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Abstract: In this paper we consider the application of two diverse software tools to simulate differential equation 
models developed for disease dynamic models. Specifically, we motivate the SIR disease epidemic model that consists 
of a system of differential equations that can be solved via numerical algorithms including Euler's method and Runge-
Kutta method. We implement these using a MATLAB literate programming approach and show how one can obtain 
best fit parameters for given data from the real-world and also visualize it using a graphical user interface (GUI). We 
also present an alternative approach using the AMPL Optimization software to do the same problem. The purpose of 
introducing the latter software is its capability to handle real-world problems with big data. The results obtained from 
both methods are comparable yielding similar best-fit parameters for a given set of data and they suggest that the 
methods proposed herein are reliable and robust for solving real-world applications. 
 
1. Introduction 
 Research in computational mathematics, which comprises of modeling, analysis, simulation 
and computing is quickly becoming the foundation for solving most multidisciplinary problems in 
science and engineering. These real-world problems often involve complex dynamic interactions of 
multiple physical processes which presents a significant challenge, both in representing the physics 
involved and in handling the resulting coupled behavior. If the desire to control and design the 
system is added to the picture, then the complexity increases even further. Hence, to capture the 
complete nature of the solution to the problem, a coupled multidisciplinary approach is essential. 
Therefore, performing research and teaching in computational mathematics needs an in-depth 
understanding of the underlying mathematics and the fundamental principles that govern a physical 
phenomenon as well as understanding the underlying technology that can be used efficiently to 
simulate the physical phenomenon. It is well 
known that many physical systems can be 
described by differential equations. Thus, 
understanding the behavior of the numerical 
solution to such equations is  important for 
elucidating the actual physical problem. 
Through our research in this field, we have 
come to appreciate that analyzing a 
numerical technique requires a combined 
theoretical and computational approach. 
Theory is needed to guide the performance 
and interpretation of the numerical technique while 
computation is necessary to synthesize the results. Therefore, the solution methodology involves 
formulating a mathematical model from a physical system and then being able to solve this model 
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Figure 1: A solution methodology for 
research in Computational Mathematics 

 



using an analytical (exact) or numerical (approximate) approaches. The mathematical models 
developed as a part of the research are then validated using real experimental data. This problem 
solving methodology is illustrated in Figure 1 and key ingredient that helps to perform the 
validations is technology [1]. 

Technology is important in both teaching and learning computational mathematics as it can 
not only influence the mathematics that is taught but also helps to enhance student learning. The 
word “enhances” is what characterizes technology as a tool with high leveraging power because 
technology can enhance a learning task. By tapping into these powerful technology tools in 
mathematics, we can take advantage of the dynamic capability to graph, model, compute, visualize, 
simulate, and manipulate, and amplify the mathematical properties and concepts.  This instructional 
technology focus has important implications in preparing teachers and students to teach and learn 
with technology. Not only must one understand the importance of enhancing content using 
technology but also promote the awareness of pitfalls if technology is not used with relevant 
information. One such example is the Patriot Missile failure, in Dharan, Saudi Arabia, on February 
25, 1991 which resulted in 28 deaths and was ultimately attributable to poor handling of inexact 
computer round-off arithmetic. Another example is the explosion of the Ariane 5 rocket just 40 
seconds after lift-off on its maiden voyage off French Guiana, on June 4, 1996. The destroyed 
rocket and its cargo were valued at $500 million [2].  

The focus of this paper will be on understanding the need to use technology tools efficiently 
in solving complex real-world problems that can be modelled via differential equations. 
Specifically, we will consider a classic disease dynamics problem arising from a real-world 
application that are solved numerically and implemented via two different technology tools. The 
first one involves implementing the models developed in MATLAB and creating a front-end 
graphical user interface (GUI) tool for the user and the second one involves using an optimization 
software AMPL that naturally admits solving problems that can be posed in a least-squares 
formulation with differential equations as constraints and allows computations with big data quite 
easily. In section 2, we will develop the proposed disease dynamics model. In section 3, we will 
describe the MATLAB program to develop the GUI related to the application. Section 4 introduces 
readers to AMPL (a modelling language for mathematical programming) and discusses the 
implementation of the same problem that was introduced in the MATLAB GUI development. The 
advantages of using both softwares will be discussed in the final section. 

 
2. Background, Models and Methods 
 Students are first exposed to differential equations in Calculus when they learn about the 
notion of a derivative followed by the anti-derivative and finally connecting these two big concepts. 
The traditional differential equations taught to students in Calculus are often separable where they 
learn to separate the respective variables and integrate to yield the solution. One of the standard 
applications students are exposed to in this process includes a function )(ty whose rate of change 

dt
dy is directly proportional to the function value )(ty . This leads to the underlying exponential 

growth and decay models yk
dt
dy

=  where k is a constant and the equation is a separable 

differential equation. With a prescribed initial condition 0)0( yy =  we obtain the familiar 
exponential solution tkeyty 0)( = . Variations of this equations arise in applications such as 



Newton's Law of Cooling/Heating or mixing problems where the differential equations takes the 

form cyk
dt
dy

−=  where both k and c are constants. Note that one can rewrite the differential 

equation to 





 −=

k
cyk

dt
dy  and with a simple transformation

k
ctytY −= )()(  we get Yk

dt
dY

= . The 

transformation also helps to modify the initial condition 
k
cyY −= 0)0(  which helps to compute an 

exponential solution. 
 While these separable differential equations admit an exact solution as indicated in Figure 1, 
as students transition to a traditional differential equation class they are exposed to more general 

linear differential equations  )()( xqyxp
dt
dy

=+ . One can see the relation of the variable 

coefficients )(xp  and )(xq which are continuous functions on some interval I, to be constants k and 
c respectively. Students are then introduced to the notion of an integrating factor that enables one 

to write the left side yxp
dt
dy )(+  of the equation as a derivative of a product which helps to 

compute the exact solution once again. As problems become more complicated, it necessitates the 
introduction of multiple dependent variables and forming systems of differential equations. Next, 
let us consider the development of one such system for modeling disease dynamics. 
             
2.1.  Modeling Epidemics          
 Over the last few decades, the theory of epidemics introduced by Kermack and McKendrick 
[3] employed mathematical ideas to describe how to determine the threshold size for a susceptible 
population in comparison to those infected that will help predict the dynamics of the epidemic. In 
fact, the theoretical epidemic threshold introduced through these early models has been observed in 
practice and helps to measure the extent to which a real population is vulnerable to spread of an 
epidemic.  Next, we present a simple coupled system that describes the disease dynamics when a 
fixed population is assumed to consist of three types of individuals defined by disease as: 
susceptibles (S), infectives (I) and removals (R). The model will assume that susceptibles can 
become infected upon effective contact with an infective, infectives will be assumed to have the 
disease and are capable of transmitting it, and removals are those who have recovered from being 
infected. Assuming the total population is fixed NtRtItS =++ )()()(  and that the population is 
thoroughly mixed (so that each individual has equal probability to make effective contact with any 
other individual in the population), we can derive the following popular SIR model: 

  I
dt
dRISI

dt
dISI

dt
dS γγββ =−=−=   (1)  

where β  is the contact rate of infectives (β  > 0) and γ  is the recovery rate (γ  > 0). Note that this 
system is easy to understand. The last of the coupled equation system (1) refer to the rate at which 
infected are removed (die or recover) is proportional to the number of infectives )(tI . The second 
term in the second of the coupled system (1) relates to the same individuals that are removed from 
the infective class. The first term in that equation refers to the new number of infectives per unit 
time being proportional to both the number of potential susceptibles and to the number of existing 



infectives that are capable of infecting others. The first equation in system (1) can be similarly 
interpreted as the number of susceptibles becoming infected and leaving. 
             
2.2. Numerical Solution          
 One way to help realize the solution to differential equations is to introduce the concept of 
slope fields that provides a graphical tool for visualization based on the principle of local linearity. 
The later promotes the necessity of thinking of the graphs of these differentiable functions to be 
locally "linear". A collection of such local line segments of various slopes obtained from the 
differential equation, forms the slope field which is a pictorial evolution of the family of solutions 
to the differential equation. While this notion of  linearity can be easily verified by using a graphing 
calculator by zooming into a function graph, this local linearity concept has given rise to powerful 
computational algorithms such as the Euler's method for solving differential equations numerically 
by producing a numerical table of approximations to the associated initial value problem. For 

instance, the Euler's method for 0)0(),,( yyytf
dt
dy

==  where ),( ytf is any general function, 

maybe implemented by a recursive sequence of approximate solutions for 1≥i  as: 
),(1 iiii ytftyy ∆+=+  where t∆ is the stepsize in time. The form of the recursive equation 

indicates the local linearity as it resembles the slope intercept form of a line, namely, bxmy += . 
Extending this to the system (4) we can obtain the following approximations for the susceptibles, 
infectives and removals for 1≥i : 
  iiiiiiiiiii ItRISItIISItSS γγββ ∆=−∆+=∆−= +++ 111  (2) 
While the Euler's method is very popular for its ease of implementation, it does have limitations in 
terms of accuracy. In a senior level numerical analysis class, students are often exposed to such 
limitations which helps them to look for more advanced methods that are high-order accurate. One 
such method is the Runge-Kutta method. Next, we will explain how we can implement system (1) 
using this high order method in MATLAB using a Literate Programming style [4]. 
 
3. MATLAB in Literate Programming Style 
 We will examine how MATLAB was used to implement the above numerical 
approximations, directly within this paper to allow the reader to understand the implementation 
step-by-step and reproduce similar results. First, to execute the SIR system, a function script file 
called sir_system.m was created as follows: 
 
 
 
This function outputs the result of the SIR-system. The inputs to this  
function subroutine are the time span, previous solution and parameter  
values in the same order. As the inputs come in, the values are stored 
 into the respective variables in system (1). 
 Finally to efficiently enter the approximate differential equation system (1), we take 

advantage of the vector form 



=

dt
dR

dt
dI

dt
dS

dt
yd ;;


 and its corresponding statement becomes: 

 

function dydt = sir_system(t, y, r) 

 
beta = r(1); 
gamma = r(2); 
S = y(1); 
I =  y(2); 
R = y(3); 

dydt = [-beta*I*S; beta*I*S - gamma*I; gamma*I]; 

 



This function subroutine is then called from the following main program called sir_main.m. First 
we enter the true experimental data for infectives collected over a time span of 14 days. 
 
 
 
Next, we enter the initial conditions. In this case we will consider the initial susceptible population 
to be 760, infectives to be 3 and none for the removal. We also enter the parameters β and γ  in the 
form of a vector and solve the system (1) using the built-in MATLAB differential equation solver 
ode45. Note that ode45 employs a high-order Runge-Kutta method which is much more accurate 
than the Euler's method. 
 
  
 
 
Finally, we plot the approximate solutions for the susceptibles, infectives and removals on the same 
graph along with the data collected. This is shown in Figure 2. 
 
 
 
 
 
 
 As indicated in Figure 1, it is often 
required to numerical solve problems that do 
not admit analytical solutions. Figure 2 
shows the approximate solutions produced 
by attempting to solve the system (4) 
numerically using a high-order accurate 
Runge-Kutta method. As figure 2 indicates, 
we are able to get a trend that we seem to 
expect such as the number of susceptibles 
going down as the number of infectives 
increasing and the number of removals 
increasing as the number of infectives 
decrease. The surprising fact is that the 
number of infectives computed from the 
numerical scheme does not really match the 
data. One way to efficiently solve the system 
as well as match the given data is to employ  
a process called parameter estimation which simply refers to the process of using sample data (data 
for infectives) to estimate the value of a population parameter (for example, the removal and 
infection rates). This can be done by doing a least-squares regression between the computed data 
from the MATLAB program described above and the true data collected to help estimate the best-
fit parameters that describe the trend in the data. We write this as a subroutine sir_lsq.m that finds 
the least-squares error. 

data = [3 6 25 73 222 294 258 237 191 125 69 27 11 4]; 
time = 1:14;  tspan = time; 

y0 = [760 3 0]; 
r0 = [.01 .1]; 
[t, y] = ode45(@sir_system,tspan,y0,[ ],r0); 

figure(1), clf; plot(t, y, 'linewidth', 2); hold on; 
plot(time, data, 'k*', 'markersize', 10); 
legend('susceptible','infected','recovered','data') 
ylabel('Number of people') 
xlabel('time') 

Figure 2: Evolution of the susceptibles (S), 
infectives (I) and removals (R) and data 

 



 
 
 
 
 
We will use this in conjunction with the MATLAB built-in fminsearch to obtain these best-fit 
parameters that represents the data better which is built into the GUI discussed next. 
 
3.1. Graphical User Interface          
 One of the great visualization features available in MATLAB is called GUIDE [5] which is 
a MATLAB's graphical user interface (GUI) design environment. Guide can be started by typing 
guide on the command window or by selecting a new GUI. Once selected, the user gets access to a 
default guide layout editor that provides options for the user to design the layout of the GUI. These 
options available include push buttons, sliders, radio buttons, check boxes, Editable Texts, Static 
Texts, Pop-up Menu, Listbox, Toggle button and Table. We can also add Axes to create MATLAB 
plots. One also has the option to create panels to group controls and form a systematic hierarchy. 
Once the user has visualized how the screen should look, then the appropriate controls form the 
palette on the left can be chosen and placed in the position that the user wants. After placing the 
required controls, one can change the properties of the GUI by opening the property inspector for 
each of those controls. This inspector allows one to both view and set object properties for each of 
the controls selected. The typical properties that are changed include the "Name" property of the 
control which refers to the title that the user wants for the control, "String" property for the text the 
user wants to appear for the pushbutton controls as well as the pop-up menus. One of the most 
useful properties is the "Tag" property of the control that provides a unique identifier to help the 
user remember each of the controls. GUIDE will automatically use these tag properties to generate 
the appropriate MATLAB functions. Once all the controls are specified, then one can run the GUI 
which generates a MATLAB application as a ".fig" file which saves the layout that was created. 
Figure 3 displays a sample GUI that we created for the SIR system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

function err = sir_lsq(r, data, tspan, y0) 
    [t,y] = ode45(@sir_system,tspan,y0,[ ],r); 
    Yc = y(:,2); 
    err = sum((Yc-data').^2); 

Figure 3: Blank GUI layout of the SIR system 



As this was created, GUIDE also generated two files which includes a .fig file that contains the 
layout information and the .m file that contains the implementation code. The latter is an 
automatically generated with some space inside the code for the user to add any custom code that 
they want. These custom codes are referred to as Callback function. To implement the SIR model 
with parameter estimation to be able to obtain best fit parameters for the given data, we created a 
GUI shown in figure 4. The main Callback function that needed to be written was the "RunModel" 
pushbutton. When pressed, the pushbutton function not only plots the susceptibles, infectives and 
removals on their respective plots but also implements a non-linear regression that minimizes the 
error between the computed infectives and the true data of the infectives to obtain the best 
parameters.  
 
 
 
The data is shared within the GUI using the "handles" structure. Also since the non-linear least-
square regression requires an initial guess, the values of the removal and infection rates are entered 
as the initial guesses. Note that the values have to be converted from string to a double format. The 
following part shows how to obtain the initial values and parameters from user interface. 
 
 
 
 
 
 
We now repeat the main part of the code that solves the system (1) using Runge Kutta. 
 
 
 
 
 
 
 
 
In order to minimize the error between the computed values and the true data of the infectives 
collected we perform a non-linear least-squares algorithm to extract the best-fit parameters. 
 
 
 
 
 
 
 
 
The values of the best-fit parameters are now stored in beta_comp and gamm_comp which 
described the trend the data of the infectives. We now use these newly computed best fit parameters 
and recompute the corresponding solution for the susceptibles, infectives and removals.In order to 
see the performance of the parameter estimation part of the code we compute the least-squares error 

function runModel_Callback(hObject, eventdata, handles) 

 

S0    = str2double(get(handles.S0,'String')); I0    = str2double(get(handles.I0,'String')); 
R0    = str2double(get(handles.R0,'String')); 
beta_guess  = str2double(get(handles.beta_guess,'String')); 
gamma_guess = str2double(get(handles.gamma_guess,'String')); 

data = [3 6 25 73 222 294 258 237 191 125 69 27 11 4]; 
time = 1:length(data); 
y0 = [S0 I0 R0]; 
tspan = time; 
r0_guess = [beta_guess gamma_guess]; 
[t, y_guess] = ode45(@sir_system,tspan,y0,[ ],r0_guess); 

myFunc = @(r) sir_lsq(r, data, tspan, y0); 
[params,fval,exitflag,output] = fminsearch(myFunc,r0_guess); 
beta_comp = params(1); 
gamma_comp = params(2); 
set(handles.beta_comp,'String',beta_comp); 
set(handles.gamma_comp,'String',gamma_comp); 

r0_comp = [beta_comp gamma_comp]; 
[t, y_comp] = ode45(@sir_system,tspan,y0,[ ],r0_comp); 



from both the guessed as well as the computed parameters. This is reflected in the following piece 
of the code. Note that the respective errors are connected to the respective "tags" through the 
handles. 
 

 
 
Finally we plot the solutions corresponding to both the guesses as well as the ones that correspond 
to the best fit parameters. We only show the part related to the infectives but the others are similar. 

 
 

One can see from Figure 4, that the best fit values for the given population was 00222183.0=β  
and 448517.0=γ . The error between the computed and the experimental also drops significantly 
and the graphs are better aligned.  

4. AMPL: The Optimization Approach 
 Besides the MATLAB ODE solver, we present the SIR parameter estimation problem from 
the optimization perspective using the software package AMPL (A Modeling Language for 
Mathematical Programming) [6]. Developed at Bell Laboratories, AMPL is a freeware optimization 
package that can solve large-scale optimization problems. The AMPL website (www.ampl.com) 
provides free downloads of the AMPL book, a student version of the software and supporting 
materials. In addition to the student software, one can upload and execute their AMPL code on the 
NEOS (Network-Enabled Optimization System) Server [7, 8, 9]. The NEOS Server (www.neos-
server.org) is a free internet based server project at the University of Wisconsin-Madison that 

err_guess = sir_lsq(r0_guess,data,tspan,y0); set(handles.err_guess,'String',err_guess); 
err_comp = sir_lsq(r0_comp,data,tspan,y0); set(handles.err_comp,'String',err_comp); 

axes(handles.I_axis) % Plot to I_axis 
cla 
plot(t, y_guess(:,2),'g--','linewidth', 2); hold on 
plot(t, y_comp(:,2),'color','g','linewidth', 2); 
plot(time,data,'k*','MarkerSize',10) 
legend('guess','infected (COMPUTED)','infected (ACTUAL DATA)') 
grid on 
axis([0 length(data) 0 sum(y0)]) 

Figure 4: SIR Model with parameter estimation showing the susceptibles, infectives and removals 

 



allows users to submit and solve optimization problems using a variety of state-of-the-art 
optimization solvers. The main benefit of NEOS is the ability to submit and execute quickly large-
scale optimization problems. The AMPL student version is limited to solving problems of 300 
variables and 300 constraints and objectives. 
 Although the SIR problem that we presented is a small-scale problem, AMPL and the 
NEOS Server are essential if one encounters large-scale problems that cannot be solved practically 
on desktop PCs using MATLAB. For example, one maybe interested in solving a large-scale 
optimization problem in management of water and energy resources or perhaps to conduct 
combustion research that typically involves a large-scale optimization problem. In the following 
section, we present and describe the AMPL code for the SIR parameter estimation problem. 
 
4.1. AMPL Least-Squares Model         
 Using a generic text editor, we created the following three files: 
 (i) SIR.mod is the AMPL model file containing the optimization model; 
 (ii) SIR.dat is the AMPL data file containing data for the optimization model; and 
 (iii) SIR.run is a AMPL command file containing print commands for the NEOS Server. 
The file SIR.mod declares the objective 
function to minimize (or maximize), the 
constraints and variables for the problem. 
In Figure 5, we show lines 1-13 of the file 
SIR.mod. Please note that code lines 
beginning with the symbol # are comment 
lines not executed by the the program. Our 
SIR model assumes a fixed population rate 
and uses Euler's method to solve the IVPs. 

  
 In Figure 6, we present lines 14-36 of the file SIR.mod, which declare AMPL parameters 
and variables. AMPL parameters are data values provided by the user. The parameters must be 
declared in the AMPL 
model file, but the 
actual parameter data 
values can be 
provided in the model 
file (e.g. SIR.mod) or 
a separate data file 
(e.g. SIR.dat). For 
example, line 17 
declares and provides 
a parameter data 
value to define the 
number of 
discretization steps 
(per day) in Euler's 
method. Alternatively, lines 16, 19-21 and 23 declare parameters (concerning the number of days in 

Figure 5: Excerpt from AMPL model  
file SIR.mod with introductory comments 

 

Figure 6: Excerpt from AMPL model file SIR.mod declaring parameters and variables 



the model, initial conditions and the actual number of persons infected over the time period, 
respectively) but these parameter data values are provided in a separate data file, SIR.dat (see 
Figure 7). AMPL variables are those values that the user desires AMPL to find when solving the 
optimization problem. In Figure 6, lines 28-29, 31-33 declare variables that AMPL will find when 
solving the least squares problem. 
 In Figure 7, line 39 of the file SIR.mod declares the objective function that we desire to 
minimize, the least squares function concerning the number of infected persons, 

[ ]∑
=

−
n

j 1

2(j)datam)*I(j where n=14 days, data(j) is the actual number of persons infected at day j and 

I(j*m) is the estimated number of persons infected at day j. Function I(x) is evaluated at time j*m 
because I(x) is determined by Euler's method, which discretizes over m points per day. The 
optimization constraints are listed in lines 44-46 (the initial conditions), 48-50 (Euler's method for 
ODEs) and 52 (SIR model assumption that population is constant). The last line of code in file 
SIR.mod, line 57, commands AMPL to use the optimization solver LOQO, a nonlinear solver based 
on the interior-point method [10]. 

 

 

In the next section, we present the AMPL data file SIR.dat and the command file SIR.run. 

4.2. AMPL data and command files
 In Figure 8, we present the AMPL 
data file SIR.dat, which contains parameter 
data values defined in the AMPL model 
file SIR.mod. Line 3 in Figure 8 tells 
AMPL that file SIR.dat is a data file. Line 
5 provides the number of days in the SIR 
model (n = 14) and lines 13-27 list the 
actual number of infected persons on days 
1 through 14. 
In Figure 9, we present the AMPL 
command file that instructs the NEOS 

Figure 7: Excerpt from AMPL model file SIR.mod declaring objective  
function to minimize, constraints and optimization solver 

Figure 8: AMPL data file SIR.dat 
with parameter data values 



server to solve the optimization problem (line 3), display the final value of the minimized objective 
function (the least squares solution, line 4), display the beta and gamma variables (lines 5-6) and 
execute Unix print commands to display other data values (lines 7-9). 

 
Figure 9: AMPL command file SIR.run with print commands 

 The last step is to submit the three AMPL files, SIR.mod, SIR.dat, SIR.run, to the NEOS 
Server. On the NEOS Server page listing optimization solvers 
(http://www.neosserver.org/neos/solvers/index.html), we scroll toward the bottom of the page and 
click ``LOQO [AMPL input]" under the category Nonlinearly Constrained Optimization. This link 
will lead to the page where we upload the three AMPL files above. Provided that there are no errors 
in your AMPL files, the NEOS Server will email you the results. See Figure 10 for NEOS Server 
results for the SIR parameter estimation problem. 
 Since the 
underlying 
optimization problem 
is a quadratic problem 
(and thereby convex), 
we expect the least 
squares solution to be 
the global solution to 
the problem. The 
AMPL least squares 
solution and values 
for beta and gamma in 
Figure 7 are close to 
those values using 
MATLAB's ODE 
solver. The slight 
discrepancies between 
the MATLAB and the 
AMPL solutions are 
due to the fact that 
AMPL used Euler's 
method to solve the 
ODEs and Runge-
Kutta was used in MATLAB. Nevertheless the values of the best fit parameters agree very well. 

Figure 10: NOES Server results 



5. Conclusions  
 In this work, a framework for solving real-world problems using mathematical modelling 
and technology enhanced simulation approach was presented. A benchmark application in disease 
epidemics was considered and the numerical implementation was presented in two different 
software platforms including MATLAB and AMPL. The major contributions of the paper include 
the development of the MATLAB Graphical User Interface (GUI) and comparing the answers 
against another powerful optimization software AMPL that has advantages over MATLAB when it 
comes to solving systems with big data. The numerical results agreed very well between the 
different software platforms and the presentation of the programs were done via literate 
programming. We hope that this work will be useful for many educators who may be interested in 
employing these software tools in their research and education. 
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