
Interactive Estimator for 
Stochastic Differential Equation

Abstract:  Stochastic differential equations  (SDE) are being applied widely; however, theory behind the concept is  
difficult to understand. Therefore, we designed an educational system for simple SDEs. The SDEs used in this system  
are determined by two linear functions with constant coefficients. Then, four real numbers are used to define this  
equation. In our system, a graph of a sample path with respect to an SDE is given, and the purpose is to estimate the  
four real numbers. The system suggests these values and some provides a few graphs of sample paths for an SDE  
corresponding to the given parameters. Using  our system, a user should be able to understand the role of these SDE  
parameters.

1. Introduction
  A stochastic differential equation (SDE) expresses the changes in a stochastic process using the 
standard Lebesgue and the stochastic integrals. The  short  time  average  gradient  and  the 
corresponding variance  are determined according to  time and process  value.  SDEs are used in 
various probability theories; for example, the application to mathematical finance is well known. 
We designed an experimental virtual education  system that  helps in understanding SDEs. Our 
system use a linear SDE with constant coefficients. Both the Lebesgue and the stochastic integral  
terms are determined by using two real parameters, and then, four parameters are used to define this 
equation.
 The target  SDE is  very simple,  and the role  of  each parameter  is  well  defined.  Then,  with a 
reasonably  sufficient  understanding  of  SDE  graph  shapes,  one  should  be  able  to  guess  the 
parameters from the graph of a sample path of the solution. Our system displays the graph of one  
sample path of an SDE solution. The user does not know its parameters, and the purpose of the 
system is to estimate the parameters using the graph.
 The SDE has a unique (strong) solution as a stochastic process [1]; however, the sample paths are 
different from each other according to the values of the Brownian motion process. In other words,  
two sample paths of the same solution are identical only if the corresponding values of Brownian 
motion, which controls the error values, are identical. Thus; it is not easy to judge whether two 
sample paths are controlled by the same SDE. Our  system displays another sample path for which 
the  four  parameters  are  known.  The  values  of  this  sample  path  are  given  in  term of  random 
numbers, and the shape of the graph changes every time a user draws the graph even if the four  
parameters remain unchanged. Moreover, the parameters are listed in a text box below the graphic 
area, and a user can change the parameters and generate sample path that corresponds to the new 
parameter values. By Iterating these tasks; the user may be able to estimate the parameters of the 
target sample path. The starting values for parameter estimation are generated automatically. In the 
case where the target  sample path is  generated by the system, the vector  corresponding to  the 
starting values is a neighborhood point in R4 . Otherwise, or in the case where we assume that the 
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parameters are unknown, the parameters are suggested using the values of the target sample path. 
An SDE approximates an increment in a process by using a linear combination of the increment in 
time and the increment in Brownian motion.  Thus, it is possible to obtain approximated sequence 
of  i.i.d.  (independent  identically  distributed)  N(0,1)  random  variables.   According  to  some 
properties of an i.i.d. N(0,1) sequence, we prepared an evaluation function for target the SDE and 
estimated the starting values using this prepared function. 
  The first purpose of this estimation model was to evaluate drying shrinkage of concrete, however 
the above estimations are not correct enough and some new ideas are required to improve this 
estimation.  We  believe  that  human  brains  have  an  ability  to  recognize  differences  of  SDE 
parameters  by watching corresponding graphs,  and expect  that  we can find some rules  to  find 
correct  SDE  parameters  using  our  system.  Then,  for  example,  we  will  be  able  to  find  some 
estimation method for long term shrinkage value using short time data in near future. 

2. Outline of the System
  The purpose of our system is to estimate the (parameters of) SDE using a corresponding sample 
path. A comparative sample path is also displayed, for which the four parameters are known and this 
path is renewable. First suggestion of the parameters is given by the system, and after comparing 
these sample paths we can change the parameters. 

2.1 Stochastic Differential Equation
  In this study, we consider an SDE of the following type
                    X t− X s=∫s

t
(aX r+b)dr+∫s

t
(c X r+d )dB r ,                                              (1)

where a ,b , c , d  are real constants, dr  denotes the Lebesgue integral and dB r  denotes the Ito 
stochastic integral with respect to the Brownian motion process B( t) . This equation is often 
represented as

                     dX t=(a X t+b)dt+(c X t+d )dBt .                                                         (2)
It is well known that equation (1) has a unique strong solution [1] and which is given by 

                       X ( t)=U (t)( X (0)+∫0
t a−c∗d

U (s)
ds+∫0

t c
U (s )

dB(s )) ,

                              U (t )=exp(∫0
t
(b− 1

2
d 2)ds+∫0

t
d dB(s))  .                                        (3)

 Using this solution and random numbers, we are able to obtain the values of the sample path of 
SDE (1) for the given parameters a ,b ,c , d .

2.2 Layout
  The upper region of the system window, known as graphic area, is used to display the sample 
paths of the target SDE and the comparative SDE. Under the graphic area, there are text boxes for 
in putting the SDE parameters ( a ,b , c , d ), buttons for drawing paths, and a text box for system 
messages.

3. Sample path of the solution
A stochastic process is random, however, it does not imply that the process is disordered. If we 
consider random events in Wiener space, two processes are identical strictly if the corresponding 
Brownian motions are identical. The solution of  an SDE is a continuous-time stochastic process 
and natural phenomena occur continuously;  usually we observe them  as discrete time data.  The 



low  of  a  continuous-time  stochastic  process  approximated  by  that  of  discrete  time  process. 
However,  properties  of  the  observed  discrete  process  may depend  on  finer  dividing  stochastic 
processes. Therefore,  we generate random variates as partial observations for the solution process 
as follows.

1. Let {t k}k=0
n  be the dividing time of [0,T ]  ( t 0=0, t n=T )

2. Let  {s j+mk } j=0
m  be the equally spaced dividing time of [t k −1 , t k ]  ( k=1,2,. .. , n ). Then 

{s j} j=0
N  ( N =nm ) is a fine dividing time of [0,T ]  ( n=m=100 is the standard value of the 

system).  
3. Consider {g j} j=1

N  an  i.i.d. N (0,1)  sequence of random numbers and set

w j=√ T
N ∑i=1

j
g i , which is a sample value of B( jT

N
)  ( j≤N ).

4. It is clear that ∫0
s j (b−1

2
d 2)ds=(b−1

2
d 2)s j and ∫0

s j d dB(s )=w j d , then we obtain 

U (s j ) , j≤N  in (3).

5. We obtain approximated values of ∫0
tk a−c∗d

U (s)
ds ( j≤N ) using Simpson's rule on each 

[t r−1 , t r ]  ( r≤k ). 

6. ∫0
tk c

U (s)
dB(s )  is approximated by using ∑ j=0

m k c
U (s j−1)

(w j−w j−1) . 

7. We obtain the sample path {X (t k )}k=1
n using the formula (3).

4. Measurement of SDE closeness
  Assume that (2) is strictly true in case dt  is replaced by tk−tk −1 , dX t  by X ( tk )− X ( tk −1) , 
and dB t   by B( tk)−B( t k−1) .  Then, we obtain the following equation.

         
γk=

B (t k )−B (t k−1)

√t k−t k−1
=

X (t k )−X (t k −1) – (a X ( t k−1)+b)(t k−t k−1)

(c X ( t k−1)+d )√t k−t k −1
∼N (0,1) .             (4)

Figure 2.1 System Layout
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{γk }k=1
n is the approximate i.i.d. N (0,1)  sequence because increments of a Brownian motion are 

independent. Note that the right hand side can be calculated using the process values, time values, 
and the SDE parameters.
  The i.i.d. N (0,1)  sequence {γk }k=1

n  satisfies the following conditions.

1.
1
n ∑k=1

n
γk →0 (as n →∞ ).                                                                                  (5)

2.
1

n/ 2 ∑k =1
n /2

(γ2 k−γ̄E )(γ2k −1−γ̄O) →0 (as n →∞ ).                                            (6)

3.
1

n/ 2 ∑k =1
n /2

(γk−γ̄F )2− 1
n /2 ∑k=1

n /2
(γk+n /2−γ̄L)2 →0 (as n →∞ ).                     (7)

where γ̄E , γ̄O , γ̄F , γ̄L  are the average values for even numbers, odd numbers, first half, and last 
half, respectively, of the sequence {γk }k=1

n .
  Using the Ito formula [1], for the process Y ( t)= X２( t ) we obtain:
                                          dY (t)=A(t)dt+B (t)dWt

                                A(t )=2 (a X t+b)+(c X t+d )2    

                                            B( t)=2 (cX t+d )c2
Then, by a similar calculation, we obtain:
                                       

γ ' k=
dBk

√dtk
=

dY k−Ak dtk

Bk √dtk
∼N (0,1)

                                                (8) 

where dtk=tk−tk−1 ,Y k=Y (tk )−Y (tk −1) , Ak=A(t k−1) , and Bk= B(tk −1) . Then γ ' (defined 
by (8)) satisfies similar properties with (5) ∼ (7) .
  Using these properties we define the following functions to estimate closeness of SDE parameters.

                      

E1=(1
n ∑k=1

n
γk)2

                     

E2=∣  1n /2 ∑k =1
n /2

(γ2 k−γ̄E)(γ2k +1−γ̄O)∣
E3=∣  1n /2 (∑k=1

n/ 2
(γk−γ̄F )2−∑k=n/ 2+1

n
(γk−γ̄L)2)∣

   }                 (9)

We also define E '1, E '2 , and E '3  by replacing γk  with γ ' k .
  These values may  be small for large enough n  only if the parameters are correct. The purpose of 
these values is to evaluate the closeness of the parameters; therefore, values of these parameters can 
be quite different from the correct values. In such a case, γk  or γ ' k often takes extremely large (or 
small) values. This has a negative effect on our estimation. Therefore, we truncate  these functions 
by using some constant M >0 .

                      γ̃k=γk∧M ∨(−M ) , γ̃k '=γ ' k∧M ∨(−M )

We define E4 and E '4  as numbers in the case where ∣γk∣ or ∣γ 'k∣  exceeds M . 
(The default value is M =4 .)
Figure 4.1 is a graph for these feature values. The SDE parameters are given by N(0,1) random 
numbers  and  fixed  them.  30  comparative  parameters  are  created  using  random  number,the 
difference  from the  corresponding  SDE parameter  is  N(0,0.1)  random number.  The  horizontal 
measure is the difference between the SDE and the comparison parameters. Each feature values 
never increase in general and the variations are not small, therefore we are not able to judge the 



closeness of parameters by one feature value. 

 5. Preliminary Estimation 
   To estimate the four parameters of the SDE, we use a simple generic algorithm. In this section, 
we  explain  our  preliminary  estimations.  In  the  following  estimations,  we  use  some  constants 
defined in several trials-and-errors.

5.1   Preliminary Estimation for the Legesgue integral part
  For the preliminary estimation for  a  and b , we ignore the stochastic integral part. In the case 
where  c=d=0  in  (1)  or  (2),  The  equation  becomes  a  standard  differential  equation  and  the 
solution is given as

f (x )=K ea x− b
a , ( K  is a constant).

There are three parameters, namely, K ,b , and a , in this function.  The system finds the least 
square error solution for these parameters.
  If the parameter a  is a fixed constant, this estimation is a 2-dimensional linear regression, and for 
a fixed b  and K ,  a  can be approximated using the one-dimensional Newton method. Then, we 
approximate these values as follows:

1. The initial value of a  is obtained using 3 pairs of time and process values.
2. Fix a , and find optimal values of b  and K  using the least square error method.
3. Next, fix  b  and  K ,  and find a stationary point of  the square error as a function of  a  

using the Newton method.
4. Iterate steps 2. to 3. several times. 

 The default iteration number is 30. Without a stochastic integral term, the estimated values are 
correct enough (the errors are less than 10−3  when the target parameters are 1∼3 ). However, the 
actual shapes of the curves are quite different from ideal (non random) one, and we can not expect 
accurate estimation. 

5.2   Preliminary Estimation for Stochastic Integral Part
  We assume that the variance of the stochastic integral part is approximated by the least square 
error in the quadratic regression. Then, we estimate  c  and d  by the following procedure. In the 
following explanation we use the same notations for X  and {tk}  
( k=1,2,. . , n ) as those used in Sections 2 and 3. 

1. Let 0<ρ<n  be a positive integer (the standard value is 5).  sd k  denotes the standard 

deviation of {X (t j )− X (t j−1)−(L(t j)−L(t j−1))}k−ρ≤ j≤k +ρ  for each k≤n , where L(t) is 
the corresponding regression line.

Figure 4.1 Feature values



2. Ignore the indices if j≤0  or j>n .
3. By the linear regression we obtain the approximation sd k≈c X (tk )+d . 

6. Suggestions of Parameters
  We define an evaluation function of a set of parameters, which describes the closeness to the SDE 
parameters. Using this function we estimate the parameters. This estimation is not accurate enough 
and the graph shapes of sample paths are quite different from original one in general. However, we 
can not start interactive estimations without any information for parameters. Then the main purpose 
of this estimation is to find starting values for interactive estimations.

6.1 Generalized Choquet Integral with respect to a Two Additive Measure
 The evaluation functions are defined as generalized Choquet integrals with respect to a two-
additive measure [3].
  Let A be an n -points set (int this case, n=8 , i.e., the number of feature functions) and  be a 
fuzzy measure or a general set function defined on the power set of A with  ∅=0 . If  is an 
additive measure, all measure values determined from  {x} ( x∈A ), that is,  is defined by n
values. However, a general set function is defined by 2n values. Then, to reduce the number of 
parameters,  we  consider  a  two-additive  measure  as  the  first  generalization  of   a  non-additive 
measure analysis. 
  A two additive measure is given by

                             A=∑x ∈A
 x∑{x , y}⊂A

 x , y ,

using  real  constants μx ,νx , y  ( x , y∈A ).  Then  two-additive  measure  on  an n -point  set  is 
defined by nn n−1/ 2 values. The generalized Choquet integral of a function f ( A[0,1] ) 
is given by

∫A
f d μ=∑x∈A

f (x )μx+∑{ x , y}⊂ A
f ( x)⊗ f ( y )νx , y ,

where   is a two additive measure determined by  x , x , y  ( x , y∈A ) and  ⊗  is a Dombi t-
norm [4] defined by

x⊗ y= 1
((1 / x−1)λ+(1/ y−1)λ)1 /λ

,
(in this case λ=2.5 , see [3]). 
  A (generalized)  Choquet  integral  is  an extension of a  weighted sum. For an element  x∈A , 
f (x )  has a large effect on the integral value when ∣μx∣ is large, and for a pair  x , y∈A , in the 

case where νx , y  is large, the integral value becomes large if both f (x ) and f ( y) take large values. 
Then, if we are able to select optimal values for these parameters in two additive measure, we only 
need to minimize this function to find the SDE parameters.

6.2 Estimation for a Two-Additive Measure
   The purpose here is to create an optimal two-additive measure using the Monte-Carlo method. 
We obtain SDE parameters using random numbers and create comparative parameters using random 
numbers. We adopt the Euclidean distance in ℝ4  as a criterion value for the regression. Then, we 
estimate the two-additive measure through the following steps.



1. Create 10 sets of parameters using N(0,1) random numbers. These are SDE parameters for 
observed stochastic processes.

2. For  each  set  of  parameters,  we  create  100  comparison  parameters  by  adding  N(0,0.1) 
random variables to the parameters given in the above step. Then,  obtain the Euclidean 
distance in ℝ4 .

3. For each set of parameters given in the first step, create a sample path by the same method 
as that described in section 3.

4. For each sample path of the process and for each comparison parameter given in the second 
step, we obtain feature values E1∼E 4  and E '1∼E ' 4 .

5. Using  the  vectors  of  normalized  evaluation  values  {e⃗i=(ei
( j)) j=1,. .,8}i=1

1000  and  distance 

values  {d i}i=1
1000 ,  we  approximate  the  two-additive  measure  μ  to  minimize 

∑
i=1

100

(∫ e⃗i d μ−d i )
2
=∑

i=1

100

(∑ j ei
( j )μ j+∑ j , j ' ei

( j)⊗ei
( j ' )ν j , j '−d i)

2 ,

using 34(=8+8 C2) dimensional linear regression.
6.3  Estimation for SDE Parameters
  Using the two-additive measure given in the previous subsection, we estimate the SDE parameters 
by the following generic algorithm. In the estimation, we use 100 four- dimensional gene vectors 
(SDE parameters). 

1. Initial values for the SDE parameters are given using the methods explained in Section 5. 
This vector is copied to all 100 gene vectors.

2. N(0,0.1) (independent) random numbers are added to every coefficient of all gene vectors.
3. The gene vectors are sorted in an ascending order of the evaluation function given in the 

previous subsection.
4. Recombination (we will explain this step below) is performed according to the sort result.
5. Estimated parameters are obtained after 50 iteration of 3. ∼  4.

The First  three gene vectors are left  intact.  The remaining gene vectors are divided into  three 
groups of the same size, and replaced by the following vectors:

0. Let {v⃗i}i=1
32  be the first 32 gene vectors, including the first 3 vectors.

1. Genes in the first group are replaced by improved vectors using the Newton method.
2. Genes in the second group are replaced by improved vectors using the gradient method. We 

use a random variable as the coefficient of the gradient.
3. Genes in the third group are replaced by {⃗v }i=1

32 , and then these values are modified using 
N(0,0.1) random numbers.

6.4  Samples of the Estimated Curve
Three  original  and  estimated  lines  are  listed  in  Figure  6.1.  The  user  will  find  more  adequate 
parameters after several trials-and-errors.

Figure 6.1 Original and Estimated Lines.



7. Conclusion 
  We designed an interactive estimator for SDE parameters. We defined eight feature functions for 
the correctness of the parameters and created an evaluation function as a Choquet integral with 
respect to a two-additive measure, where the two-additive measure was obtained by a Monte-Carlo 
simulation. Suggested values for SDE parameters for given data are given using this evaluation 
function.
 Students can understand the roles played by the SDE parameters, and in the near feature, they can 
suggest solutions for several problem corresponding to SDEs by using our system.
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