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Abstract

In this paper, we will discuss challenges and discoveries the author has encountered
and explored while using technological tools in teaching and research since the inaugural
ATCM in 1995. We know that the graphing capabilities of a computer algebra system
(CAS) and the use of graphing calculators in the generation of plots has revolutionized the
teaching, learning, and research of mathematics. We shall use examples to demonstrate
generated scattered plots for speci�c tasks when dynamic geometry system (DGS) is
used. The question has become, however, if we, as educators, can inspire students to see a
scattered plot, produced from a speci�c task, and have them readily identify the equation
to the corresponding scattered plot? Finding appropriate equations can be an interesting
and challenging enough task in two dimensions. It becomes even more of a challenge if we
ask students to �nd equations for what is seen in three dimensions, real-life scenarios. If
learners can visualize what is seen with the help of a technological tool, we hope students
will be inspired to investigate problems further. We will also re�ect on what Professor
Wu, Wen-tsun (see [13]) had envisioned in his plenary speech at the �rst ATCM in 1995
and will explore his predictions and visions as they apply today.

1 Introduction

In his plenary speech at the �rst ATCM of 1995 given by Professor Wu, Wen-tsun, (see [13]), he
envisioned elementary di¤erential calculus with geometric applications be taught in high schools.
One may interpret this as a vision of calculus being made more accessible to high school students
with the hope of having students being exposed to more real-life applications. How could this be
accomplished? Teaching the procedures of graphing function f in a traditional calculus setting
by using its �rst and second derivatives in a traditional, pencil and paper manner was often a
di¢ cult task. Students often became frustrated when making simple algebraic mistakes on the
�rst and second derivatives. As a result, students could not graph f and were left with little
time to explore (or even reach) the real-life optimization problems. In the early 1990�s with the
advent graphical tools, many educators phased out algebraic manipulation by hand and placed
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more emphasis on conceptual understandings with the assistance of the new, readily available
graphical tools. One typical example involves being given a set of graphs which represent f; f 0

and f 00, where students need to identify proper graphs for f; f 0 and f 00 respectively. Another
example is stated as follows: The graph of the derivative function for a function f is given in
Figure 1. Assuming the x-intercepts for the following graph are respectively at x = 1; 3; and
5:
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Figure 1.

Students are asked to (a) explain why f has an in�ection point at the place where f 0 has a
local maximum or local minimum, and (b) sketch the graph for a possible f: The purpose of
both examples is for students to understand the relationship among f; f 0 and f 00 conceptually.
In 2002, thanks to the device that integrated DGS with CAS such as [1], the author were able
to demonstrate one intuitive way of visualizing why (sinx)0 = cosx and sin2 x + cos2 = 1 to
students by the following steps:

1. We �rst draw the graph of y = sinx (See Figure 2 in blue),

2. we construct a tangent line at a point A on the curve of y = sinx (see Figure 2 in black),

3. we animate the point A along y = sinx in a domain of x;

4. we collect the coordinates for A while A moves along the curve y = sinx (see �rst two
columns from Table 1),

5. we collect the slopes of the tangent lines at A (see the last column from Table 1),

6. we drag x component of A and the Slope of the tangent line into the graph (highlighted
in two bold columns from Table 1 to get Figure 2.

7. In Figure 3, we see the original blue curve of y = sin x and the red scattered plot by
construction, what is this graph? [We know this should be that of y = cos x:]

8. If we use the second column (y = sinx) and third column (y = cosx) from Table 1 and
drag them into the picture of the Figure 4, we see a graph which is close to a circle. Do
you know the equation of the circle? It should be the circle of x2 + y2 = 1 because we
are sketching a parametric curve of x = sin t and y = cos t by using these two respective
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columns from Table 1.

Figure 2. Tangent line
at a point of y = sinx

Table 1. Data
points for
y = cos x

Figure 3. Blue is
y = sinx and Red
is y = cos x

Figure 4.
sin2 x+ cos2 = 1

The next example was encountered in 2002. The author was surprised, while exploring
[1], by how to visualize the scattered plot for the derivative of an implicit function and asked
students how the equation of the plot came about. We start with an arbitrary ellipse of
0:5109x2 + 1:456y2 � 0:3584xy + 0:1247x � 0:09944y � 0:7033 = 0;which is shown in black of
Figure 5. By collecting the slopes of the tangent lines at various point D on the ellipse, we are
able to visualize the scattered red plot that is shown in red in Figure 5. Since we can see the
plot, we may pose the following questions:

1. Can you identify what the red curve is? [By the way of construction, the red curve is the
scattered plot for the derivative of the given ellipse.]

2. How do you verify the red curve represents the derivative of the ellipse equation? [First
we solve the equation of the ellipse in terms of y; which yields in two branches, let�s say
y1(x) and y2(x): Next we �nd d

dx
(y1(x)) and d

dx
(y2(x)) : Finally, we sketch y = d

dx
(y1(x))

and y = d
dx
(y2(x)) :
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3. Why do you see the vertical lines shown in red below? [We note that for each of y1(x)
and y2(x); we have two vertical tangents.]

With some exploration using available technological tool(s), we are able to make our teaching
methods and contents interesting and make students ponder and understand content both
visually and mathematically.

Figure 5. Derivative of
an ellipse

We further remark that the concept of uniform continuity (one size of � that �ts all given
� > 0) is important for learning advanced mathematics such as in Riemann integration theory.
The author realizes that using graphical capability from a CAS can assist students to capture
key concepts behind uniform continuity. Moreover, visualization using graphs can motivate the
concept of uniform convergence for a series of functions, simulate a function that is nowhere
di¤erentiable but continuous functions, and the Gibbs phenomenon from a Fourier series (see
[15] or [16]). In Section 2, the author shares how a discrete probability problem can be turned
into a continuous calculus optimization problem. In Section 3, we use examples to show how
animations can make students be more interested in mathematics and how animation problems
can be both interesting and challenging. In Section 4, we use technological tools to demonstrate
how a challenging university entrance examination (practice problems) from China can be made
accessible and interesting. Moreover, those entrance practice problems can be used for further
exploration when technological tools are available. In Section 5, we mention some real life
problems that are encountered but not would have initially thought would relate to the world
of mathematics.

2 Seeing is just beginning

We show in the following example how we can turn a discrete probability problem into an
analytical problem (see [19]), and use the graphical and computational capability within a
CAS to solve this problem.

Example 1 Suppose we have n white balls and n black balls which we are going to place in
two urns A and B (in any way we please), as long as at least one ball is placed into each urn.
After this has been done, a second person walks into the room and selects one ball at random.
Our problem is to maximize the probability that this person draws a white ball..
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We suppose that the distribution of the balls in the urns A and B is as described in the
following table:

A B
Number of White Balls x n� x
Number of Black Balls y n� y

If P (x; y; n) is the probability that a single ball drawn at random will be white then

P (x; y; n) =
1

2

�
x

x+ y
+

n� x
2n� x� y

�
:

From now on we shall assume that n = 50: We begin our educational guesses of where
the maximum for the function by looking at the Table 2, which shows the numerical values of
P (x; y; 50) ; and the graph of z = P (x; y; 50) as shown in Figure 6.

P (0; 1; 50) = : 25253 P (1; 0; 50) = : 74747
P (1; 1; 50) = : 5 P (2; 1; 50) = : 58076
P (1; 2; 50) = : 41924 P (25; 25; 50) = : 5
P (50; 1; 50) = : 4902 P (1; 50; 50) = : 5098
P (50; 0; 50) = : 4902 P (50; 49; 50) = : 25253
P (49; 50; 50) = : 74747 P (49; 49; 50) = : 5

Table 2. Table of P (x; y; 50)

To solve the problem analytically we need to �nd the maximum value of the expression
P (x; y; 50) as the point (x; y) varies through the rectangle [0; 50]� [0; 50] from which the points
(0; 0) and (50; 50) have been removed.
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Figure 6. Plot for a probability function

From the looks of this surface it seems unlikely that the maximum value of z will be achieved
at a critical point. The maximum appears to be at the left or right extremities of the �gure. If
we solve the following equations

@

@x
P (x; y; 50) = 0 and

@

@y
P (x; y; 50) = 0;

then we obtain
fy = 25; x = 25g :
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As we have already seen, the maximum value of z does not occur at the point (25; 25) :We
conclude that the expression P (x; y; 50) takes a maximum value of :74747 at the point (0; 1)
and again at the point (49; 50) : This means that we can maximize the probability that a white
ball will be selected by placing no white ball and just one black ball in urn A and all the other
balls in urn B. Alternatively we can place no white ball and just one black ball in urn B and
all the other balls in urn A. We refer readers to explore other possibilities at [19].

3 Animations Make Mathematics Fun to Explore

In Wu�s plenary speech at ATCM 1995 (see [13]), he emphasized that Algebra and Geometry
should work in congruence with teaching. One may interpret his remarks as follows: If we
integrate CAS with DGS in the evolving technological era, we can discover many interesting
problems. From 2012-2015, the author had numerous opportunities to discuss how mathematics
can be made more interesting with animations and with the developer of geometric software V.
Shelomovskii and his team (see [4]).

Example 2 We consider Figures 7(a)-7(c) below constructed by V.SHELOMOVSKII using
[4].

Figure 7(a) Fish with
space curve

Figure 7(b) One �sh
bumps into the other

Figure 7(c) Change the speed
of one �sh

We ask the following questions to those students who have learned the concepts of space
curve and the Frenet.Serret frame. Instead of asking how �sh, in Figures 7(a)-7(c), can be
generated, we pose the following general questions:

1. How can we make a 3D �sh swim in a space? [We �rst select a space curve for a �sh to
follow. Next, we determine the unit tangent vector, unit normal vector and unit binormal
vector at each given point on the space curve. We then pick a point on the �sh in such a
way that the �sh is following the direction of the unit tangent vector at the given point
on the space curve. ]

2. Describe, in mathematics term, how two �sh can swim without running into each other.
[We may choose two non-intersecting space curves for two respective given �sh to follow.
Of curse two �sh should not be too wide (see animation from [6]).]
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3. What about three �sh? Is it su¢ cient that we create three non-intersecting space curves,
then three �sh will not run into each other? [As we see from Figure 7(b) that one �sh
might run into the other (see animation from [7]). Thus we may make one �sh swim
slower or faster than the other two so they do not run into each other (see animation
from [8]).]

4. How do we make sure �sh not to swim upside down? [Since in real life scenario, �sh do
not swim upside down. We therefore carefully select the unit binormal vector at every
point on the space curve to be pointed upward.]

This example shows that the integration of Geometry and Algebra is crucial for advancing
knowledge in mathematical �elds. Furthermore, the example demonstrates the basic skills
needed in calculus (for both students and teachers) as applied to solving open-ended, ex-
ploratory activities which have become more prevalent in current mathematics curriculum.

4 Locus and Optimization Problems

The author was surprised to see many interesting locus problems on both university entrance
exams and university pre-test practice problems. We consider the following problem which has
been modi�ed by the author from the original practice problem (see [10]).

Example 3 We consider the following Figure 8. We are given a �xed circle shown in blue (or
inner circle) that is centered at (0; 0). The point C is a �xed point that lies on the x�axis: The
points E and F are on the inner circle so that the angle ]FCE is kept as 90-degree. We form
the rectangle GFCE; by using two perpendicular edges CF and CE to �nd the point G: (a) Find
the locus of G. In addition, the author added the following follow-up questions for students to
explore when technological tools are at hand. (b) Find the locus of G if ]FCE = 30; 60 degrees
and etc. (c) Find the location of G so that the area of GFCE yields a maximum while ]FCE
is kept as 30; 60 or 90 degrees respectively.

Figure 8. Locus in red when
angle is 90 degree
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We assume the equation of the circle is x2 + y2 = 4, the point C = (1; 0), the angle
]FCE = 90: We leave other scenarios to readers as exercises. Indeed, it can be proved
analytically that the locus of G is a circle that is centered at (0; 0): In this example, we will
not �nd the locus of G analytically but we show how technological tool can be used for making
conjectures that hopefully will inspire more students be interested in mathematics. The red
plot is generated by using the coordinate of the point G when the point F is animated along
the circle. We use the techniques that we have used earlier when visualizing (sinx)0 = cos x:We
recall that G is constructed by using the equation of

�!
CG =

��!
CE +

�!
CF:Therefore we can make

the scatter plot for the locus of G that is shown in red curve of Figure 8. Similarly, we adopt the
same technique to generate the scattered plot of the area function against the x�component of
F; which can be seen in red of Figure 9(a). The red also shows the location of F; which roughly
corresponds to the maximum value of the area. The Figure 9(b) shows the location of F which
roughly corresponds to the minimum area of the rectangle. It is natural to predict that we can
motivate more students to be interested in mathematics and make mathematics more accessible
if technological tools are used creatively to help them for visualization. Moreover, students can
be inspired to do more challenging problems too.

Figure 9(a). Scatter
plot of the area

function

Figure 9(b).
Estimate the location
of the minimum area

The preceding problem shed some lights on the importance of integrating the knowledge of
both CAS and DGS for training students in current environment. The following Example 4 is a
natural extension from Example 3. First, we use the dynamic software [4] to demonstrate how
the problem can be made accessible to most students and how the problem can be generalized
to more challenging ones in 2D and corresponding ones in 3D. In [13] , Professor Wu pointed
out that Geometry teaching should be applications-oriented. We believe that when DGS and
CAS are integrated, we can �nd more applications even from those problems found in university
entrance exam practice problems in China.

Example 4 Consider the following Figure 10, we are given the blue �gure (or thick curve) of
x2

2:242
+ y2

1:152
= 1 and the �xed point D = (1; 0) on the major axis. We are also given two �xed
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points E and F on the ellipse so that ]FDE = 90 degree. We form the rectangle GFDE by
using two perpendicular edges DE and DF: (a) Find the locus of G: (b) Find the location of E
so that the area of GFDE yields a maximum or minimum respectively.

Figure 10. Locus and an
ellipse

We �rst use a technological tool to simulate the plot of the locus, which can be seen in red
color of Figure 10 or black color of Figures 11(a) and 11(b). The question here is, of course, if
we can see the scattered plot for the locus of G; are we able to �nd its equation?
Similarly, we can sketch the scattered plot for the area function against the x � coordinate
of E; which is shown in red of Figure 11(a) or 11(b) below. Instead of �nding the locus of
G analytically in this paper but we shall show analytically but we shall show how we �nd
numerical solutions to where position E results in maximum and minimum area of GFDE
respectively. While exploring with [1] , we note the maximum area of the rectangle DEGF (see
Figure 11(a)) occurs when the x � coord of E near �2:16. Analogously, the minimum area
of the rectangle DEGF (see Figure 11(b)) occurs when the x � coord of E is close 2:24. We
shall show analytically and numerically with Maple that the maximum and minimum area of
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DEGF occur at x = �2:196627754 and x = 2:233594267 respectively for point E:

Figure 11(a). Scattered
plot and the maximum

area

Figure 11(b) Scattered
plot and the minimum

area

We outline how we optimize the area function by Lagrange Method. We consider x
2

a2
+ y2

b2
= 1

when a = 2:24 and b = 1:15:We set D = (1; 0); and note that E = (x1; y1) = (a cos'1; b cos'1)
and F = (x2; y2) = (a cos'2; b cos'2) are two points on the ellipse.

1. Equation 1 (Eq1): We substitute line DE into the equation of ellipse to get Eq1:

2. Equation 2 (Eq2): We substitute line DF into the equation of ellipse to get Eq2:

3. Equation 3 (Eq3): If � is the angle between DE and DF;we have cos � =
��!
DE���!DF

(k��!DEk)(k��!DFk) :

4. Objective function is the area function:

f(a; b; '1; '2) =

�q
(a cos'1 � 1)

2 + (b sin'1)
2

��q
(a cos'2 � 1)

2 + (b sin'2)
2

�
: (1)

5. (a) Consider the Lagrange function

L('1; '2; x1; x2; k1; k2; k3) = f(a; b; '1; '2) + k1Eq1 + k2Eq2 + k3Eq3: (2)

Set rL('1; '2; x1; x2; k1; k2; k3) = 0 and solve for '1; '2; x1; x2; k1; k2; k3 with the
help of Maple.

(b) We remark that using Lagrange method �nding the critical points only produces
necessary solutions where extreme values might occurs, we need to check numerically
and see which solutions produce the maximum area and minimum area respectively.
After numerical veri�cation with Maple, we �nd the maximum area occurs when
x1 = �2:196627754 and the minimum area happens when x2 = 2:233594267:

Discussions:
We describe further possible exploration activities below:
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1. Repeat the problem when we change the angle ]FDE to other �xed angles such as 30
or 60 degrees.

2. Explore if this locus and extremum problem can be generated to corresponding one in
3D.

We remark that these open ended projects are excellent choices for adopting technological
tools for exploring mathematics. Examinations alone cannot be the sole measurement of student
success. It will be important to see how math curriculums can include the component of
exploration with the help of technological tools and where real life exploration can be found.
In a recent article (see [12]), it is stated that �Taiwan plans a radical reform of its education
system, one aiming to set it apart in East Asia by playing up creativity and student initiative
instead of the rote of memorization curriculums that dominates classroom learning techniques in
this part of the world.�While many educators, researchers and parents would applaud this brave
and bold initiative, how the government can really implement this agenda remains to be seen.
Indeed, it is not enough to �say the right things�, but knowing how to develop implementable
and sustainable strategies to carry out the strategy. We outline necessary knowledge for teachers
so technological tools can be integrated in a math curriculum to motivate more students be
interested in the STEM (Science, Technology, Engineering and Mathematics) area.

1. Use DGS or similar technological tools to simulate animations in two dimensions.

2. Encourage students to make conjectures through their observations from step 1.

3. Encourage students to verify their results using a DGS or CAS for 2D case.

4. Extend students observations to a 3D scenarios with technologies if possible.

5. Prove the corresponding results for 3D cases analytically using a DGS, CAS or appropriate
tools.

6. Extend our results to �nite dimensions or beyond if possible.

5 Explore Real Life Problems

In [13] , Professor Wu pointed out that some of the geometry problems to be solved are those
problems arising from actual life. While investigating the general inverses in 2-D, 3-D and their
applications (see [14]), the author was led to the concept of caustic curve with the help of
Phillip Todd see a video clip in ( [11]). Caustic curve is the envelope of light rays re�ected
(or refracted) by a curved surface or object, see Figure 12(a) and the video clip at [11]. In the
di¤erential geometry of curves, the evolute of a curve is the locus of all its centers of curvature.
Equivalently, it is the envelope of the normals to a curve. Caustic curve is the evolute of the
orthotomic curve. Caustic is also the locus of all its centers of curvature of orthotomic curve or
the envelope of the orthotomic normals. However, the caustic surfaces have not been discussed
much in literatures. Author created the Figure 12(b) and the movie clip can be found at
[17]). The caustic surface was created when a light is re�ecting through a transparent cup. In
addition, after seeing the light and water show at Marina Bay (see Figure 12(c) or see movie
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clips at [18]) when author was visiting Singapore in January of 2014, author asked himself if
the water and light show has anything to do with the concept of caustic surface? If not, how
so? In addition, would it be cheaper to create similar e¤ects by using the concept of caustic
surface such as the one demonstrated in Figure 12(b)? Finally, since we can see such a water
and light show, are we able to use mathematics equations to simulate the e¤ect?

Figure 12(a).
Caustic curve in

2D
Figure 12(b). Caustic

surface in 3D
Figure 12(c). Is this related to

caustic surface?

The next real-life example shows that we would have hoped that the designers of the Vdara
Hotel in Las Vegas had some knowledge about the e¤ect of caustic surface. According to [2] ,
�When the Vdara hotel �rst opened in Las Vegas on December 1, 2009, visitors relaxing by the
pool would experience intense periods of heat at certain times of the day, at certain times of
the year. This intense heat was caused by the re�ection of solar radiation from the curved,
re�ective surface on the South-facing side of the hotel. This model shows how a caustic surface
is generated in the pool area around the time and date the problems were �rst reported.� (See
Figures 13(a),(b) and (c).)

Figure 13(a). Vicinity of
Vdara Hotel

Figure 13(b). Vectors of
solar radiation

Figure 13(c) High-intensity
shaded in red

In the same article, it states that �the animation (created by Ruud Börger) in [2] shows the
intensity of the rays projected onto the pool area between 11:30 am and 1 pm in September 2010.
As you can see, the high-intensity region starts initially on the side of the pool area closest to
the parking lot and then sweeps over the pool complex towards the road.� From this example,
it is natural to conjecture that technological tools will lead the general public to gain more
common knowledge which cannot be acquired otherwise. We, as educators, can predict that
future students should have broader knowledge on all subjects and their respective applications.
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6 Conclusions

We have heard from teachers and educators globally that students today are less motivated
and competent in basic algebraic manipulation skills than their counterparts from previous
years. Indeed it is a di¢ cult task to balance curriculums that emphasize the exploration of
mathematics while at the same time, require rote algebraic manipulation skills. On the one
hand, it is common sense that if a curriculum is laden with too much examination/testing
or is based solely on �teaching to the test�, such curriculums do little for the promotion of
creative thinking skills. Furthermore, curriculums stand to lose potential students who might
pursue math related �elds in the future. On the other hand, thanks to the rapid advancement
of technological tools, we have started seeing students exploring readily available knowledge
through the internet and other technologies. Students may not possess in-depth knowledge of
a �eld, but they are able to integrate various aspects of knowledge, possibly with the help of
technologies, to explore and complete viable projects. We have seen in many ATCM papers
where technologies have helped teachers, students, and researchers integrate knowledge from a
variety of �elds of study. We believe by integrating knowledge from Geometry and Algebra or
DGS with CAS, students will be able make their own conjectures e¤ectively and verify their
observations analytically. We know that by addressing the importance and timely adoption of
technological tools in teaching, learning, and research, we will never be wrong. Therefore, we
encourage ATCM communities to continue creating innovative examples by adopting techno-
logical tools for teaching and research and equally as important, in�uencing your colleagues,
communities, and decision makers in your respective countries to do the same. Selecting exam-
ples that can be explored from middle and high school, university level, and beyond, problems
should be STEM related by linking mathematics to real-world applications. If we can see a
plot through exploration with technological tools, we should encourage students to �nd the al-
gebraic equations representing graphs even if students may not have an in-depth knowledge of
a particular topic. After all, should students not be able to �nd a particular algebraic equation,
it at least provides motivation to such students to acquire higher mathematics knowledge in
order to do so. Technologies have made us re-evaluate how to make mathematics an interesting
and cross disciplinary subject. Through the advancement of technological tools, there is no
doubt that learners will be able to discover more mathematics and mathematical applications
in their lives.
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