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Abstract 

In this paper, we recall the famous Monge’s theorem of three circles. There are several proofs for the theorem. 
One of the proofs is that of using three similar right cones. Inspired by the proof, we propose a three-
dimensional problem of the same angles of elevation: For three similar right cones on the ground, find the 
places from where three angles of elevation are equal to each other. There are at most two places. With 
dynamic geometry software, we can simply construct the solutions. In addition, the relation between two 
solutions is cleared. 

 
1.  Introduction 

Figure 1.1 shows the famous Monge’s theorem of three circles and its three-dimensional intuitive 
proof: 

 
Theorem 1.1 (Monge’s theorem of three circles) 
For any three circles in a plane, none of which is inside one of the others, the intersection points of 
each of the three pairs of external tangent lines are collinear.  
 

       
 

Figure 1.1 The Monge’s theorem (left) and its three-dimensional proof (right). 
 
Regarding three circles on the plane as the top view of three similar right cones as in Figure 
1.1(right), we can easily know the external homothetic centers by connecting the vertices of the 
cones with lines. These lines are on the plane passing through three vertices of cones, hence three 
external homothetic centers lie on the intersection of the plane and the base plane. This is the 
reason why three external homothetic centers are collinear. Here is a question. When you are on the 
line passing through three external homothetic centers, how do the three vertices of the cones look 
like from your eyes? You must answer that the three vertices look like collinear. Inspired by this 
problem, we will propose the next problem: For three similar right cones on the ground, find the 
places from where three angles of elevation are equal to each other. There are infinitely many 



places from where three vertices look like collinear, however, there are at most two places from 
where three angles of elevation are equal to each other.  
In section 2, we review an easy construction of homothetic centers of two circles. Using the 
homothetic centers, we will construct the points from where the angles of elevation are equal to 
each other for two cones in section 3. A relation between circle of Apollonius and angle of 
elevation is cleared.  
Finally, we construct the solution of the same elevation problem of three cones in section 4. The 
relation between two solutions is revealed. All figures in this paper are drawn with dynamic 
geometry software; Cabri II plus and Cabri 3D. 
 
2.  Homothetic centers of two circles 

In this section, we review the simplest construction of external homothetic center and internal 
homothetic center of two circles shown as Figure 2.1.  
 
Construction 2.1 (Homothetic centers of two circles) 
0.  Input:	1ܥ and 2ܥ: two circles centered at ܱ1 and ܱ2, respectively.  
 .line passing through ܱ1 and ܱ2 :1ܮ  .1
 .any line passing through ܱ1 :2ܮ  .2
  .passing through ܱ2 2ܮ line parallel to :3ܮ  .4
5.  ܲ1: one of intersections of 1ܥ and 2ܮ. 
6.  ܲ2 and ܲ3: intersections of 2ܥ and 3ܮ labeled as in Figure 2.1. 
 .line passing through ܲ1 and ܲ2 :4ܮ	 .7
 .line passing through ܲ1 and ܲ3 :5ܮ  .8
9.  Output: ܧ is the external homothetic center which is the intersection of 4ܮ and 1ܮ. 
  .1ܮ and 5ܮ is the internal homothetic center which is the intersection of ܫ	                 
 

 
 

Figure 2.1 Construction of the homothetic centers of two circles. 
 

With this construction, we can easily confirm the Monge’s theorem of three circles shown as in 
Figure 1.1. Now, let us regard Figure 2.1 as the top view of two similar right cones on the ground. 
If you are at point ܧ, then two cones look like completely overlapped. If you are at point ܫ, then the 
angle of elevation of one cone is equal to that of another cone. In fact, the set of points from where 
the angles of elevation are equal is the circle with diameter ܫܧ.  
 
  



3.  Angle of elevation problem of two cones 
In this section, we will investigate the angle of elevation problem of two cones. To do this, we 

have to go back to the famous Apollonius theorem shown as in Figure 3.1: 
 

Theorem 3.1 (The circle of Apollonius ([3] p.28) 
Let ܤ ,ܣ be two fixed points on a line. The locus of a point ܲ which moves so that the ratio of its 
distances from ܣ and ܤ  is constant is the circle with diameter ܥ  and ܦ  where ܥ  is the internal 
division and ܦ is the external division with the ratio. 

 

         
 

Figure 3.1 Circle of Apollonius. 
 
Using Theorem 3.1, we can solve the next problem: For two circles on a plane, find the points from 
where the viewing angle of one circle is the same as that of another circle. Here viewing angle of 
the circle ܥ from a point ܲ is defined as the angle subtended by two tangent lines from ܲ to the 
circle ܥ shown as in Figure 3.2. 
 

         
 

Figure 3.2 Circle of the same viewing angle. 
 
Proposition 3.1 (Viewing angle of two circles) 



Let 1ܥ and 2ܥ be two circles in a plane, none of which is inside of the other. Let ܧ and ܫ	be the 
external and internal homothetic centers of the two circles, respectively. Then for any point ܲ on 
the circle with diameter ܫܧ, the viewing angle of 1ܥ	from ܲ is the same as the viewing angle of 
  .ܲ from	2ܥ
Proof. Let ܲሺܶ1ሻ and ܲሺܶ2ሻ be tangent lines from ܶ	to 1ܥ and 2ܥ, respectively as in Figure 3.2. It 
is enough to show that ∠ሺܶ1ሻܲሺܱ1ሻ 	ൌ 	∠ሺܶ2ሻܲሺܱ2ሻ. Let 1ݎ and 2ݎ be the radii of circles 1ܥ 
and 2ܥ, respectively. Then ܫ is the internal division of ܱ1 and ܱ2 such that ሺܱ1ሻܫ ∶ 	 ሺܱ2ሻܫ	 ൌ 1ݎ	 ∶
ܧ And .2ݎ	  is the external division ܱ1 and ܱ2 such that ሺܱ1ሻܧ ∶ 	 ሺܱ2ሻܧ	 ൌ 1ݎ	 ∶  Then, the .2ݎ	
circle with diameter ܫܧ  is the Apollonius circle of ܱ1  and ܱ2  with the ratio 1ݎ ∶ 2ݎ	 .  Then, 
ܲሺܱ1ሻ ∶ 	ܲሺܱ2ሻ 	ൌ 1ݎ	 ∶  Therefore, triangles ⊿ሺܶ1ሻܲሺܱ1ሻ and  ⊿ሺܶ2ሻܲሺܱ2ሻ are similar to .2ݎ	

each other. In particular, ∠ሺܶ1ሻܲሺܱ1ሻ 	ൌ 	∠ሺܶ2ሻܲሺܱ2ሻ.    ∎ 
 
Regarding Figure 3.2 as the top view of two similar cones on the ground, we directly clear the 
angle of elevation of two cones, since the viewing angle is directly proportional to the angle of 
elevation. Figure 3.3 shows the places from where the angle of elevation of one cone is the same as 
that of another cone.  

     
 

Figure 3.3 Angle of elevation problem of two cones. 
 
 

4.  Angle of elevation problem of three cones 
    With Proposition 3.1, we can find out the solution of angle of elevation problem of three cones. 
The solution is the intersections of three circles shown as in Figure 4.1 (left).   
 
Construction 4.1 (Angle of elevation problem of three cones) 
0.  Input: three cones with vertices ܤ ,ܣ, and ܥ.  
 .in the base plane α, respectively ܥ and ܤ reflections of :ܥെ,ܤ–  .1
	ܤܣ circle with diameter :1ܥ  .2 ∩ ∩	ሻܤሺെܣ and ߙ   .ߙ
	ܥܣ circle with diameter :2ܥ  .3 ∩ ∩	ሻܥሺെܣ and ߙ   .ߙ
	ܥܤ circle with diameter :3ܥ  .4 ∩ 	ܥሻܤand ሺെ ߙ ∩  .ߙ
5.  Output: ܵ1, ܵ2: intersections of 2ܥ ,1ܥ, and 3ܥ.  
 
In fact, depending the configuration of the three cones, there are 2, 1, or 0 solutions as in Figure 4.1. 
If there is a solution, we can easily confirm that the angles of elevation are equal to each other with 
dynamic geometry software. To see this, construct an upside-down cone with vertex at the solution, 



axis perpendicular to the base plane, and passing through vertex ܣ shown as in Figure 4.1 (left). 
Then, we can see other vertices ܤ and ܥ are also on this upside-down cone. In this way, we can 
solve the angle of elevation problem of three cones.  

  
 

Figure 4.1 Angle of elevation problem of three cones: two solutions (left) and no solution (right). 
 
In the following argument, we assume that there are two solutions ܵ1 and ܵ2 shown as in Figure 
4.1 (left).  
 

  
 

Figure 4.2 Sphere passing through three vertices of cones and two solutions ܵ1 and ܵ2. 
 
Final study is to clear the relation between two solutions ܵ1 and ܵ2. Here, let us consider the sphere 
 Figure .ߙ perpendicular to the base plane ܥ and ,ܤ ,ܣ passing through three vertices of cones 1ܵ
4.2 shows that one of solutions ܵ1 is the inversion of another solution ܵ2 with respect to sphere 
 With .ߙ and the base plane 1ܵ be the equator which is the intersection of sphere ݍܧ Let .1ܵ
dynamic geometry software, we can check that three circles 2ܥ ,1ܥ, and 3ܥ in Construction 4.1 
intersect orthogonally with circle ݍܧ. This means that circles 2ܥ ,1ܥ, and 3ܥ are invariant under 
the inversion with respect to circle ݍܧ on the base plane ߙ. Hence, we can show that ܵ1 is the 
inversion of ܵ2 with respect to sphere ܵ1, if we prove that 1ܥ intersects orthogonally with ݍܧ, 
because with the same argument, both 2ܥ and 3ܥ also intersect with ݍܧ orthogonally. Therefore, in 
the following discussion, let us focus on the relation between circles ݍܧ and 1ܥ.  
 
Proposition 4.1 (Orthogonal intersection of ݍܧ and 1ܥ (Figure 4.3)) 
Let ܵܲ1 be the sphere passing through ܣ and ܤ perpendicular to the base plane ߙ. Let ݍܧ is the 
intersection of ܵܲ1 and the base plane ߙ. Let  –ܣ be the reflection of ܣ	in the base plane ߙ. Let 



 and ܤሻܣbe the intersection of line ሺെ	ܫ Let .ߙ and the base plane ܤܣ be the intersection of line	ܧ
the base plane ߙ . Let 1ܥ  be the circle on the base plane ߙ  with diameter ܫܧ . Then, ݍܧ  and 
  .intersect orthogonally	1ܥ
 

  
 

Figure 4.3 Orthogonal intersection of ݍܧ and 1ܥ. 
 
Before we prove Proposition 4.1, we prepare the following proposition. 
 
Proposition 4.2 (inverse relation between ܧ and	ܫ (Figure 4.4)) 
Let ܷ be the unit circle on a complex plane. Let ܣሺߙሻ and ܤሺߚሻ be two points on ܷ. Let െܣሺαഥሻ be 
the conjugate of ܣሺߙሻ. Let ܧሺ݁ݖሻ be the intersection of ܤܣ  and the real axis. Let ܫሺ݅ݖሻ be the 
intersectin of ሺെܣሻܤ and the real axis. Then, ݁ݖ ∙ ݅ݖ ൌ 1, that is, ܧ is the inversion of ܫ	with respect 
to ܷ.   
 

  
 

Figure 4.4 Relation between ܧ and	ܫ. 
 

Proof of Proposition 4.2. The equation of line ܤܣ is อ
ݖ ̅ݖ 1
ߙ തߙ 1
ߚ ߚ̅ 1

อ ൌ 0. Because ݁ݖ satisfies the 

equation and ൌ   , തതത݁ݖ

݁ݖ ൌ ఈఉഥିఈഥఉ

ሺఈିఈഥሻିሺఉିఉഥሻ
.  



In the similar way, the equation of line ሺെܣሻܤ is อ
ݖ ̅ݖ 1
തߙ ߙ 1
ߚ ߚ̅ 1

อ ൌ 0. Because ݅ݖ satisfies the equation 

and ൌ ଓഥݖ  ,  

݅ݖ ൌ
ఈఉିఈഥఉഥ

ሺఈିఈഥሻାሺఉିఉഥሻ
.  

Then, ݁ݖ ∙ ݅ݖ ൌ
ఈఉഥିఈഥఉ

ሺఈିఈഥሻି൫ఉିఉഥ൯
∙

ఈఉିఈഥఉഥ

ሺఈିఈഥሻା൫ఉିఉഥ൯
ൌ

ఈమିఉమିఉഥమାఈഥమ

ሺఈିఈഥሻమି൫ఉିఉഥ൯
మ ൌ 1, 

where we use |ߙ| ൌ |ߚ| ൌ 1. This completes the proof.  ∎ 
 
Proof of Proposition 4.1.  Let ߚ be the plane passing through ܤ ,ܣ, and –ܣ. Let ܷ be the circle 
given as the intersection of ߚ and ܵ1 as in Figure 4.5. We have already seen that ܫ is the inverse of 
  .ܷ with respect to ܧ
 

 
 

Figure 4.5 Setting for the proof of Proposition 4.1. 
 
Let ܲ and ܳ be two intersections of ܷ and the base plane ߙ. Let ܵ2 be a sphere with diameter ܲܳ. 
Let ܰ be the top of sphere ܵ2. Now let us consider the stereographic projection ݂ ([1] p.93 , [2] 
p.260, [4] p.74) from the base plane ߙ to sphere ܵ2 with respect to ܰ shown as in Figure 4.6.  
 



 
 

Figure 4.6 Stereographic projection of 1ܥ and ݍܧ. 
 
Stereographic projection has two strong properties: conformal and circle-to-circle correspondence. 
Regarding ܲ and ܳ as the poles of sphere ܵ2, ݂ሺݍܧሻ	is a longitude of sphere ܵ2, because ܲ and 
ܳ are on ݍܧ. On the other hand, ݂ሺ1ܥሻ is a latitude of sphere ܵ2, because ܫ is the inversion of ܧ 
with respect ܵ2  including ܷ . In general, latitude ݂ሺ1ܥሻ   and longitude ݂ሺݍܧሻ  intersect 
orthogonally, therefore, 1ܥ and ݍܧ which are inverse images by the stereographic projection, also 
intersect orthogonally. This completes the proof.  ∎ 
 
In consequence, the solutions ܵ1 and ܵ2 are coincident, if and only if, ܵ1 is on the sphere passing 
through	ܣ	ܥ ,ܤ ,, െܣ, െܤ, and –   .ܥ
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