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Abstract

A locally closed set of an affine space is defined as a difference of two varieties. Simple

representation of locally closed sets is of great importance in many areas of computational

mathematics. We presents a practical simplification algorithm of locally closed sets. Our

algorithm consists only of computations of Gröbner bases, it does not use any heavy

computation of polynomial ideals such as a primary decomposition.

1 Introduction

A locally closed set of an affine space Cn is defined as a difference V (I) \ V (J) of the varieties
of two ideals I and J in a polynomial ring Q[X1, . . . , Xn]. We need to handle it in many areas
of computational mathematics. A simple representation of a locally closed set is especially
important.

Consider the following example of quantifier elimination dealt with in our previous paper [9],
which comes from the problem #4 of International Mathematical Olympiad 2013.

Example 1 ∀x1, x2, y1, y2,m1,m2, h2, w ∈ C(w 6= 0∧w 6= 1∧F1 = 0∧F2 = 0∧F3 = 0∧F4 =
0 ∧ F5 = 0 ∧ F6 = 0 ∧ F7 = 0⇒ P = 0).

Where, F1 = m1c2−m2c1, F2 = (c1−1)c1+h2c2, F3 = (m1−1)c1+m2c2, F4 = ((1+w(c1−1))−
x1)

2+(wc2−x2)
2− (((1+w(c1− 1))+x1− 2c1)

2+(wc2+x2)
2), F5 = ((1+w(c1− 1))−x1)

2+
(wc2 − x2)

2 − (((1 +w(c1 − 1)) + x1 − 2)2 + (wc2 + x2)
2), F6 = ((1 +w(c1− 1))− y1)

2 + (wc2−



y2)
2− (((1+w(c1−1))+y1−2mc1)

2+(wc2+y2−2mc2)
2), F7 = ((1+w(c1−1))−y1)

2+(wc2−
y2)

2−(((1+w(c1−1))+y1−2c1)
2+(wc2+y2−2c2)

2), P = (y1−c1)(y2−x2)−(y2−h2)(y1−x1).

In order to eliminate all quantifiers ∀x1, x2, y1, y2,m1,m2, h2, w, we need to compute a com-
prehensive Gröbner system of the ideal 〈w(w− 1)v − 1, Pu− 1, F1, F2, F3, F4, F5, F6, F7〉 in the
polynomial ring Q[c1, c2, u, v, x1, x2, y1, y2,m1,m2, h2, w] with parameters c1, c2 and main vari-
ables u, v, x1, x2, y1, y2,m1,m2, h2, w. (For more detailed descriptions, see [6] for example.)
The following is the output of the execution of our program written in Risa/Asir [4] which
computes comprehensive Gröbner systems using the algorithm introduced in [8]. The output
reads as follows. There are 5 segments of parameter space C2 each of which is given in a
form of a locally closed set. After each segment, there is a corresponding list of a Gröbner
basis. For example, the second segment [[c1-1],[c2^3+c2,c1-1]] is the locally closed set
V (〈c1−1〉)\V (〈c32+c2, c1−1〉). For each value of c1, c2 lying in this segment, the Gröbner basis
of the ideal 〈w(w−1)v−1, Pu−1, F1, F2, F3, F4, F5, F6, F7〉 in Q[u, v, x1, x2, y1, y2,m1,m2, h2, w]
is {(w2−w)v− 1, c22ux1− c22u− c2,−c2x2,−c2y1− c32w+ c2, c2y2− c22,−m1−m2c2+1,−m2c

2
2+

c2 −m2, h2c2}. The term order is degree reverse lexicographic, which is assigned by 0 in
cgs.cgs([w*(w-1)*v-1,P*u-1,F1,F2,F3,F4,F5,F6,F7],

[c1,c2],[u,v,x1,x2,y1,y2,m1,m2,h2,w],0)$.

[1854] load("./cgs.rr")$

[2074] F1=m1*c2-m2*c1$

F2=(c1-1)*c1+h2*c2$

F3=(m1-1)*c1+m2*c2$

F4=((1+w*(c1-1))-x1)^2+(w*c2-x2)^2-(((1+w*(c1-1))+x1-2*c1)^2+(w*c2+x2)^2)$

F5=((1+w*(c1-1))-x1)^2+(w*c2-x2)^2-(((1+w*(c1-1))+x1-2)^2+(w*c2+x2)^2)$

F6=((1+w*(c1-1))-y1)^2+(w*c2-y2)^2-(((1+w*(c1-1))+y1-2*m1)^2+

(w*c2+y2-2*m2)^2)$

F7=((1+w*(c1-1))-y1)^2+(w*c2-y2)^2-(((1+w*(c1-1))+y1-2*c1)^2

+(w*c2+y2-2*c2)^2)$

P=(y1-c1)*(y2-x2)-(y2-h2)*(y1-x1)$

[2082] cgs.cgs([w*(w-1)*v-1,P*u-1,F1,F2,F3,F4,F5,F6,F7],

[c1,c2],[u,v,x1,x2,y1,y2,m1,m2,h2,w],0)$

CGS is the following:

[[c2^2+1,c1-1],[1]]

[1]

[[c1-1],[c2^3+c2,c1-1]]

[(w^2-w)*v-1,c2^2*u*x1-c2^2*u-c2,-c2*x2,-c2*y1-c2^3*w+c2,c2*y2-c2^2,

-m1-m2*c2+1,-m2*c2^2+c2-m2,h2*c2]

[[c1-1,c2],[1]]

[(-u*x1+u)*y2+(u*x2-h2*u)*y1-u*x2+h2*u*x1+1,(w^2-w)*v-1,-m1+1,m2]

[[c1^2-c1,c2],[c1-1,c2]]

[1]



[[c2^2+c1^2-c1],[c1^2-c1,c2]]

[(w^2-w)*v-1,c2*u*y2-c2^2*u-c2,(-c1+1)*u*y2+(c1-1)*c2*u+c1-1,

-c2*x1+(-c1+1)*c2*w+c1*c2,(-c1+1)*x1+(c2^2+c1-1)*w-c2^2,

-c2*x2+(-c2^2-c1+1)*w+c2^2+c1-1,-c1*c2*y2+c2^2*y1,c2*y2+(c1-1)*y1,

-m1+c1,-c2+m2,(c1-1)*c2-h2*c1+h2,-c2^2+h2*c2]

[[0],[(c1-1)*c2^2+c1^3-2*c1^2+c1]]

[(c1-1)*c2^2+c1^3-2*c1^2+c1]

No. of segment is

6

0.02668sec + gc : 0.00797sec(0.03525sec)

By Hilbert’s Nullstellensatz, we have the following equivalent quantifier free formula:

(c22 + 1 = 0 ∧ c1 = 1) ∨ ((c21 = c1 ∧ c2 = 0) ∧ (c1 6= 1 ∨ c2 6= 0)) ∨ (c1 − 1)c22 + c31 − 2c21 + c1 6= 0.

Note that the second formula (c21 = c1 ∧ c2 = 0) ∧ (c1 6= 1 ∨ c2 6= 0) is equivalent to the much
simpler formula c1 = 0∧ c2 = 0. In other words, the locally closed set V (〈c21− c1, c2〉) \V (〈c1−
1, c2〉) is equal to the locally closed set V (〈c1, c2〉) \ V (〈1〉).

In [2], a simple representation of a locally closed set is introduced. Given ideals I and J of a
polynomial ring Q[X1, . . . , Xn] such that I ⊂ J . (Since V (I) \ V (J) = V (I) \ V (I + J), we
can always assume that I ⊂ J without loss of generality.) Let the prime decompositions of the
radical ideals

√
I and

√
J be

√
I = P1 ∩ · · · ∩ Pl ∩ Pl+1 ∩ · · · ∩ Pm and

√
J = Pl+1 ∩ · · · ∩ Pm.

They introduce a canonical representation of the locally closed set V (I) \ V (J) as V (P1 ∩ · · · ∩
Pl) \V (Pl+1∩ · · · ∩Pm+P1∩ · · · ∩Pl). Since V (P1∩ · · · ∩Pl) is the Zariski closure V (I) \ V (J)
of V (I) \ V (J), i.e. the smallest variety which contains V (I) \ V (J), the representation can
be considered smallest. For the above example, I = 〈c21 − c1, c2〉 and J = 〈c1 − 1, c2〉, we have√
I = P1 ∩ P2 and

√
J = P2 with prime ideals P1 = 〈c1, c2〉 and P2 = 〈c1 − 1, c2〉. Since

P1+P2 = 〈1〉, we have its canonical representation V (〈c1, c2〉)\V (〈1〉) as is desired. In [2], they
also give an algorithm to compute the canonical representation which is based on a primary
decomposition algorithm of rational polynomial ideals. Their approach is simple and beautiful
from a theoretical point of view. However, for some more advanced algorithm of computer
algebra such as a recent real quantifier elimination algorithm introduced in [7], we often need
to deal with a more complicated locally closed set. For such a case, their algorithm is not
practical since a primary decomposition algorithm needs very heavy computations in general.

In this paper we introduce a more practical representation of a locally closed set. It is based
on the fact that the Zariski closure V (I) \ V (J) is equal to the variety V (I : J∞) of the
saturation ideal I : J∞. Our representation of the locally closed set V (I) \ V (J) is given by
V (I : J∞) \ V (J + (I : J∞)). Since

√
I : J∞ = P1 ∩ · · · ∩ Pl, our representation is same as the

representation of [2] if I : J∞ and J+I : J∞ are radical. Even if they are not radical we have the
same varieties V (I : J∞) = V (P1∩· · ·∩Pl) and V (J+(I : J∞)) = V (Pl+1∩· · ·∩Pm+P1∩· · ·∩Pl).
Note that we can compute a saturation ideal by the computation of Gröbner bases. In general
Gröbner bases computation is much lighter than the computation of primary decomposition of
polynomial ideals.



The paper is organized as follows. In section 2, we describe basic properties of locally closed
sets. The well-known fact V (I) \ V (J) = V (I : J∞) we are using in the paper may be already
published in some paper. Nevertheless, in most standard texts of computer algebra such as [3],
it is described only for very special cases such as I is a radical ideal or J is a principal ideal.
We give a complete proof of it. Then we describe our algorithm which is naturally derived from
it. In section 3, we give a typical computation example for seeing efficiency of our algorithm.

2 Basic Mathematics

Throughout this section K denotes the field of rational numbers Q and L denotes the field
of complex numbers C. Note that all results also hold for any computable field K and its
algebraically closed extension L.

For an ideal I of a polynomial ring K[X1, . . . , Xn], V (I) denotes a variety of I in L that is
V (I) = {c̄ ∈ Ln|∀f ∈ If(c̄) = 0}. For a subset S of an affine space Ln, S denotes the Zariski
closure of S, that is S is the smallest variety which contains S w.r.t. the order of set inclusion.
X̄ denotes variables X1, . . . , Xn.

2.1 Locally Closed Set

Definition 2 A locally closed set of an affine space Ln is a subset of Ln which is equal to a

difference V (I) \ V (J) of the varieties of some ideals I and J in K[X̄].
(Since V (I) \ V (J) = V (I) \ V (J + I), we can assume I ⊂ J).

A locally closed set has the smallest representation. More precisely we have the following fact.

Theorem 3 Let
√
I = P1 ∩ · · · ∩ Pl ∩ Pl+1 ∩ · · · ∩ Pm and

√
J = Pl+1 ∩ · · · ∩ Pm be the prime

decompositions of the radical ideals
√
I and

√
J . Then V (I)\V (J) = V (P1∩· · ·∩Pl)\V (Pl+1∩

· · · ∩Pm +P1 ∩ · · · ∩Pl). Moreover, if V (I) \ V (J) = V1 \ V2 for some varieties V1 and V2 then

V1 ⊃ V (P1 ∩ · · · ∩ Pl) and V2 ⊃ V (Pl+1 ∩ · · · ∩ Pm + P1 ∩ · · · ∩ Pl).

Proof. The proof is straightforward. See [2] for example.

As a corollary we have the following.

Corollary 4 V (I) \ V (J) = V (P1 ∩ · · · ∩ Pl).

For a given locally closed set V (I) \ V (J) in terms of ideals I and J , [2] gives an algorithm to
obtain its smallest representation using primary decomposition of I and J . As is described in
the previous section, the computation of a primary decomposition is very heavy in general. We
can avoid such heavy computations using saturation of ideal.

2.2 Saturation of Ideal

Definition 5 Let I and J be ideals of a polynomial ring K[X̄]. There exists a natural number

N such that I : JN = I : JN+1 = I : JN+2 = · · · . The ideal I : JN is called the saturation ideal

of I by J and denoted I : J∞.



The following theorem enables us to compute the Zariski closure V (I) \ V (J) without the
computation of primary decomposition. The result is well-known but in most standard texts
of computer algebra such as [3], its proof is given only for special cases such as I is a radical
ideal or J is a principal ideal.

Theorem 6 When I ⊂ J , V (I) \ V (J) = V (I : J∞).

Proof. Let I : J∞ = I : JN = I : JN+1 = · · · and let J = 〈g1, . . . , gl〉 for some g1, . . . , gl ∈
K[X̄]. For each i = 1, . . . , l, there exists Mi such that I : 〈gMi

i
〉 = I : 〈gi〉∞. Let M be

max(M1, . . . ,Ml), then we have I : 〈gM
i
〉 = I : 〈gi〉∞ for every i. Note that there exists

a natural number m ≥ N such that Jm ⊂ 〈gM1 , . . . , gM
l
〉. Then, I : JN = I : Jm ⊃ I :

〈gM1 , . . . , gM
l
〉 = (I : 〈gM1 〉) ∩ · · · ∩ (I : 〈gM

l
〉) = (I : 〈g1〉∞) ∩ · · · ∩ (I : 〈gl〉∞). Note also that

we have V (I1) \ V (I2) ⊂ V (I1 : I2) for any ideal I1, I2. (See section 4 of chapter 4 [3].) Hence,
V (I) \ V (J) = V (I) \ V (JN) ⊂ V (I : JN) ⊂ V (I : 〈g1〉∞) ∪ · · · ∪ V (I : 〈gl〉∞). Note also
that V (I : 〈f〉∞) = V (I) \ V (〈f〉) for any ideal I and polynomial f . (See section 4 of chapter
4 of [3].) Hence, V (I : 〈g1〉∞) ∪ · · · ∪ V (I : 〈gl〉∞) = V (I) \ V (〈g1〉) ∪ · · · ∪ V (I) \ V (〈gl〉) =
V (I) \ V (〈g1〉) ∪ · · · ∪ V (I) \ V (〈gl〉) = V (I) \ V (〈g1, . . . , gl〉) = V (I) \ V (J).

By this theorem we have the following.

Corollary 7 For a locally closed set V (I) \ V (J) with ideals I ⊂ J , V1 = V (I : J∞) and

V2 = V ((I : J∞) + J) form the smallest varieties such that V (I) \ V (J) = V1 \ V2.

2.3 Simplification Algorithm

The results presented in the previous subsection naturally lead us to the following simplification
algorithm of a locally closed set.

Algorithm (Simplification of a locally closed set)
Input: {f1, . . . , fl} and {g1, . . . , gm} ⊂ K[X̄];
Output: {p1, . . . , ps} and {q1, . . . , qt} ⊂ K[X̄]

such that V1 = V (〈p1, . . . , ps〉) and V2 = V (〈q1, . . . , qt〉) are the smallest varieties
such that V1 \ V2 = V (〈f1, . . . , fl〉) \ V (〈g1, . . . , gm〉);
1: Y ← a new variable;
For each i = 1, . . . ,m,
Hi ← a reduced Gröbner basis of the ideal 〈f1, . . . , fl, Y gi − 1〉 in K[X̄, Y ] w.r.t.
an elimination term order such that Y is lexicographically greater than X̄;
Gi ← Hi ∩K[X̄];
2: Z̄ = Z1, . . . , Zm−1 ← new variables;
G ← a Gröbner basis of the ideal
〈{Z1g|g ∈ G1} ∪ · · · ∪ {Zm−1g|g ∈ Gm−1} ∪ {(1− Z1 − · · · − Zm−1)g|g ∈ Gm}〉 in K[X̄, Z̄]
w.r.t. an elimination term order such that each Zi is lexicographically greater than X̄;
{p1, . . . , ps} ← G ∩K[X̄];
3: {q1, . . . , qt} ← a Gröbner basis of 〈p1, . . . , ps, g1, . . . , gm〉 in K[X̄] w.r.t. some term order;

Proof of correctness. Each Gi is equal to the saturation ideal 〈f1, . . . , fl〉 : 〈gi〉∞ by a



well-known technique of Gröbner basis for the computation of a saturation ideal. {p1, . . . , ps}
is a Gröbner basis of 〈G1〉 ∩ · · · ∩ 〈Gm〉 by also a well-known technique of Gröbner basis for the
computation of an intersection of ideals. Since 〈f1, . . . , fl〉 : 〈g1〉∞ ∩ · · · ∩ 〈f1, . . . , fl〉 : 〈gm〉∞ =
〈f1, . . . , fl〉 : 〈g1, . . . , gm〉∞, we have the desired properties by Corollary 7.

3 Computation Example

We show two computation examples of our simplification algorithm using the Gröbner basis
computation program hgr of Risa/Asir [4].

The first example is the simplification of the locally closed set V (〈c21 − c1, c2〉) \ V (〈c1 − 1, c2〉)
discussed in the introduction. The inputs for our algorithm are {c21 − c1, c2} and {c1 − 1, c2}.
The first two executions are the computations of the saturation ideals 〈c21− c1, c2〉 : 〈c1−1〉 and
〈c21 − c1, c2〉 : 〈c2〉 (1 of Algorithm). The third execution is the computation of {p1, . . . , ps},
i.e. the intersection ideal of the obtained two saturation ideals (2 of Algorithm). The last
execution is the computation of {q1, . . . , qt} (3 of Algorithm). We get a simple representation
V (〈c2, c1〉) \ V (〈1〉).

[1855] hgr([c1^2-c1,c2,y*(c1-1)-1],[y,c1,c2],[[0,1],[0,2]]);

[c2,c1,-y-1]

0sec(0.0001938sec)

[1856] hgr([c1^2-c1,c2,y*c2-1],[y,c1,c2],[[0,1],[0,2]]);

[1]

0sec(6.795e-05sec)

[1857] hgr([z1*c2,z1*c1,(1-z1)*1],[z1,c1,c2],[[0,1],[0,2]]);

[c2,c1,-z1+1]

0sec(0.000273sec)

[1858] hgr([c2,c1,c1-1,c2],[c1,c2],0);

[1]

0.000133sec(0.0001321sec)

The second example is more complicated but such an example often rise up during the execution
of the real quantifier elimination program introduced in [7].
Our locally closed set is V (P1∩P2∩P3)\V (P1∩P2) with P1 = 〈2x2

1+x2
2+3x2

3−x1, 3x
2
1+x2

2+2x2
3−

x2〉, P2 = 〈2x2
1+3x2

2+x2
3−x1, 3x

2
1+2x2

2+x2
3−x2〉, P3 = 〈4x2

1+2x2
2+3x2

3−x1, 4x
2
1+3x2

2+2x2
3−x3〉.

P1 ∩P2 ∩P3 and P1 ∩P2 have the following bases {f1, f2, f3, f4, f5} and {g1, g2}. Note that the
locally closed set is given in terms of the polynomials f1, f2, f3, f4, f5, g1, g2 and we do not know
the polynomials P1, P2, P3.
f1 = −4x3

1 + (−4x2
2 + 4x2

3 + 4x3 − 1)x2
1 + (−2x2

2 + 2x2 + x3)x1 − x4
2 + 2x3

2 + x3x
2
2 + (−2x2

3 −



2x3)x2 + x4
3 + x3

3,

f2 = −16x4
1+12x3

1+(8x2−28x2
3−12x3+4)x2

1+(5x2
2−8x2−2x2

3−3x3)x1+x4
2−2x3

2+(−5x2
3−

3x3)x
2
2 + (12x2

3 + 6x3)x2 − 6x4
3 − 3x3

3,

f3 = (−192x2−576x2
3−224x3−2)x3

1+((192x2
3+96x3+60)x2+288x4

3+288x3
3−122x2

3−26x3+
13)x2

1 + (−30x4
2 − 192x3

2 + (−408x2
3 − 92x3 + 10)x2

2 + (72x2
3 + 112x3 − 26)x2 − 210x4

3 − 20x3
3 −

22x2
3+3x3)x1+20x5

2+(30x2
3+10x3+21)x4

2+(224x2
3+48x3+70)x3

2+(228x4
3+124x3

3− 86x2
3−

37x3)x
2
2 + (−4x4

3 − 96x3
3 + 70x2

3 − 6x3)x2 + 102x6
3 + 82x5

3 − 35x4
3 + 3x3

3,
f4 = (2688x2+8064x2

3 +3136x3+388)x3
1+((−2688x2

3− 1344x3− 1080)x2− 4032x4
3− 4032x3

3 +
988x2

3+4x3−137)x2
1+(160x4

2+2688x3
2+(6232x2

3+1648x3+30)x2
2+(−528x2

3−1328x3+274)x2+
3400x4

3 + 640x3
3 + 308x2

3 − 87x3)x1 + 100x6
2 − 40x5

2 + (−240x3 − 169)x4
2 + (−3136x2

3 − 912x3 −
1070)x3

2 + (−3612x4
3 − 2256x3

3 + 1124x2
3 + 393x3)x

2
2 + (−184x4

3 + 1104x3
3 − 890x2

3 + 174x3)x2 −
1528x6

3 − 1248x5
3 + 445x4

3 − 87x3
3,

f5 = ((576x3
3+576x2

3−172x3−84)x2+384x3
3+576x2

3+72x3+72)x3
1+((720x3

3+488x2
3+12x3−

115)x2+336x3
3+192x2

3−12x3−18)x2
1+((60x3+20)x5

2+(184x3+88)x4
2+(456x3

3+248x2
3+20x3+

46)x3
2+(160x3

3+112x2
3+100x3+140)x2

2+(204x5
3+164x4

3−76x3
3−172x2

3−17x3+20)x2+136x5
3+

184x4
3+24x3

3+84x2
3−12x3)x1+(84x3+33)x5

2+(56x3+38)x4
2+(408x3

3+200x2
3−41x3−112)x3

2+
(−52x3

3 − 128x2
3 − 58x3)x

2
2 + (228x5

3 + 119x4
3 − 113x3

3 − 124x2
3 + 24x3)x2 + 116x5

3 + 38x4
3 − 12x3

3.

g1 = 4x2
1 + x1 + x2

2 − 2x2 + x2
3,

g2 = (72x2
2+48x2+72x2

3+9)x1− 20x4
2− 48x3

2+(−104x2
3− 7)x2

2+(−48x2
3− 18)x2− 20x4

3+9x2
3.

So the inputs for our algorithm are {f1, f2, f3, f4, f5} and {g1, g2}.
The first two executions are the computations of the saturation ideals 〈f1, f2, f3, f4, f5〉 : 〈g1〉∞
and 〈f1, f2, f3, f4, f5〉 : 〈g2〉∞ (1 of Algorithm). The third execution is the computation of
ideal intersection of the obtained saturation ideals (2 of Algorithm). The last execution is the
computation of {q1, . . . , qt} (3 of Algorithm). Each computation terminates immediately and
we get a simple representation V (〈−x1− x2

2 + x2
3 + x3,−4x2

1 +3x1− 5x2
3− 2x3〉) \ V (x3, x2, x1).

As is described in the previous sections, primary decomposition is a very heavy computation.
The computer algebra system Singular [5] has a sophisticated fast implementation of primary
decomposition. For the ideal I= 〈f1, f2, f3, f4, f5〉, however, either of the following commands
primdecGTZ(I) or primdecSY(I) does not terminate within one hour by our standard laptop
computer which has a CPU Intel Core i5-4210U with 8GB memory running OS Ubuntu14.04.
The computer algebra system Risa/Asir [4] also has a command premadec which is an excellent
fast implementation of primary decomposition. It does not either terminate within one hour
by the same computer.

[1855] hgr([-4*x1^3+(-4*x2^2+4*x3^2+4*x3-1)*x1^2+(-2*x2^2+2*x2+x3)*x1-x2^4+

2*x2^3+x3*x2^2+(-2*x3^2-2*x3)*x2+x3^4+x3^3,

-16*x1^4+12*x1^3+(8*x2-28*x3^2-12*x3+4)*x1^2+(5*x2^2-8*x2-2*x3^2-3*x3)*x1+

x2^4-2*x2^3+(-5*x3^2-3*x3)*x2^2+(12*x3^2+6*x3)*x2-6*x3^4-3*x3^3,

(-192*x2-576*x3^2-224*x3-2)*x1^3+((192*x3^2+96*x3+60)*x2+288*x3^4+288*x3^3-

122*x3^2-26*x3+13)*x1^2+(-30*x2^4-192*x2^3+(-408*x3^2-92*x3+10)*x2^2+

(72*x3^2+112*x3-26)*x2-210*x3^4-20*x3^3-22*x3^2+3*x3)*x1+20*x2^5+(30*x3^2+

10*x3+21)*x2^4+(224*x3^2+48*x3+70)*x2^3+(228*x3^4+124*x3^3-86*x3^2-37*x3)*



x2^2+(-4*x3^4-96*x3^3+70*x3^2-6*x3)*x2+102*x3^6+82*x3^5-35*x3^4+3*x3^3,

(2688*x2+8064*x3^2+3136*x3+388)*x1^3+((-2688*x3^2-1344*x3-1080)*x2-

4032*x3^4-4032*x3^3+988*x3^2+4*x3-137)*x1^2+(160*x2^4+2688*x2^3+(6232*x3^2+

1648*x3+30)*x2^2+(-528*x3^2-1328*x3+274)*x2+3400*x3^4+640*x3^3+308*x3^2-

87*x3)*x1+100*x2^6-40*x2^5+(-240*x3-169)*x2^4+(-3136*x3^2-912*x3-1070)*x2^3+

(-3612*x3^4-2256*x3^3+1124*x3^2+393*x3)*x2^2+(-184*x3^4+1104*x3^3-890*x3^2+

174*x3)*x2-1528*x3^6-1248*x3^5+445*x3^4-87*x3^3,

((576*x3^3+576*x3^2-172*x3-84)*x2+384*x3^3+576*x3^2+72*x3+72)*x1^3+((720*

x3^3+488*x3^2+12*x3-115)*x2+336*x3^3+192*x3^2-12*x3-18)*x1^2+((60*x3+20)*

x2^5+(184*x3+88)*x2^4+(456*x3^3+248*x3^2+20*x3+46)*x2^3+(160*x3^3+

112*x3^2+100*x3+140)*x2^2+(204*x3^5+164*x3^4-76*x3^3-172*x3^2-17*x3+20)*x2+

136*x3^5+184*x3^4+24*x3^3+84*x3^2-12*x3)*x1+(84*x3+33)*x2^5+(56*x3+38)*x2^4+

(408*x3^3+200*x3^2-41*x3-112)*x2^3+(-52*x3^3-128*x3^2-58*x3)*x2^2+(228*x3^5+

119*x3^4-113*x3^3-124*x3^2+24*x3)*x2+116*x3^5+38*x3^4-12*x3^3,

(4*x1^2+x1+x2^2-2*x2+x3^2)*y-1],[y,x1,x2,x3],[[0,1],[0,3]]);

[x1+x2^2-x3^2-x3,4*x1^2-3*x1+5*x3^2+2*x3,(3*x1-2*x2-3*x3^2-x3)*y-1]

0.001295sec(0.001433sec)

[1856] hgr([-4*x1^3+(-4*x2^2+4*x3^2+4*x3-1)*x1^2+(-2*x2^2+2*x2+x3)*x1-x2^4+

2*x2^3+x3*x2^2+(-2*x3^2-2*x3)*x2+x3^4+x3^3,

-16*x1^4+12*x1^3+(8*x2-28*x3^2-12*x3+4)*x1^2+(5*x2^2-8*x2-2*x3^2-3*x3)*x1+

x2^4-2*x2^3+(-5*x3^2-3*x3)*x2^2+(12*x3^2+6*x3)*x2-6*x3^4-3*x3^3,

(-192*x2-576*x3^2-224*x3-2)*x1^3+((192*x3^2+96*x3+60)*x2+288*x3^4+288*x3^3-

122*x3^2-26*x3+13)*x1^2+(-30*x2^4-192*x2^3+(-408*x3^2-92*x3+10)*x2^2+

(72*x3^2+112*x3-26)*x2-210*x3^4-20*x3^3-22*x3^2+3*x3)*x1+20*x2^5+(30*x3^2+

10*x3+21)*x2^4+(224*x3^2+48*x3+70)*x2^3+(228*x3^4+124*x3^3-86*x3^2-37*x3)*

x2^2+(-4*x3^4-96*x3^3+70*x3^2-6*x3)*x2+102*x3^6+82*x3^5-35*x3^4+3*x3^3,

(2688*x2+8064*x3^2+3136*x3+388)*x1^3+((-2688*x3^2-1344*x3-1080)*x2-

4032*x3^4-4032*x3^3+988*x3^2+4*x3-137)*x1^2+(160*x2^4+2688*x2^3+

(6232*x3^2+1648*x3+30)*x2^2+(-528*x3^2-1328*x3+274)*x2+3400*x3^4+640*x3^3+

308*x3^2-87*x3)*x1+100*x2^6-40*x2^5+(-240*x3-169)*x2^4+(-3136*x3^2-912*x3-

1070)*x2^3+(-3612*x3^4-2256*x3^3+1124*x3^2+393*x3)*x2^2+(-184*x3^4+

1104*x3^3-890*x3^2+174*x3)*x2-1528*x3^6-1248*x3^5+445*x3^4-87*x3^3,

((576*x3^3+576*x3^2-172*x3-84)*x2+384*x3^3+576*x3^2+72*x3+72)*x1^3+

((720*x3^3+488*x3^2+12*x3-115)*x2+336*x3^3+192*x3^2-12*x3-18)*x1^2+

((60*x3+20)*x2^5+(184*x3+88)*x2^4+(456*x3^3+248*x3^2+20*x3+46)*x2^3+

(160*x3^3+112*x3^2+100*x3+140)*x2^2+(204*x3^5+164*x3^4-76*x3^3-172*x3^2-

17*x3+20)*x2+136*x3^5+184*x3^4+24*x3^3+84*x3^2-12*x3)*x1+(84*x3+33)*x2^5+

(56*x3+38)*x2^4+(408*x3^3+200*x3^2-41*x3-112)*x2^3+(-52*x3^3-128*x3^2-

58*x3)*x2^2+(228*x3^5+119*x3^4-113*x3^3-124*x3^2+24*x3)*x2+116*x3^5+

38*x3^4-12*x3^3,

((72*x2^2+48*x2+72*x3^2+9)*x1-20*x2^4-48*x2^3+(-104*x3^2-7)*x2^2+

(-48*x3^2-18)*x2-20*x3^4+9*x3^2)*y-1],[y,x1,x2,x3],[[0,1],[0,3]]);



[x1+x2^2-x3^2-x3,4*x1^2-3*x1+5*x3^2+2*x3,

((96*x2+288*x3^2+112*x3-53)*x1+(-96*x3^2-48*x3-18)*x2-144*x3^4-144*x3^3+

97*x3^2+39*x3)*y-1]

0.003143sec(0.003063sec)

[1857] hgr([(x1+x2^2-x3^2-x3)*z1,(4*x1^2-3*x1+5*x3^2+2*x3)*z1,

(x1+x2^2-x3^2-x3)*(1-z1),(4*x1^2-3*x1+5*x3^2+2*x3)*(1-z1)],

[z1,x1,x2,x3],[[0,1],[0,3]]);

[-x1-x2^2+x3^2+x3,-4*x1^2+3*x1-5*x3^2-2*x3]

0.000563sec(0.0006039sec)

[1858] hgr(

[-x1-x2^2+x3^2+x3,-4*x1^2+3*x1-5*x3^2-2*x3,4*x1^2+x1+x2^2-2*x2+x3^2,

(72*x2^2+48*x2+72*x3^2+9)*x1-20*x2^4-48*x2^3+(-104*x3^2-7)*x2^2+

(-48*x3^2-18)*x2-20*x3^4+9*x3^2],[x1,x2,x3],0);

[x3,x2,x1]

0.000343sec(0.0005538sec)

4 Conclusion and Remarks

Our algorithm is given in a very naive form. There exist some more efficient techniques for
the computation of saturation ideals or intersection ideals. Nevertheless, it is certainly more
practical than the one using primary ideal decomposition. A computation of a saturation ideal
corresponds to a polynomial division of a univariate polynomial ring, whereas a computation
of primary ideal decomposition corresponds to a polynomial factorization. It is a natural con-
sequence that our approach is more practical than the one using primary ideal decomposition.

Any algebraically constructible set is represented as a finite union of basic constructible sets,
i.e. a special locally closed set V (I)\V (J) with a principal ideal J . (See Chapter 1 of [1] for ex-
ample.) Therefore general locally closed sets do not draw much attention of most researchers of
computer algebra. However, locally closed sets play an important role for achieving a canonical
form of a comprehensive Gröbner system as is reported in [10]. Furthermore, the recent quanti-
fier elimination algorithm introduced in [6] handles locally closed sets. The algorithm achieves
the fastest ever real quantifier elimination program for first order formulas with many equali-
ties. We can expect that our simplification algorithm will further improve this real quantifier
elimination algorithm.
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