
Developing Computational Thinking through Coding

Weng Kin Ho
wengkin.ho@nie.edu.sg

Keng Cheng Ang
kengcheng.ang@nie.edu.sg

National Institute of Education
Nanyang Technological University

Singapore 637616
Singapore

August 30, 2015

Abstract

The turn of the 21st Century sees renewed emphasis on STEM (Science, Technology,
Engineering and Mathematics). Building a Smart Nation is now a buzzword for many
developed countries. Compelled by the advancement of information and communication
technology, the ability to code in a programming language is a skill that is now, more
than ever, urgently called for. In addition, it is widely believed that coding enhances
problem solving abilities. In this paper, by underscoring the disciplinarity of coding,
we construct a curricular framework for inculcating computational thinking in authentic
classroom situations. Our proposition that computational thinking can only be imparted
through doing, and this is supported by episodes of a graduate course, taught by the
second author, in which graduate students develop coding competencies in vba.

1 Introduction

The turn of the 21st century sees a renewed emphasis on STEM (Science, Technology, Engi-
neering and Mathematics) globally, and consequently a re-alignment of educational directives
that respond to this ([6], [1], [7], [12]). The transformation technology has brought about over
the past few decades, be it the way we live, work or play, is tremendous. Notably, technologi-
cal advancement manifests itself in the forms of industrial automation, digital communication
and web-based information. In response to such advancement, it is only natural to anticipate
that the future workforce be equipped not only with an instrumental understanding to operate
technology but also a deeper relational understanding of how technology works and how new
technology can be continually created – extending Skemp’s terms used in mathematics learning
([11]) to STEM education.

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

73



Worldwide permeation of ‘smart’ mobile devices has now set the stage for a full-fledged
integration of ‘smart’ technology into our everyday life. For Singapore, the call to build a
‘Smart Nation’ is no longer a futuristic aspiration from yesteryears’ science fiction as this
global buzzword is now rapidly turning into a reality. In his official speech at Smart Nation
launch on 24 November 2014 ([10]), Singapore Prime Minister Lee Hsien Loong envisioned a
Smart Nation as one “where people live meaningful and fulfilled lives, enabled seamlessly by
technology, offering exciting opportunities for all. ... where networks of sensors and smart
devices enable us to live sustainably and comfortably”. In the same speech, schools were
specifically urged to expose students to Information Technology and basic coding skills.

Education plays a critical role in nurturing the ‘smart’ generation to be ready for the digital
world. Different countries are responding, in varying degrees, to this urgent need to teach their
students the new discipline of computing. Some countries took a large-scale change; for instance,
the United Kingdom has taken a radical (and applaudable) approach, through the pioneering
efforts of Computing At School (CAS), to implement computer science as a school subject in
the primary school curriculum in 2015. Some countries adopted small-scaled approaches; the
Ministry of Education in Singapore, for instance, launched a new national programme, known
as Code for Fun, which involved some 12 secondary schools and 4 primary schools. While
helping to demystify the notion that coding is challenging, the Fun for Code pilot programme
exposed pupils to “the use of algorithms and logical reasoning to solve problems by breaking
them down in a fun way” ([13]).

The word ‘discipline’ associates to long-term values rather than short-term ‘skills’; i.e., a
discipline is characterised by “a way of thinking and working that provides a perspective on
the world that is distinct from other disciplines” ([4, p.2]). We refer to this particular way of
thinking as computational thinking – a coinage first put forth and expounded by Jeanette Wing
([14]).

What precisely is computational thinking? Though many scholars have proposed different
interpretations of this over a growing body of literature ([2], [3], [5], [8]), there does not seem
to be a single “crisp and meaningful definition” and yet, “the term clearly has resonance” ([4]).
One thing stands in common to most interpretations: computational thinking is a paradigm
of tackling large complex problems by systematically (i) breaking these down into smaller
tasks, (ii) finding representations for them so as to make them tractable, and in most cases,
(iii) creating efficient algorithms to solve them. Because the aforementioned three processes
are intrinsically linked to the application of logic and creative thinking, one anticipates that
computational thinking “shares elements with other types of thinking such as ... mathematical
thinking” ([8]). However, to the best knowledge of the authors, such a link has not be explicated.

The conference theme “Celebrating Mathematics and Technology” for ATCM this year
calls for a celebration of the success as a direct result of the synergy between mathematics
and technology. Thus, the authors see no better opportunity than this to make explicit the
link, perhaps for the first time, between mathematical thinking and computational thinking.
By so doing, we hope to illustrate the strong interplay between the disciplines of mathematics
and information technology. Furthermore, we aim to make use of this connection to craft a
pedagogical framework for a workable classroom implementation that embeds computational
thinking into teaching and learning of mathematics.

We organize this paper as follows. Since coding is a convenient vehicular activity that
calls for computational thinking, we describe, in Section 2, the disciplinarity of coding. Based

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

74



on this description, we draw the parallels between coding and mathematical problem solving,
and hence underscore the strong connection between computational thinking and mathematical
thinking. The upshot here is to make clear the interaction between these two paradigms. This
comparison is done in Section 3, culminating with a possible theoretical framework for infusing
computational thinking into a mathematics curriculum. Finally in Section 4, we describe how
this framework was implemented by the authors in a mathematics curriculum for a graduate
course.

2 Disciplinarity of coding

It is difficult to divorce the thought processes and behaviourial patterns of a programmer from
the coding activity because they are intimately interweaved together. So, we see no better way
to expound on the disciplinarity of coding than to bring the reader through an excursion of the
mind of a programmer who is actively engaging in some coding activities.

Here’s a question on a type of number sequence, popularly known as the Morris Number
Sequence, that is said to have been used as an interview question by companies such as Google
(see [9], p. 96). Consider the sequence below and write down the next two terms.

1, 11, 21, 1211, 111221, 312211, 13112221, . . .

It does not take too long for one to recognize that this is a visual sequence, i.e., the produc-
tion of the terms in this sequence depends on a visual observation: the next term records the
digits that occur in consecution within the current term and their corresponding frequencies
of occurrence. For example, the second term records one 1 in the first term; the third term
records two 1’s in consecution in the second term; the fourth term records one 2 followed by
one 1 in the third term, and so on.

2.1 Problem posing and solving

One natural question comes to your mind: Can you produce the nth term of the sequence?
With a computational mind-set, the Problem posing and solving mode is activated:

1. Is it always possible to write down the nth term of the sequence for any given natural
number n? How can one establish this possibility or impossibility without doubt?

2. By what means can we produce the nth term?

3. Can this job be performed by a computer?

4. How fast can this be done?

5. Can one determine efficiently whether an arbitrarily given string of digits is a particular
term of this sequence?

Since the rule for generating the next term of this sequence makes use of the current term,
the job of producing the nth term in this sequence is of a recursive nature. This indicates that
we have a good chance to tackle Problems (1)–(3) collectively. We can rephrase these to a
single problem:

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

75



Problem 1 Write a program that takes an integer n and returns the nth term of the following
visual sequence:

1, 11, 21, 1211, 111221, 312211, 13112221, . . .

A program can be thought of as a function p that assigns to each input x a unique output
y, often denoted by f(x). The origins of functional programming paradigm can be traced back
to early development in theoretical computer science, such as the λ-calculus. This paradigm is
essentially a style of constructing structure and elements of computer programs by treating com-
putation as evaluation of mathematical functions; and, in particular, avoids state-transitions
and mutable data. Some popular functional programming languages include lisp, scheme,
OCaml and haskell. Apart from an excuse of convenience, we choose haskell because of
its versatility in dealing with two important data types that will be invoked in solving the above
problem: namely, the function type and the list type.

2.2 Understanding the problem

In any endeavor of coding a program that meets the required specifications spelt out in a
problem, the programmer must begin with the phase of understanding the problem at hand. It
is very common to see beginners in programming to be staring blankly at the computer screen
or trying their luck by lifting codes blindly from textbooks or web-pages. This is not to say
that there is no understanding at all – at least, a basic comprehension of the problem that
the desired program is a function that admits an integer input and prints a ‘sequence’ output.
Computer scientists call this type checking, i.e., in haskell we expect the desired function,
denoted by funseq, to have the following type:

funseq :: Int -> [Int]

The functional style of programming codes every program as a function f that expects such
input x and returns a unique output f(x). As in the mathematical definition of a function, we
expect that the domain and co-domain of the function to be specified. So, the program funseq

takes in an integer argument (of type Int) and returns a list of integers (of type [Int]). The
astute reader would have immediately recognize that we have employed a coding heuristic of
choosing a representation. More precisely, a term in the sequence is represented as a list of inte-
gers; for instance, 13112221 is identified with [1,3,1,1,2,2,2,1]. Note that haskell dictates
that the head of the list be defined as the zeroth term of the list, e.g., [1,3,1,1,2,2,2,1]!!0
returns 1 but [1,3,1,1,2,2,2,1]!!0 returns 3. The list representation is more meaningful
than the decimal representation because the odd positioned entries record the score (i.e., the
symbols occurring in consecution within the previous term) and the even positioned entries
record the corresponding frequency of occurrence.

2.3 Devising a plan

The problem at hand is still too complex, and computational thinking points towards breaking
up this task into smaller ones. This can be invoked by acting out the rule which is used to
generate the terms. We now demonstrate this particular coding heuristic. Suppose the current
term consists of

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

76



[1,3,1,1,2,2,2,1]

The program must read the elements in the given list starting from the head 1, proceeding
through its tail [3,1,1,2,2,2,1]. As it scans the head 1, it starts to check how many of
this symbol occur in consecution. It does so by moving on to the next element and check for
equality with the head. This movement to the next element and checking for equality with
the head continues until the equality fails or when the list is exhausted, whichever comes first.
The program then counts the frequency of occurrence of the head together with a record of the
head. After this is completed, the preceding procedure is the applied to the first symbol in the
tail which is different from the head, and so on till the entire list is exhausted.

By acting the rule out, the problem solving programmer identifies an important sub-task:

Problem 2 Design programs to (1) determine the depth of initial repetition, i.e., the length
of the longest initial segment of an input list consisting of consecutively repeating elements, and
(2) record the element that is being repeated.

2.4 Carrying out the plan

Carrying out the plan derived from ‘acting-it-out’, a program counteq (see Algorithm 3) which
meets the specification (1) of the above sub-task is then scripted as follows:

Algorithm 3 (Determining the depth of repetitions)
counteq :: [Int] -> Int

counteq [] = 0

counteq [x0] = 1

counteq (x0:x1:xs) = if (x0==x1) then 1 + counteq(x1:xs)

else 1

Notice that counteq makes use of case considerations via pattern matching, i.e., it knows
precisely what to do when presented with (i) an empty list [], or (ii) a list with only one element
[x0], or (iii) a list consisting of more than one element. In the last case, a recursive call for
counteq is invoked on a contracted list x1:xs. Hence the treatment is applied recursively on
shorter lists. Together with the addition of 1, this recursive call implements a counter that
calculates the frequency of the consecutively repeated elements which are equal to the head of
the list. In other words, counteq returns the length of the longest initial segment of an input list
that comprises consecutively repeating elements. For instance, applying the program counteq

to the list [0,0,0,1,3,3] yields 3. Running a test program on a number of data, though
incapable of establishing the correctness of the program, is useful to check if it is incorrect;
usually the bugs, if they exist, are detected at this verification check.

Meeting specification (2) is comparatively easy; this essentially calls for the in-built function
head which when applied to any list of the form (x0:xs) decapitates it to yield x0.

The knowledge of how deep one needs to scan, starting from the head of the input sequence,
before you hit a new symbol gives you a handle to break up the input sequence into segments
each of which contains the same symbol such that no two adjacent segments have the same con-
stant symbol. We call this intermediate program specification (3) the segmentation procedure
for the moment. At this juncture, it is important to recognize that the desired output consists
of a list of lists. To do this, it would be handy to fetch, from within an individual’s coding

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

77



resource or otherwise that of some haskell community, an in-built function splitAt that does
the job of breaking an input list into an ordered pair of two lists at a specified position. For
instance, splitAt 3 [0,1,2,3,4,5] returns ([0,1,2],[3,4,5]).

Coordinating all these together, one naturally arrives at the program breakseq performs
segmentation (see Algorithm 4).

Algorithm 4 (Segmentation)
breakseq :: [Int] -> [[Int]]

breakseq [] = []

breakseq (x0:xs) = (fst (p) : breakseq (snd (p)))

where p = splitAt (counteq (x0:xs)) (x0:xs)

So, applying breakseq to the list [0,1,1,2,2,2] expectedly yields [[0],[1,1],[2,2,2]].
Now it is easy to make use of this output of segmentation to complete the task. To each

member (a list, of course) of this list, we assign a list whose head is the length of the list (that
would take care of the frequency of repetitions) and whose tail is just the symbol that appears
in this segment. This histogrammatic assignment can be easily realized in Algorithm 5:

Algorithm 5 (Histogram)
histo :: [Int] -> [Int]

histo l = (counteq l:[head l])

For instance, histo applied to [2,2,2] yields [3,2] as there are 3 consecutive 2’s.
Given a program f :: a -> b, one can lift this program to the function type [a] -> [b]

at the list level using the following in-built program map:

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x0:xs) = (f(x0):map f (xs))

Applying map on histo, Algorithm applies the histogrammatic assignment throughout the
segmented list of lists so that, for instance, genfun yields [[1,1],[1,3],[2,1],[3,2],[1,1]]
when applied to [1,3,1,1,2,2,2,1].

Algorithm 6 (Generating function)
genfun :: [Int] -> [[Int]]

genfun l = map histo (breakseq l)

Aware that the desired output is a list instead of a list of lists, we now flatten this list of
lists using Algorithm 7 to yield the desired list:

Algorithm 7 (List flattening)
flatten :: [[Int]] -> [Int]

flatten [] = []

flatten (x:xs) = x ++ flatten xs

Here, the syntax ++ is just the concatenation of two lists (into one). Thus, we can, for conve-
nience, compose flatten with genfun using the haskell composition operator . by coding
as follows:

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

78



Algorithm 8 (Operating function)
opvisseq :: [Int] -> [Int]

opvisseq = flatten.genfun

This program operates on an input list to yield the next term of the visual sequence.
At this stage, the programmer sees the light at the end of the tunnel because all the necessary

tools for generating the next term of the visual sequence given a current term of the sequence.
All needs to be done is to create an auxiliary program (Algorithm 9) which when given a natural
number k and a list l returns the kth fold application of the operating function opfunseq, i.e.,
f (k), where f stands for opfunseq and k is the meaning of k.

Algorithm 9 (Auxilary program) auxvisseq :: Int -> [Int] -> [Int]

auxvisseq 0 l = l

auxvisseq k l = auxvisseq (k-1) (opvisseq l)

Now to obtain the kth term of the visual sequence, one just applies the above auxiliary
program on the seed list [1]. The programmer finally arrives at the desired program (Algo-
rithm 10) does the advertised specification described in Problem 1.

Algorithm 10 (kth term of the visual sequence)
visseq :: Int -> [Int]

visseq k = auxvisseq k [1]

2.5 Checking and extending

Looking back, we realized immediately that the main program visseq was constructed by
building subprograms. This can be seen as a (local) version of modularized programming. While
this programming style evolves from the basis of decomposing a complex problem into simpler
tasks, it has a pleasant consequence that the programmer’s job of debugging the program (in
case it contains bugs) is made easier because of the possibility of problem isolation. Frequently,
one needs to review the logical flow by relying on flow charts when programs are taken in
isolation or structure charts when things are taken in entirety, e.g., in modularised programs.

As we have pointed out earlier, checking the correctness of each algorithms is a constant
activity that a programmer engages up to the point when he or she is satisfied that the coded
program does what it is supposed to do. Usually, this is accomplished by using random data
checks. What is often missed out at this phase is that the programmer does not (or has no
such ability) to reason about program correctness. By reasoning about programs, we mean
a rigorous (in fact, mathematical) proof that affirms that the written code meets the given
specification.

A crucial, but often overlooked, cornerstone of computer science is programming language
semantics. In semantics, one gives meaning to the syntax by means of evaluating the terms,
i.e., syntactically legal strings, to some mathematical universe. As an example, we can reason
how the program map does its job. In the denotational approach, we can think of data types
σ (e.g., a, b, . . .) as certain kind of partially ordered sets1. The denotational model we use
here is the Scott domains model invented by Dana Scott in the 1970s. Given that each data

1In the Scott model of computation, these partially ordered sets are called domains.

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

79



Figure 1: Data structure of list type [σ]

type σ is interpreted as some set Dσ, one then interprets the associated list type [σ] as the set
D[σ] = 1 + Dσ × D[σ]. Here the data type 1 just contains non-termination, signifying that an
element of a list may not return any output in finite time. The above recursive definition of D[σ]

gives rise to the fractal (data) structure as shown in Figure1. In the above model, we can now
reason out how map works. Given a program f :: a -> b which denotes the mathematical
function f : A → B, where A = Da and B = DB. This function preserves certain order-
theoretic structures of A. Thus, the program map f can be thought of as the mathematical
function [f ] : [A]→ [B], where [A] = D[a] and [B] = D[b], and

[f ] : (a0,~a) = (f(a0), [f ](~a)), (a0,~a) ∈ [A].

Note that [f ] is the least fixed point solution to the above recursive equation because the Scott
denotational model guarantees so. Moreover, the function correctly outputs as ‘head’ of the list
the element f(a0), which is what map f is supposed to do. Though the precise mathematics is
left out of this present description, it is still evident that a mathematical method is available
to the programmer who wishes to know for certainty whether the program he/she has coded
is correct. This then completes the process of formal verification.

3 Framework for computational thinking

The experiential session that we have just brought the reader through allows us to tease out
various salient aspects of the disciplinarity of a programmer. In order to implement a pedagog-
ically sound curriculum for computational thinking, a framework which illustrates the various
fundamental components, together with a central theme, must be be called for. Informed of the

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

80



Notions Competencies Procedures Disposition Metacognition
data structure mathematics heuristics precision self-regulation
algorithm error handling problem perseverance control

reduction
systems code organization problem belief awareness of

decomposition requirements
database code readability error handling interest
languages scripting modularisation confidence
semantics communicating verification knowledge awareness of

of upcoming resources
technologies

automation tool knowledge build automation integrity
complexity logical reasoning system decomposition creativity
program logic testing documentation resourceful
recursion debugging defensive coding meticulous
security judgement encryption and analytical awareness of

risk assessment environment

Table 1: Framework for computational thinking

peculiar disciplinarity of programming, we now give a sketch of what possibly such a framework
may look like.

The heart of computational thinking is problem solving. This problem solving theme tran-
scends through all levels and components of the activity of computing. To empower a computa-
tional thinker and problem solver, we propose that the five essential components are (1) Notions,
(2) Competencies, (3) Procedures, (4) Disposition, and (5) Metacognition. This framework is
somewhat reminiscent of the Singapore Mathematics Framework, except for the different items
categorized under each component that are particular to the computational thinking.

Notions refer to key concepts salient to computational reasoning and coding, e.g., data
structures and algorithms. Competencies are the core skills essential for a programmer when
he or she engages in coding activities. Computational thinking exhibited through coding also
involve procedures and processes, such as modularisation, and risk management. Coding calls
for a special disposition characterised by precision, creativity, etc. Lastly, metacognitive or
self-regulatory aspects are invoked in computational thinking.

We recommend that any lesson design that aims to encourage computational thinking,
especially through coding activities, be crafted around the aforementioned five components.
Because problem solving is central in this framework, coding problems should be designed with
a focus of solving real-life problems.

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

81



4 Professional Development for Teachers

Despite the importance of coding and computational thinking and their relationship to the
learning of mathematics, many mathematics teachers in Singapore are not taught computing
or programming either as an undergraduate or as a student teacher. In fact, some of them
sometimes feel overwhelmed by the abundant and rising use of technology in mathematics
classrooms. In this section, we showcase how the framework for computational thinking devel-
oped in the preceding section can be implemented in authentic classroom situations. Here, we
intentionally work with an imperative language VBA to illustrate language-independence in
the teaching of computational thinking.

4.1 A course on computing for teachers

A course entitled “Computing and Programming Techniques” was made available to math-
ematics teachers in Singapore by the National Institute of Education (NIE). This course is
an introduction to programming using a common programming language. The focus will be
on writing computer programs for mathematical computations and problem solving. Topics
include computer basics, data, statements, control flow and structures, arrays, functions and
subroutines, recursive techniques, testing and debugging.

The broad objectives of this course include introducing participants to the basics of comput-
ing and programming for the purpose of mathematical problem-solving, exposing participants
to the use of a common IT tool in performing mathematical computations and solving math-
ematical problems, including problems involving mathematical modelling, and developing the
ability to construct solutions to problems on a common platform using the concepts and tools
learnt.

The course serves to meet the need for a professional development programme in coding,
with an aim to providing opportunities for mathematics teachers to link the essential skills
involved in programming and computing to those required for mathematical problem solving.

In principle, the actual language used to deliver this course is irrelevant and any suitable
programming language (such as Python, java, C++, MATLAB and so on) may be used. In 2014
when this course was last conducted, it was decided that the platform used would be Microsoft
Excel’s Visual Basic Applications (VBA). The main reason for the choice is that MS Excel is
both available and readily accessible to most school teachers in Singapore. Any other choice
may pose problems of either licensing issues or difficulties in accessibility. In addition, most,
if not all, school teachers in Singapore are already familiar with using Excel as an electronic
spreadsheet, and thus using VBA in Excel would be a natural and logical extension of their
current knowledge and skills in this area.

The course was run over a period of 13 weeks, with three hours of contact time each week.
Lectures were conducted in a computer laboratory, where hands-on activities may be carried
out, and were sometimes supported with videos, especially on topics that involved basic skills.
An example is a short video clip on using Excel to generate a scatter plot, which is available
at : https://youtu.be/bHncSzKaolw .

Videos were also provided for to help participants with certain parts of the exercises. For
instance, one of the exercises had involved constructing animations using Excel with VBA. Since
animation was involved, a video showing the intermediate stages as well as the end product
would be most helpful for participants to know what was actually required. An example of a

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

82

https://youtu.be/bHncSzKaolw


video for an exercise on developing a “projectile game” (not unlike the popular Angry Birds
app) is available at: https://youtu.be/oIS9bUOdmhc .

4.2 Mini Project

Participants in this course were assessed continuously throughout the course. Besides the usual
quizzes, which involve practical components, and a final test, assessment for this course also
includes a small project which constitutes 30% of the final assessment. In fact, feedback from
participants seems to suggest that this was the “highlight” of the course.

In this “mini project”, the task is to develop an Excel VBA application worksheet using the
techniques and skills covered in the course. The application should be sufficiently substantial
to demonstrate appropriate and correct use of the programming techniques of VBA. This task
is to be completed individually.

Participants are free to choose any topic or problem they wish to solve. However, the topic
should fall in one of the following four categories.

1. Mathematical modelling (involving data manipulation, simulation, or animation)

2. Solving a mathematical problem

3. Mathematics Education (on teaching of some mathematical topic)

4. Games

The scope of the chosen problem should involve a good range of the techniques taught and
through their application, participants are required to demonstrate the use of Form Controls,
Subroutines and Functions, different data types, built-in VBA functions, some program control
statements (such as the “if then else” construct, or the “for” and “while” loops) and some form
of interaction with the user. In addition, the application should be properly designed to provide
the best user experience. Participants were given about 6 weeks to complete this project; a
written report and an oral presentation formed part of the overall assessment for this project.

Of the many mini projects that were turned in, two have been chosen to be discussed in
this paper.

Example 1: Teaching of Probability
This project contains a few applications which simulate certain experiments that may be used
in the teaching of probability, and has an attractive opening interface (See Figure 2). This
project therefore falls under Category 3 (Mathematics Education).

As an illustration, clicking the “Tossing of 3 coins” brings up the worksheet in which the
user may simulate the outcomes if three coins, possibly with some bias, are tossed. The work-
sheet shows the experimental probability as the simulation iterates and a simple tree diagram
illustrates the concept further (see Figure 3).

From the VBA code written to run this application, it is clear that apart from coding skills,
some demands of mathematical problem-solving skills were made. For instance, in constructing
the simulation of tossing a biased coin, one has to know how make use of the usual pseudo-
random number generator provided in VBA. In addition, the programmer also needs to check
the output, and verify that the outcome is as expected.

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

83

https://youtu.be/oIS9bUOdmhc


Figure 2: “Teaching of Probability” project interface

Figure 3: One of the applications within the “Teaching of Probability” project

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

84



This project involved running simulations to provide some form of verification of certain laws
of probability. While constructing this application, the programmer will need to think about
the laws of large numbers, present the experiment for human consumption, and conceptualize
the whole experience for the user. In the words of Wing [14], computational thinking was very
much in the thick of the action as the participant carried out this project.

Example 2: MineSweeper
This project uses Excel with VBA to implement the once popular and common game known
as “Mine-Sweeper”, and naturally falls under Category 4. The application allows the user to
choose the size of the board (from 2 × 2 to 30 × 30), and the level of difficulty of the game
(“Easy”, “Hard”, “Insane”). A screenshot of a typical game is shown in Figure 4

Figure 4: Screenshot of the “MineSweeper” project

To successfully create this game on VBA Excel, the code required will need to be carefully
written to take into account the design of the board, keeping track of the variables, checking
various conditions as the game progresses. The systematic and meticulous approach towards
constructing this game on Excel with VBA is evident in the code submitted by the participant.
This is also one important attribute that is not only related to mathematics learning but also
one that is valued by mathematics educators.

From the examples presented above, we can see that the course has somewhat enabled
participants to develop certain skills, attributes and competencies. What is equally important
but not explicit in these examples is the fact that many of the participants have had to face
initial struggles in completing this part of the course. However, almost all successfully produced
a reasonably acceptable piece of work. In fact, out of 17 participants in the course, only one
was deemed to have not met the standards required for this project.

More importantly, the course has successfully provided participants with the opportunity to
learn programming or coding, albeit within the Excel VBA platform. Through the process, and

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

85



in particular the mini project, participants have acquired and developed their computational
thinking, which, we hope, will in turn help them further develop their mathematical thinking.

5 Reflection and conclusion

Computational thinking is best learnt and taught through doing. By planning the curriculum
around the proposed framework, the second author implemented a course in computing and
programming techniques to a class of graduate students. Throughout the course, the students
had ample chance to develop their computational thinking via coding. At the end of the course,
students displayed competencies in computing and programming techniques and developed
VBA application worksheets.

In this paper, we have highlighted the disciplinarity of coding by using an experiential
walk-through with a programmer at work (with haskell). Based on this, we build a curricu-
lar framework that supports computational thinking in the classroom. Computational thinking
can be developed through the practice of coding. This proposition is supported by episodes of
a graduate course, taught by the second authors, in which students develop coding competen-
cies vba. The positive feedback from these students gave the authors a reassurance that the
framework so drawn has indeed addressed certain salient aspects of computational thinking.

References

[1] Malaysia aims for 60 percent of children to take up STEM education - Najib (2014, Septem-
ber). Bernama. Retrieved from http://english.astroawani.com/malaysia-news/

malaysia-aims-60-percent-children-take-stem-education-najib-44509

[2] Barr, V., & Stephenson, C., “Bringing computational thinking to K-12: what is involved
and what is the role of the computer science education community?”, ACM Inroads, vol. 2,
no. 1, 2011, pp. 48-54.

[3] Bundy, A. Computational thinking is pervasive. Journal of Scientific and Practical Com-
puting, Vol. 1, No. 2.

[4] Jones, S. P., Mitchell, B. & Humphreys, S., “Computing at school in the UK”, CACM
Report, 2013.

[5] Lu, J. J., & Fletcher, G. H. L., “Thinking about computational thinking,” Proceedings of
the 40th ACM technical symposium on Computer science education, ACM, New York, NY,
USA, pp. 260.

[6] Mervis, J., Obama Advisers Call for Greater Emphasis on STEM Education (2
September 2010). Science. Retrieved from http://news.sciencemag.org/2010/09/

obama-advisers-call-greater-emphasis-stem-education

[7] McComas, W. F., “STEM: Science, Technology, Engineering, and Mathematics”, The Lan-
guage of Science Education, 2014, pp. 102-103.

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

86

http://english.astroawani.com/malaysia-news/malaysia-aims-60-percent-children-take-stem-education-najib-44509
http://english.astroawani.com/malaysia-news/malaysia-aims-60-percent-children-take-stem-education-najib-44509
http://news.sciencemag.org/2010/09/obama-advisers-call-greater-emphasis-stem-education
http://news.sciencemag.org/2010/09/obama-advisers-call-greater-emphasis-stem-education


[8] Perkovic, L., Settle, A., Hwang, S. & Jones, J. (2010). A framework for Computational
Thinking across the Curriculum, Proceedings of the 2010 Conference on Innovation and
Technology in Computer Science Education, 2010, pp. 123-127.

[9] Poundstone, W., (2012). Are you smart enough to work at Google? New York, Little,
Brown and Company.

[10] Transcript of Prime Minister Lee Hsien Loong’s speech at Smart
Nation launch on 24 November, 2014. Prime Minister’s Of-
fice, Singapore. Retrieved from http://www.pmo.gov.sg/mediacentre/

transcript-prime-minister-lee-hsien-loongs-speech-smart-nation-launch-24-november

[11] Skemp, R. R., “Relational Understanding and Instrumental Understanding”, Mathematics
Teaching, 77, 1976, pp. 20-26.

[12] Lee, P., Science, technology, engineering, math skills crucial to Sin-
gapore for next 50 years: PM Lee (8 May 2015). The Straits Times.
Retrieved from http://www.straitstimes.com/singapore/education/

science-technology-engineering-math-skills-crucial-to-singapore-for-next-50

[13] Teng, A., More kids to learn programming in Smart Nation push (2014, December).
The Straits Times. Retrieved from http://origin-stcommunities.straitstimes.com/

education/primary/news/more-kids-learn-programming-smart-nation-push

[14] Wing, J. M., “Computational Thinking”, Communications of the ACM, Vol. 49, No. 3,
March 2006, pp. 33-35.

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

87

http://www.pmo.gov.sg/mediacentre/transcript-prime-minister-lee-hsien-loongs-speech-smart-nation-launch-24-november
http://www.pmo.gov.sg/mediacentre/transcript-prime-minister-lee-hsien-loongs-speech-smart-nation-launch-24-november
http://www.straitstimes.com/singapore/education/science-technology-engineering-math-skills-crucial-to-singapore-for-next-50
http://www.straitstimes.com/singapore/education/science-technology-engineering-math-skills-crucial-to-singapore-for-next-50
http://origin-stcommunities.straitstimes.com/education/primary/news/more-kids-learn-programming-smart-nation-push
http://origin-stcommunities.straitstimes.com/education/primary/news/more-kids-learn-programming-smart-nation-push

	ATCMProceedings2015_CombinedInvited.pdf
	3892015_20771-Todd
	Solve First – Ask Questions Later: discovering geometry using Symbolic Geometry and CAS
	Saturday Academy
	2. An Inscribable Circumscribable Pentagon
	3. Limiting forms of Triangle Defined Circles
	4. Telescope Aberration
	5. Solar Cookers
	5. Cusps on Circle Caustics
	6. Conclusion
	References


	3892015_20826-Yang
	Introduction
	Seeing is just beginning
	Animations Make Mathematics Fun to Explore
	Locus and Optimization Problems
	Explore Real Life Problems
	Conclusions

	3892015_20829-Vallejo
	Introduction
	The log function: Entropy and genomics
	Analytic Geometry: Cassegrain antennas
	Polynomials: Reed–Solomon corrector method
	Conclusions

	3892015_20831-Jingzhong
	3892015_20849-Ho
	Introduction
	Disciplinarity of coding
	Problem posing and solving
	Understanding the problem
	Devising a plan
	Carrying out the plan
	Checking and extending

	Framework for computational thinking
	Professional Development for Teachers
	A course on computing for teachers
	Mini Project

	Reflection and conclusion

	3892015_20859-Arganbright
	3892015_20898=Qun
	3892015_20977-Ghosh
	3892015_21005-Yuan
	3892015_21030-Kissane
	3892015_21044-Khairiree
	3892015_21063-McAndrew
	Introduction: a personal journey
	Why use open source?
	A far too brief introduction to some open-source software
	Computer Algebra Systems
	Numeric Software
	Assessment tools

	Conclusions


	ATCMProceedings2015_CombinedContributed.pdf
	3892015_20773-Todd
	3892015_20830-Maeda
	3892015_20865-Skillen
	3892015_20912-McAndrew
	Introduction
	A gallery of neusis constructions
	Enter the conchoid
	Using dynamic geometry software
	Solving cubic equations
	Conclusions

	3892015_20919-Li
	3892015_20920-Oeyen
	3892015_20922-Yao
	3892015_20930-Wei
	3892015_20931-Jiajia
	3892015_20934-Ping
	The educational technology software used in mathematics teaching of high school
	Application of Ti calculator
	From Ellipse to multi-oval
	Conic sections cutting
	Normal distribution curve
	Fractal


	3892015_20935-Ping
	Platonic Solids
	Archimedean Solid
	Construct Through Truncation

	Construction Through Edge Cutting and Corner Truncating
	 Catalan Solid
	Stellation
	Constructing Polyhedron through Extending
	Construction by Mutual Containing


	3892015_20940-Wei
	3892015_20941-Li
	3892015_20943-Yubing
	3892015_20944-Dahan
	3892015_20947-Sato
	3892015_20948-Nagai
	Introduction
	Boolean ring of a power set algebra
	Computation of Boolean Gröbner bases of a finite powerset algebra
	Efficient BGB software
	Coding in SageMath
	Computation Data
	Hierarchy of Sudoku puzzles
	Conclusions and Remarks

	3892015_20958-Kitamoto
	3892015_20974-Fukuda
	3892015_20975-Fukuda
	3892015_20988-McAndrew
	Introduction
	The Survey
	Discussion of the survey
	Conclusions

	3892015_21034-Makishita
	3892015_21045-Yingprayoon




