inequality

in (2)(i) is also true.

3. β � γ � π   =HMKA.

(i) If β � γ ¡ π, we have β � γ � π   3π
4
� 1

2
ϑ�=BAC if and only if

=BAC � β � π � γ  
3π

4
�

1

2
ϑ ðñ =DCA  

3π

4
�

1

2
ϑ.

(ii) If β � γ ¤ π, we have 0   3π
4
� 1

2
ϑ � =BAC ðñ =BAC   3π

4
� 1

2
ϑ, which is

equivalent to (1). Furthermore, this condition also implies that

π �=DCA� γ � β  
3π

4
�

1

2
ϑ ðñ =DCA  

3π

4
�

1

2
ϑ� pπ � γ � βq

which implies that =DCA   3π
4
� 1

2
ϑ, i.e., the inequality in (3)(i) also holds.

4. =HMKA   π � α. We have 3π
4
� 1

2
ϑ�=BAC   π � α if and only if

α �=BAC  
π

4
�

1

2
ϑ ðñ =DAC  

π

4
�

1

2
ϑ.

Since =DAC �=ADB � ϑ, the preceding inequality is equivalent to =ADB ¡ 1
2
ϑ� π

4
.

5. =HMKA   β̂.

(i) If β   π
2
, we have 3π

4
� 1

2
ϑ�=BAC   β if and only if

3π

4
�

1

2
ϑ   π �=ACB ðñ =ACB  

π

4
�

1

2
ϑ.

(ii) If β ¥ π
4
, we have 3π

4
� 1

2
ϑ�=BAC   π

2
ðñ =BAC ¡ π

4
� 1

2
ϑ, which is equivalent

to 1(i). Moreover, this inequality also implies 5(i) because

=ACB   π � β �
π

4
�

1

2
ϑ ùñ =ACB  

π

4
�

1

2
ϑ�

�
β �

π

2

	
 
π

4
�

1

2
ϑ.

6. =HMKA   φ.

(i) If α � δ ¡ π, we have 3π
4
� 1

2
ϑ�=BAC   3π

2
� α � δ if and only if

α� δ �=BAC  
3π

4
�

1

2
ϑ ðñ =DAC � δ  

3π

4
�

1

2
ϑ ðñ =BDC  

3π

4
�

1

2
ϑ.

(ii) If α � δ ¤ π, then π
4
� 1

2
ϑ �=BAC   π

2
ðñ =BAC ¡ π

4
� 1

2
ϑ, which is just (1).

Also, one has =BDC   π �
�
π
4
� 1

2
ϑ
�
�=DAC �=ADB ùñ =BDC   3π

4
� 1

2
ϑ

since =DAC �=ADB � π � ϑ. So, the inequality in 6(i) holds.



Note that since ϑ ¥ π
2

holds and =DCB ¡ 0, it holds that =DCB ¡ 0 ¡ π
4
� 1

2
ϑ.

So, =DCB � =DCA � ϑ � π then guarantees that =DCA � π � ϑ � =DCB, and thus
=DCA   π�ϑ� π

4
� 1

2
ϑ if and only if =DCA   3π

4
� 1

2
ϑ. Similarly, since =DCA ¡ 0, it holds

that =DCA ¡ 0 ¡ π
4
� 1

2
ϑ. Hence =DCB �=DCA� ϑ � π so that =DCB   π� ϑ� π

4
� 1

2
ϑ

if and only if =DCB   3π
4
� 1

2
ϑ. Thus, the configuration that ϑ ¥ π

2
we assume guarantees

that the inequalities in 3(i) and 6(i) to hold automatically. All in all, we have a new proof for:

Theorem 14 ([4, Theorem 4]) An r-inscribable quadrilateral ABCD has a maximal outbox if
and only if ϑ � π

2
or obtuse and the following inequalities are simultaneously satisfied:

=BAC  
3π

4
�

1

2
ϑ, =ACB ¡

1

2
ϑ�

π

4
, =ADB ¡

1

2
ϑ�

π

4
, & =ACB  

1

2
ϑ�

π

4
(3)

6 Conclusion

The maximal outbox problem can be seen as a generalization of the maximal ‘out-triangle’
problem. The older out-triangle problem was proposed, studied and solved completely in [5],
and again independently in [2]. For any given triangle T the set F of equilateral triangles
circumscribed to T is non-empty. Furthermore, if A, B and C are vertices of the triangle T ,
such that AB ¥ AC ¥ BC, among the triangles of the set F there exists one of maximum
area (i.e., a maximal ‘out-triangle’) if and only if the median of the side AB with the side BC
forms an angle smaller than 5π

6
. It is natural to guess that a similar kind of centroid theorem

exists for the case of triangles (or even more generally any convex polygon), and can thus yield
an alternative proof of the aforementioned result.
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