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The evolution and revolution of the relationship between man and technology (i.e. instrumental genesis) together with a 
redefined conception of teaching and learning have given opportunities to learn or even make mathematics in more 
learner (community) centred, and more distributive (i.e. free from time, location and formal modes) environments.  On 
the other hand, it has been recognised that the general lack of enjoyment of institutional mathematics teaching is one of 
the basic reasons behind the bad reputation of mathematics in society. Increasing students’ motivation to make 
mathematics through enjoyment and playing, especially in their free time, might therefore be a relevant research focus. 
The article discusses this position from seven challenges represented in first author’s ATCM2008 plenary. It gives some 
examples of environments which can stimulate modelling processes, for which school could take the role of a pit stop to 
orchestrate technology-based investigation spaces which allow students to explore spontaneously the facility of real 
and virtual environments which are both, meaningful to them and their community, and which naturally motivate a 
greater use of mathematical language in its different forms. As conventional assessment would contradict this position, 
especially as regards emphasizing informal mathematics, the article also discusses how to get out of the current 
deadlock situation.  
 
  
Introduction 
 
We would like to begin with a discussion why we have chosen the “pit stop” metaphor from car 
race. The first grounding comes from our experiences as teacher educators since more than 30 
years. Within the institutional mathematics teaching, namely, students very often show lack of 
appropriate problem solving competence even when solving simple problems. We pick up such an 
amazing example from Haapasalo (2007, p. 3). The question is about a well-tailored learning 
program to find the idea of the gradient of a straight line. The program proceeds step-by-step 
beginning from the simplest case of just one line segment in a rectangular coordinate system with 
its movable end points at its axis, respectively. The student can manipulate the visual slope (based 
on spontaneous procedural knowledge1) of the segment to see how the ratio (i.e. more or less 
                                                
1 We adopt the following characterizations of Haapasalo and Kadijevich (2000): 

• Procedural knowledge denotes dynamic and successful use of specific rules, algorithms or procedures within 
relevant representational forms. This usually requires not only knowledge of the objects being used, but also 
knowledge of the format and syntax required for the representational system(s) expressing them. 

• Conceptual knowledge denotes knowledge of particular networks and a skilful “drive” along them.  The 
elements of these networks can be concepts, rules (algorithms, procedures, etc.), and even problems (a solved 
problem may introduce a new concept or rule) given in various representational forms.  

The interaction between conceptual and procedural knowledge, especially the so-called simultaneous activation 
principle (SA) is discussed in Haapasalo (2007), and the software related to our example is freely downloadable at 
http://wanda.uef.fi/lenni/programs.html 

 

 



abstract conceptual knowledge) alongside is related to the situation. Everything seemed to go fine 
with these one or two components, which could be manipulated but something strange happened at 
the last stage when there are many chunks (Figure 1, left). When asking to move the end points of 
the lines with the mouse to see how k1 and k2 are changing, hundreds of students, student teachers 
and even mathematics teachers since 1995 have changed all possible problem components at the 
same time (illustrated in the middle), just to get a data overflow. So as to surprise us even more, 
students kept on acting like this in spite of several trials and when working in teams! However, 
those who would have basic skills in behaving in a problem situation would change just one 
component at a time to see the relation between the proportions and the line position (Fig. 1, right). 
 

 
Figure 1.  Utilizing the SA method in technology-based learning environment. 

 
Luckily, the situation is not that bad outside the classroom.  Eronen and Haapasalo (2006) noticed 
that even a quite mediocre student at 8th grade showed excellent competence in a much more 
complicated situation when playing with a ClassPad calculator (see http://www.classpad.org) 
voluntarily during her summer holiday (see Figure 2). Because there were only few days before 
they would go to their holiday, the administrators really had to act like a pit stop team in car race to 
equip students with “new tires and gasoline” for their race: with a leaflet of problems related to the 
above-mentioned “gradient”. Both the drag-and drop technology and the Geometry Link –operation 
of the tool allow, namely, the student to manipulate mathematical objects between two windows, 
illustrating two different forms of mathematical representation. The portfolio sample below Figure 
2 shows that the above-mentioned student showed a good problem solving competence by utilizing 
ClassPad properties in a sophisticated way without any tutoring from teacher’s side.  

 

 
Figure 2. Utilizing SA-method through drag-and-drop technology (a-d) or Geometric Link (e). 



Example of a student’s 6th session on  July 15th, 2005, at 00:27. 
 
• I draw a line (cf. Fig. 2., (a)). When drag-dropping, the equation of the line is y= 1.613x-0.5992 (b). 
• By changing the equation to y=2x-0.5992 the angle between the line and y-axis is getting smaller (c).  
• By changing the equation to y=1x-0.5992, the angle between the line and y-axis is getting larger.  
• I change the equation to y= 1.613x-0.4. I don’t see any changes (in the graphic window). 
• I change the equation to y= 1.613x-4, the line moves to the same direction away from origin (d). 
• When changing the equation to y= 1.613x+4, the line moves in the same way, but to another direction 
  on the x-axis with equal distance from the origin. 
• I will continue in the morning. Time is now 1:42 a.m.. I worked 1 h 15 min. 
 
When analysing the profiles of that student within the eight sustainable activities from the history of 
mathematics (see Figure 3), Eronen and Haapasalo found that working with ClassPad had, even 
during a short period of time outside the classroom, extended the so-called mathematical profile, 
self-confidence profile and techno-profile of the student. This finding was strongly supported by the 
interview, as well: “In May I could not even think to play with ClassPad in summer holiday. 
However, I noticed, that it was very capable for playing with mathematics.” The student also 
noticed the versatility of the calculator, which decreased the relative amount of the calculating 
belief: “ClassPad is suitable for calculating, but if you want to learn how to calculate, you have to 
do something by hand”. 
 

 
Figure 3. Student's view on mathematics before and after her ClassPad work. 'What is mathematics 
all about?' (on the left), 'How good I am in making mathematics?' (in the middle), and 'What kinds 

of mathematics can be made by using computer?' (on the right). 

The quite amazing findings above triggered the so-called ClassPad project. Eronen and Haapasalo 
carried this kind of sponatenous playing with CladdPad into the classroom and reduced the 
instruction according to the so-called Minimalist Instruction principle (see Haapasalo 2007, and 
later on this article) to allow students learn – actually make -  the mathematics of 9th grade totally by 
using ClassPad without any conventional textbooks or homework. After this kind of learning 
period, students scored in all test items significantly better than in the pre-test. A postponed test, 
after 5 months revealed that this scoring level remained consistent, and for many students it even 
improved. Students liked the feeling that they had reached action potential, which is one of the main 
aspects in assessment within minimalism. They also liked the learning without any pre-set goals or 
tutoring from teacher’s side.  



As second grounding we would like to mention the experiences gained in Switzerland (see 
http://www.spiegel.de/schulspiegel/0,1518,359073,00.html, accessed 20.06.2011): As a school had 
no money to hire a teacher, it had to shift the responsibility of the learning to students, using school 
as a “pit stop” to support students if they got difficulties. The learning results exceeded 
expectations, being not worse than in normal teaching. 
 
Even though these kinds of suggestive groundings could be given more, we would like to stop by 
mentioning the huge amount of Internet forums, where people, even small children, participate in 
problem solving and discussion even on complicated questions. Because today almost every student 
owns not only a mobile phone but also many other personal devices, it would be important to get 
these devices integrated into mathematics learning. Many studies show that enjoyment and 
possibilities to be creative are seen as the key to affective motivation leading to an identity and 
attitude change towards mathematics (c.f. Loveless, 2002; de Freitas & Oliver, 2006; Harlen & 
Deakin Crick, 2003). An integrated computer algebra system and dynamic geometry software, for 
example, might be one of the most fascinating combinations to trigger an environment for the 
construction of mathematical knowledge. This instrumental genesis has already changed our views 
on making and teaching mathematics - and probably will change it even more radically. It might be 
quite evident that most part of students’ instrumentation (i.e. technology is used to do mathematical 
actions) instrumentalization (i.e. technology is shaping also the mathematical objects under 
consideration) often happens on his or her free time. This situation implies that educators should 
shift their focus from well-prepared classroom lessons to minimalist instruction. Instead of acting 
like a pace car in a race, institutions should be types of pit stops to scaffold students’ “race” outside 
the classroom.  
 
Finally, we would also emphasize that governments and schools probably never have enough 
money to equip schools with the newest technology. Most students in well-fare countries will 
always have a little bit more sophisticated technology at home – perhaps even in their pocket as 
hand-held technology. Therefore, by looking at the relationship between technology and 
mathematics education from five perspectives, Haapasalo (2007) suggests that instead of speaking 
about ‘implementing modern technology into classroom’ it might be more appropriate to speak 
about ‘adapting mathematics teaching to the needs of information technology in modern society’. 
This means emphasizing more the making of informal than formal mathematics within the 
framework of the above-mentioned eight main activities and motives, which have proved to be 
sustainable in the history of human thinking processes and making of mathematics (see Fig. 3; 
Zimmermann 2003).  
  
Concerning the educational policy, the problem of “math dropouts” has increased now that 
“mathematics for all” has come into fashion as a slogan. ‘Mathematics’ is normally presented as a 
meaningless collection of knowledge - unrelated to the experience of the students and totally 
uninteresting. Sterile “logical connections” seldom lead to understanding or appreciation. This has 
given rise to a flourishing enterprise - empirical research - which studies and characterizes the 
symptoms without producing a cure. We need a new approach to the teaching of mathematics but 
there is little hope it will emanate from this psychological perspective. Epistemological perspectives 
and historical sources offer much more hope. Besides, they must not be forgotten when planning 
curriculum or constructivist learning environments for students´ productive activity.  
 
 



The fact that ordinary people can realize outstanding examples of simple and powerful ideas from 
the history of mathematics implies that also organizing the content of the curriculum should be 
made in a meaningful way instead of treating the same idea in several disguised forms under the 
name of “spiral curriculum”. In this contribution we restrict us in giving examples in the spirit of 
modelling, being understood in wide sense. At the end we will discuss the problematic of 
assessment.   
   
Remarks on modelling through technology 

The term ‚modelling’ seems to be used usually to mean representing real-life situations through 
mathematics, as can be seen in the cavalcade of researchers’ views in Greefrath & Siller (2008). 
Gjone (2008), for example, emphasizes “transforming a problem into mathematical form, solving it 
and assessing the validity.“ We, however, would like to stress that even more important than to 
solve a given problem is to promote students to find and pose new own problems related to a 
situation which is meaningful for them. Instrumentation releases the student from cognitive 
overload whereas instrumentalization scaffolds him/her to make own mental models (which might 
not always be viable ones when considering the objectivity of mathematical models). 

Some researchers like Treffers (1987) speak about ‘horizontal modelling’ when a real-world 
situation is interpreted through mathematical structures, whereas ‘vertical modelling’ refers to 
manipulating structures inside mathematics. The often-used term ‘mathematization’ would mean 
rather the first one. We would like, however, to avoid using those complicated terms, which might 
be irrelevant from pedagogical point of view. Very seldom, namely, a real world situation is directly 
interpretable through mathematical structures before making a simplification – sometimes even a 
very progressive one. A virtual model on a computer screen, for example, can very often offer to the 
learner, even for a child, a more appropriate investigation space (Erkundungsraum) than a 
conventional “real-world situation”. Hence, from constructivist viewpoint we prefer to make the 
following generalization, seeing ‘modelling’ almost synonym to the term ‘mentally modelling’:  
Modelling means mathematical interpretations made by the student when interpreting a situation, 
which is psychologically meaningful for him or her.  

From a constructivist viewpoint learning and applying mathematics are basically triggered by the 
same kinds of modelling processes, general aspects of problem solving in the sense of Pólya 
playing a central role within the respective activities. The interpretations can appear in different 
forms of representation (Verbal, Symbolic, Graphic), and on different cognitive levels 
(Identification, Production). Drag-and-Drop activity with ClassPad, for example, allows 
Production from Graphic to Symbolic form (PGS), showing how opportunities to develop and 
apply mathematical ideas appear in modern society through instrumentation and 
instrumentalization. Figure 4 below illustrates our view that technology cannot only be an interface 
for a one-way street from “meaningful situations” to mathematics but it could also enhance and 
empower the interpretations in different kinds of modelling processes as can be identified in the 
student portfolio above. 



 

Figure 4. The role of technology in different types of modelling processes. 

 
Examples from the history of mathematics 

Let us consider the cycloid, which was one of the most investigated objects in 17th century by 
Galilei, Torricelli, Roberval, Descartes, and Huygens, for example. However, the numerous 
websites (see e.g. http://mathworld.wolfram.com/Cycloid.html) to illustrate it as an animation are 
based on parametric representation without even trying to unravel how to construct such an 
animation without using any symbolic mathematics in coordinate system. Not only the basic 
construction of cycloid but also many other features of it can be made without any symbolic 
mathematics just by using a Dynamic Geometry program. Figures 5-9 illustrate some of spectacular 
features, animated by Stowasser. This, as many other examples of revitalizing geometric ideas from 
the history of mathematics can be downloaded at http://users.jyu.fi/~laurikah/TUBerlin/home.html, 
the website referring to material production within the first author’s Joint European project (see 
Haapasalo & Stowasser 1994, and http://wanda.uef.fi/lenni/modem.html). Those visualizations can 
be utilized in many ways almost on any level of mathematics teaching. The first level of modelling 
could be just to watch the beautiful simulation and try to explain in own words what happens on the 
screen. The highest level of modelling would be to make an own computer-based model, which 
makes the analogous simulation or perhaps improves it.  

 



 

Figure 5. The basic construction of the cycloid (Galilei). 

 

 

Figure 6. Getting the idea to find out the cycloid area (Roberval). 

 

Figure 7. Cycloid constructed through momentanoues rotations (Descartes). 

 



 

 

Figure 8. Cycloid with evolute (Huygens).  Figure 9. Cycloid constructed as curvature. 

 

The screen shot in Figure 10 represents a GeoGebra construction of a cycloid, for which the student 
only needs to understand the basic idea of angle measurement: angle = arch / radius, i.e. the arch 
length = radius * angle (in radians). By making a simple physical model by using a CD and a 
marker pen, for example, the student can test and find out how the movements of the middle point 
of the circle (FreePoint) and the current arch point (ConstructedPoint) relate to each other.   

 

 

Figure 10. Simple cycloid construction with GeoGebra avoiding symbolic mathematics. 

After being successful with the basic construction of a cycloid, the student might try to understand 
the idea of other constructions above, or perhaps go for epicycloid animations at 
http://mathworld.wolfram.com/Epicycloid.html, for example. In fact, the construction of a 
epicycloid is not more complicated than that of a cycloid. Figure 11 represents a GeoGebra 
construction (in this case Ranuncoloid), where the user can use the slider to choose the radii of the 
circles (in this case 1 and 5, respectively).  



 

 

Figure 11. Simple epicycloid construction with GeoGebra avoiding symbolic mathematics. 

 
Examples from educational robotics 
 
Samuels and Haapasalo (2011) give an overview of available small educational robot environments.  
In their other recent article (Haapasalo and Samuels 2011) they represent a simple robot, which has 
the capacity to run GeoGebra and the LEGO Mindstorms NXT software. They discuss the 
interaction between the physical environment of robotics and the virtual environment of GeoGebra. 
The confidence and interest in using mathematical language is encouraged via the interplay between 
these two environments and social interaction can be created by collaborative problem solving. 
They show that a relatively simply formulated problem can yield a rich challenge in geometric and 
algebraic problem solving.  
 
The screenshots in Figure 12 are taken from that animation where the symbolic representation have 
been purposely hidden. It is simple to play with the sliders to try to steer the pivot wheel of the 
robot through the given points. The position of the pivot wheel has been animated and its trace has 
been represented as a sequence of dots using the point tracing functionality. The values of the 
variables on the sliders can then be entered directly into the LEGO NXT program to make the robot 
move through the single point physically. 
 



 
Figure 12. Playing with GeoGebra animation to find parameters for the robot when asking it to go 

through three points on a plane. 
 
The same animation can be illustrated, of course, with numerical and algebraic representations in 
the algebra window on the left-hand side of the GeoGebra screen. The authors discuss the 
pedagogical value of this kind of problem-solving environment in detail, coming to the conclusion 
that the seven challenges of instrumental orchestration, summarized in the next chapter, can be 
responded appropriately.   
 
 
Evaluating the examples 

We will now summarize why our examples could be used to respond to the seven challenges of 
Haapasalo (2008). 

(i) The promotion of collaborative social constructions 
 
Posing problems, which are psychologically meaningful for the learners provokes them (or teams) 
to consider the situation from subjective viewpoints and to use multi-discipline criteria to find 
solutions. Both, the physical models and the virtual animation provide a sense of enjoyment or 
satisfaction when they work correctly. The students can change the problem formulation according 
to their own interest, provided that the way they try to change it is still within the scope of their 
ability and the amount of time available. They can design their own product (as a robot, for 
example), or share duties between the teams who are going to solve a particular sub-problem. At 
higher level, students might be given some indication of how to formulate the problem symbolically 
in order to solve it exactly (e.g. the cycloid animations in Figures 5-9). Thus the problem can be 
interpreted in several different interconnected areas simultaneously, leading to the possibility of 
delegation and teamwork. The student activity even through Internet forums can be therefore 
collaborative, perhaps facilitated by “pit stop instructors”, sharpened by competition and directed 



towards assessment criteria, which focus on encouraging teamwork, the learning of deeper 
mathematical concepts and the interaction between different mathematical ideas. Archetypical 
examples of this kind of working culture are Internet forums to solve problems with hardware and 
software in general. Robotic forums as (http://mindboards.sourceforge.net), and GeoGebra forums 
as (http://www.geogebra.org/forum), can be utilized in the same way. A virtual robot arm 
movement designed with GeoGebra by a team from Nanyang Polytechnic in Singapore is 
represented at http://concordrobotics.com/arm, and the real robot arm is demonstrated with a video 
clip at http://www.youtube.com/watch?v=cYP4pshmW3k. These are examples of “education for 
cyber-generation”, one of the most often mentioned aspects is collaborativity, as in the philosophy 
of Schneiderman (1998): relating work in collaborative teams, creating ambitious projects, and 
donating meaningful results for someone outside the classroom. 
 
  
(ii) Linking of conceptual and procedural knowledge  
 
We know from basics cognitive psychology that our world is a world of meanings, not a world of 
stimuli. This implies the need to apply the developmental approach (see footnote #1) in 
instructional design: students should have opportunities to use their more or less spontaneous 
procedural knowledge. On the other hand, perhaps the most important educational goal in a modern 
society is – especially if we trust on mathematics’ power to trigger general educational goals – to 
scaffold citizens’ abilities to identify and construct links within complicated multi-causal and multi-
disciplined knowledge networks. This means investing in conceptual knowledge, even in such a 
way, that students also learn appropriate procedural skills. This so-called educational approach 
causes the following conflict: Does a student have to understand before being able to do, or vice 
versa?  
 
Recalling Figures 1, 2 and 12, the student can freely manipulate components, which he or she 
understands based on his or her more or less spontaneous knowledge – very often procedural one. 
The immediate updating between the two windows on the screen basically gives the student the 
opportunity to link this representation to an abstract one – very often more or less conceptual one. 
The first author’s MODEM –project2, for example, would give empirically tested models to 
scaffold an interplay between conceptual and procedural knowledge, utilising especially the process 
of Identification during the mathematical concept building (see Haapasalo 2007 and Eronen & 
Haapasalo 2009). The same kind of identification process happens when the student is trying to 
explain what happens in an animation, for example. 
 
By utilizing educational robotics, Petre and Price (2004) noticed that many of the children had come 
to terms with topics (such as programming, gearing, and mathematical representations) which they 
had previously found difficult, in order to make the robot work. They also noticed that students’ 
learning is concrete, associated with phenomena they create, observe and interact with, and so the 
abstractions they derive (or apply later) are grounded and relevant. Events drove the child to 
discover concepts and principles that are often considered difficult.  
 
 
 
                                                
2 See http://wanda.uef.fi/lenni/modemempe.html.  



(iii) Solving the dilemma between systematization and minimalism  
 
The term Minimalist Instruction, introduced by Carroll (1990), is crucial not only for teachers but 
also for those who write software tutorials. We pick up the following characteristics (see Haapasalo 
2007 or Haapasalo & Samules 2011): (1) Instead of specific content and outcomes, only a core 
knowledge domain may be determined stressing doing and exploring, (2) Learning is modelled and 
coached with unscripted teacher responses, (3) Errors are not avoided but used for instruction, (4) 
Learners construct multiple perspectives or solutions through discussion and collaboration; and (5) 
Criterion for success is the transfer of learning and a change in students’ action potential. 
 
To emphasize the genesis of heuristic processes and students’ ability to develop intuition and 
mathematical ideas within a constructivist perspective, a quasi-systematic planning of the 
instrumental orchestration is needed to fulfil the role of a pit stop. In learning situations, however, 
students must have freedom to choose the problems they want to solve within continuous self-
evaluation instead of relying on guidance by the teacher. This can mean modifying a GeoGebra 
environment, for example, as illustrated in Figure 12. Petre and Price (2004) observed that teams 
described learning from mistakes, but some teams captured attention to obstacles as part of their 
problem-solving strategies: “Disasters can produce insights” and “Problems can lead to 
improvements”. They found that a drive to build a functioning robot had carried them into new and 
sometimes daunting territory. It had helped them to take step-by-step and systematic approaches to 
learning what they needed to know. 
 
 
(iv) Learning by design 
 
Our examples can be interpreted as open-ended processes, which promote students to develop and 
test their mathematical ideas within collaboration and own design. This happens in terms of the 
level of accuracy to which the problem is solved and demonstrated, both physically and virtually. 
The level of accuracy will also depend on the approach. A more formal approach requires a deeper 
understanding but it will eventually yield a better and more efficient solution. Students can learn not 
only about mathematical and scientific ideas, but also about the process of design itself (cf. Resnick 
et al. (1988). This is in accordance with Jonassen’s (2000) view that “those who learn more from 
the instructional materials are their developers, not users. 
 
 
(v) Respecting the sustainable heuristics from history of mathematics 
 
Zimmermann’s (2003) long-term study of the history of mathematics reveals eight main motives 
and activities, which proved to lead very often to new mathematical results at different times and in 
different cultures for more than 5000 years. It seems, as suggested in Haapasalo (2007 and 2008), 
appropriate to take this network of activities as an element in a theoretical framework when 
structuring learning environments and for analyzing student’s cognitive and affective variables. 
Especially the ‘find’ and ‘play’ corners represent heuristic activities appearing very often in most 
natural way in spontaneous activities without any demand to learn. Table 1 is a modification from 
Haapasalo and Samuels (2011) to show how those activities appear within some possible modelling 
processes within our examples.  
 



Table 1. Summary of Zimmerman’s activities in real and virtual modelling. 
 

Activity Sub-activity supported by modelling with virtual and real modelling 

Find Finding a way to describe the real or virtual phenomena in spoken language.  Looking for links 
between mathematical concepts and procedures to find mathematical methods for description. 

Apply Applying mathematical concepts and procedures to represent the phenomena. Applying 
Dynamic Geometry software to make own animations and modifying those animations to the 
physical environment. 

Construct Constructing geometric orbits and auxiliary geometric objects to illustrate the virtual 
movements, combination of virtual motions, and constraints relating to real motions. 

Order Ordering the sequence of movements and the algorithms and commands for those motions. 

Calculate Calibrating the parameters for single movements and rotations. Using calculators and software 
for numerical methods (including interpolation, extrapolation, successive approximation), 
Using algebra to solve the simultaneous equations and comparing the exact solution provided 
by GeoGebra with an algebraic solution. 

Play Playing with graphic calculators and software. Playing with the physical model when it is 
ready. Using the sliders in the animation to compare this with the motions. Trying out different 
values and observing their effect – in both the computer program and the virtual animation.   

Evaluate Evaluating approximations, the accuracy of the model, the accuracy of the physical motion, 
and the appropriateness of each task. Refining the model of the movement. Evaluating beliefs 
of mathematics, including own self-confidence in working with mathematics. 

Argue Arguing inside own team and between the other teams when solving problems and discussing 
physical and virtual motions. Proving and testing of ideas and methods directly and indirectly.   

 
 
(vi) Applying business principles to shift the bad social reputation of mathematics  
 
Perhaps the following two managerial points of view, suggested by Hvorecky (2007), would be 
relevant to be taken into account in the teaching and educational research: “(1) Each market 
segment has its own expectations. Thus, we should set up relevant priorities for different groups of 
pupils/students; (2) As the customer is always right, we should make mathematics more edible and 
digestible for each segment i.e. closer to their environment and cultural values.” Concerning those 
customers, Prensky (2001) coined the term ‘Digital Natives’ to emphasize how progressive 
technology is an integral part of the lives of contemporary learners born after about 1980 and how 
their interaction with technology go far further and deeper than most educators suspect or realize. 
Deploying a Learning-by-Design-approach to robotics and virtual animations via integrated 
mathematics software within the curriculum at the secondary level – tertiary level transition would 
therefore seem to be a potential way to engage digital natives, motivate mathematical learning and 
change the image of mathematics. Johnson (2003) argues that robotics offers special educational 
leverage because of its multi-disciplinary nature and the way it involves a synthesis of many 
technical topics, including algebra and trigonometry, design and innovation, electronics and 
programming, forces and laws of motion, and materials and physical processes. Nagchaudhuri et al. 
(2002) report of improved creativity in mathematics, physics and engineering design courses 
resulting from robotics projects in pre-university courses. diSessa (1986) describes science learning 
as a re-experiencing process, whereby children must experience and re-experience the very specific 
concept in different contexts. Through these experiences, children gradually reorganize their 
intuitions into more complete models. 



The first author has tried to get student teachers out from sterile task posing to emphasize that 
mathematics should appear connected to meaningful situations. Such a narrative example related to 
Figure 11 is the following task in the Basic Course of Mathematics Pedagogy: 
 

Patrick, who was fallen in love with his classmate Julia, wanted to impress her by planning a personal 
screen saver for her birthday. He remembered from the biology class that Julia likes ranunculus 
(flowers). So, he typed the term into Google, and found in few minutes interesting animation sites 
http://mathworld.wolfram.com/Ranunculoid.html http://mathworld.wolfram.com/Epicycloid.html. He 
was excited but on the other hand the complicated mathematics killed his interest very soon. So, he 
gave up and went to sleep. Suddenly he got a crazy idea: he searched his coin collection and chose two 
of them, having seemingly the ratio of their radii 1:2. When he started to play with them he 
remembered something happening in the animation, he noticed that the smaller coin rotates with 
double velocity around the bigger one. He took a marker pen and found out a method to describe the 
motion without any complicated mathematics. He started GeoGebra and made the animation. He was 
happy when going back to sleep because he knew that making “real happening” on the screen would 
be a peace of cake tomorrow. What kinds of problems do you think Patrick recognized, formulated, 
and solved? What mathematical concepts and procedures do you think he utilized in his animation? 
Would you like to try to make an own animation with your team?  

  
(vii) Relating instructional design and assessment to instrumental genesis  
 
The fact that several kinds of instrumentations and instrumentalizations very often happen in 
students’ free time in a natural way, implies that educators should shift their focus from well-
prepared classroom lessons on minimalism. Instead of acting like a pace car in a race, institutions 
should be types of pit stops to scaffold students’ “race” outside the classroom. By looking at the 
relationship between technology and mathematics education from five perspectives, Haapasalo 
(2007) suggests that ‘instead of speaking about ‘implementing modern technology into the 
classroom’ it might be more appropriate to speak about ‘adapting mathematics teaching to the needs 
of information technology in modern society’. This means emphasizing more the making of 
informal than formal mathematics to promote sustainable activities (cf. Table 1). This implies that 
we should give students a variety of ways to show their action potential. Overcoming the gap 
between traditional methodologies targeting “perfect manual performance of algebraic 
manipulations and geometric constructions” and new ones emphasising the “understanding of 
mathematical concepts and their role in solving real-life problems” is difficult but challenging. 
Modern approaches emphasise technology not only because it reduces the amount of tedious 
exercises. ICT, if applied properly, demonstrates the role of mathematics in our everyday life better 
than many traditional approaches do. 

Still, educational policy makers in many countries are against allowing the use of modern 
technology in examinations. This implies that teachers are even less voluntary to learn to develop 
their own instrumental genesis, and even less ready to make the same concerning instrumental 
orchestration. On the other hand, allowing the use of technology in teaching and examination does 
not necessarily improve students’ understanding and motivation when staying with conventional 
tasks. An extra problem might be that technological tools are made for those who apply 
mathematics, and not for learning purpose. Manuals, as for ClassPad for example, consist often 
several hundreds of pages containing huge amount of conceptual mathematical knowledge. This 
causes a contradiction between the versatility of the tool and minimizing the continuous tutoring 
from teacher’s side. 



Haapasalo & Hvorecky (2010) express their worry about obstacles, which seem to prevent using 
technology in mathematics education, especially in assessment. They triggered discussion about 
how to shift assessment tasks by providing a matrix illustrating potential task types, which could be 
considered as “task generators” and serve as control mechanisms allowing establishing 
proportionality between categories of tasks based on different principles. This matrix consists of the 
quadruple Starting point – Conceptual knowledge – Procedural knowledge – End point. Each of 
those components can be given or not given, defining a new type of problem in which remaining 
components are present. This produces basically 2*2*2*2 =16 different categories, and if allowing 
for each given component the sub-dichotomy right vs. wrong, the amount of categories is 
3*3*3*3=81. Table 2 represents five of those alternatives, demonstrating the current situation of 
assessment in mathematics. Those examples show, how minor changes in problem posing can shift 
a task from one category to another, and such can cause big impact on the solving process.  
 
This matrix can be used as a framework when trying to get out from a certain deadlock situation as 
regards allowing the usage of technology. Let us begin with the most traditional task type when 
everything is given except the result (first row of Table 2). As regards technology, we basically 
have the following three options when solving the task: 
 (i) it is not allowed to use technology 
 (ii) technology can be used freely 
 (iii) technology has to be applied 
 
The first alternative represents the situation in many countries, and in most of the sixteen 
‘Bundesländer’ of Germany, for example. Because very often a sophisticated tool as ClassPad can 
be used to get the result by pressing one button or several ones, we must be honest to ask why all 
those mechanical paper-and-pencil tricks are still taught at school. On the other hand, the second 
alternative causes a serious conflict with the Equity Standard, emphasized by NCTM (1993), for 
example. Those who have opportunity to buy sophisticated tools, namely, profit from this kind of 
assessment policy. The third alternative would not only make the situation even worse, but 
devaluate the appreciation of sophisticated mathematical methods being applicable without 
technology. This would probably even accelerate “cookbook-teaching”. 
 
We notice that the task type on the first row of the matrix in Table 2 is not only almost 
complementing authentic problems occurring in real life but causes a deadlock when used for 
assessment purpose. Still, it seems to be the most common one even in those countries, which allow 
the usage of technology. All other types of task posing (cf. examples in Table 2) would allow the 
use of technology in much more sophisticated and appropriate way. Because there are 15 (or 80, if 
posing with wrong alternatives) different ways to get out of this conflict, it would be appropriate to 
shift the focus on task types, which would be independent from the usage of technology. This 
would mean a thorough shift in mathematical assessment in general and therefore “might be 
problematic”.  If the teacher is aware of the richness to come up with different kind of problem 
posing, the student has almost unlimited amount of opportunities to use the tool. We would like to 
quote Haapasalo & Hvorecky (2010): “Still, institutions emphasizing mathematics as goal aim to 
explicit knowledge even though economists, physicians, engineers, for example, do not expect that 
mathematicians could co-operate in solving their problems. Accepting mathematics as a tool means 
a balance between soft skills and hard skills”. We repeat their very progressive problem posing, 
fitting our pit stop philosophy and discussion on assessment. The reader might notice that our 
narrative Ranunculoid example above fits this kind of problem posing: 



Peter noticed that ClassPad was able to solve simple equations as 2x-7=0. He continued testing if the 
tool was able to solve equations like x2+x-6=0. Yes, it worked! Now Peter got excited about what all 
ClassPad could actually do for x2+x-6. He tapped menus for factorizing, simplifying, for example, and 
noticed there is an interesting connection between the roots 2 and -3 with (x-2)(x+3). He continued 
playing with the tool and made a conjecture. Which kind of conjecture you think he made? Can you 
make own ones and perhaps see some mathematical concepts and procedures associated with the 
situation? 

 
 
Table 2. Classification of task types in assessment of mathematical knowledge 
 

Starting 
point 

Concep- 
tual 

know- 
ledge 

Proce- 
dural 
know- 
ledge 

End 
point 

Frequ-
ency in 

the 
assess-
ment 

Example  

1 1 1 0 Very 
tradi-
tional 

A quadratic polynomial P can be written in the form 
P(x)= ax2 + bx + c , where x is the variable and a, b 
and c are given real constants. The values of x, where 
P(x) = 0 are called roots of the polynomial. Those 
roots can be found by the formula 

.  Find the roots of x2+x-6=0. 

1 0 1 1 Very rare The values of x, where a polynomial P=P(x) gets the 
value 0 can be found by the formula 

. Which mathematical concepts 

have been used to get this formula and what can be 
said about the polynomial P? 

1 1 0 1 Rare, 
except of 
uni- 
versity 
mathe-
matics 

A quadratic polynomial P can be written in the form 
P(x)= ax2 + bx + c, where x is the variable and a, b 
and c are given real constants. The values of x, where  
P(x) = 0 are called roots of the polynomial and can be 
found by the formula  

. 

Which method has been used to get this formula? 
0 1 1 1 Very rare The values of x (i.e. roots), where a quadratic 

polynomial Q=Q(x)= ax2 + bx + c  gets the value zero, 
are 2 and -3. If we know that any quadratic 
polynomial Q(x) can be written as  
Q(x) = (x - x1)(x - x2), where  x1  and  x2  are the roots 
of Q(x)=0, find at least three such of polynomials Q. 

1  0  0 1 Very rare Explain in as many ways as you can why the equation 
x2 + x -6 = 0 has the roots 2 and -3. What can be said 
about the polynomial  
Q(x) = x2 + x -6? 



Coda 
 
To avoid a possible misinterpretation that our pit stop metaphor would mean devaluating the 
importance of teacher and his or her competence, we would emphasize that even the most 
spectacular driver would never become world champion without a very professional pit stop team. 
Neither would do a soccer team if just the trainer would run all over the field trying to make the 
scores on behalf of the team. 
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