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Abstract

A centerless Bieberbach group is a torsion free crystallographic group with trivial
center. In this paper our focus is on the centerless Bieberbach groups with the dihedral
point group of order eight. With the method developed for polycyclic groups, we compute
the nonabelian tensor square of one of the groups of dimension four. Our approach
of the computation of the nonabelian tensor square of the group is using both hand
calculations and computer calculation by GAP. We explore how to use GAP to assist our
hand calculation and gain insight into this group construction and look what are missing
in just doing GAP calculation. We also illustrate the problems and solutions for mapping
GAP calculation to hand calculation in computing the nonabelian tensor square of the
group.

1 Introduction

A Bieberbach group is a torsion free crystallographic group G which satisfies the short exact
sequence

1 −→ L −→ G −→ P −→ 1

where P is a point group that is a finite group acting faithfully on a maximal normal free
abelian subgroup L of G which is of finite rank and is called a lattice group. It follows that L
is a Fitting subgroup of G and its rank or Hirsch length is referred to as the dimension of G.

The nonabelian tensor product G ⊗ H of groups G and H has its origins in homotopy
theory and was introduced by Brown and Loday [8], extending the ideas of Whitehead [18].
The nonabelian tensor square G ⊗ G of a group G is a special case of the nonabelian tensor
product where the product is defined if the two groups act on each other in a compatible way
and their actions are taken to be conjugation. G⊗G is generated by the symbols g⊗ h, for all
g, h ∈ G, subject to relations

gh⊗ k = (gh ⊗ kh)(h⊗ k) and g ⊗ hk = (g ⊗ k)(gk ⊗ hk) (1)



for all g, h, k ∈ G where gh = h−1gh. The study of G ⊗ G was started by Brown, Johnson
and Robertson [7]. Following to that, the group G ⊗ G has become an increasing interest to
many other researchers. Many researchers have investigated general properties and even explicit
descriptions of the nonabelian tensor squares of some particular groups such as 2-generator p-
group of class 2 [2], 2-generator Burnside group of exponent 4 [11], metacyclic groups [4], 2-Engel
groups [3, 6] and infinite two-generator groups of class two [15]. Computing the nonabelian
tensor square of a Bieberbach group with a point group P is not in the literature. Only recently
in November 2009, Rohaidah [14] successfully got her doctoral degree on her work on computing
the nonabelian tensor squares of Bieberbach groups with cyclic point groups. The structure
of G ⊗ G has been investigated by Brown and Loday [8]. Results in [8], give a commutative
diagram with exact rows and central extensions as columns as in diagram (2). In (2), ∇(G) :=
〈g⊗g | g ∈ G〉 is a central subgroup of G⊗G. The nonabelian exterior square G∧G is a quotient
group G⊗G/∇(G). J2(G) denotes the kernel of G⊗G→ G : g ⊗ h 7→ [g, h] and Γ(G/G′) be
Whitehead’s quadratic functor [18]. Hence by [8], the kernel of G ∧ G → G : g ∧ h 7→ [g, h] is
isomorphic to Schur Multiplicator H2(G).

0 0y y
Γ(G/G′) −−−→ J2(G) −−−→ H2(G) −−−→ 0y y y

1 −−−→ ∇(G) −−−→ G⊗G −−−→ G ∧G −−−→ 1y y y
1 G′ G′y y

1 1

(2)

There are several methods used in computing G⊗G, including the definition given in (1).
However, the definition has become impractical for large finite groups. Brown, Johnson and
Robertson [7] computed G ⊗ G for all groups G of order up to 30 using (1) and also with
the ToddCoxeter algorithm. Ellis and Leonard [11] gave a more effective computer algorithm
to determine G ⊗ H for finite G and H and they computed the nonabelian tensor square of
the Burnside group of exponent 4 of order 4096 as an example of application. Bacon [1] used
crossed pairing method to compute the nonabelian tensor squares of free nilpotent groups of
class 2 of finite rank and Beuerle and Kappe [4] used the method to compute the nonabelian
tensor squares of the infinite metacyclic groups. This method was also been used in computing
the nonabelian tensor squares for nonabelian cases such as for the two-generator two-group
of class two [12, 15] and the free 2-Engel groups of finite rank [6]. However, the step in the
method can sometimes be difficult and lead to the incorrect identification of the nonabelian
tensor square of a group [12].

More recent method used to compute the nonabelian tensor squares of groups is initiated
by Rocco [13] follows by Ellis and Leonard [11] where Rocco introduces the group ν(G) that is
a subgroup of [G,Gϕ] defined below:



Definition 1
Let G be a group with presentation 〈G | R〉 and let Gϕ be an isomorphic copy of G via the
mapping ϕ : g → gϕ for all g ∈ G. The group ν(G) is defined to be

ν(G) = 〈G,Gϕ | R,Rϕ, [g, hϕ]x = [gx, (hx)ϕ] = [g, hϕ]x
ϕ

, ∀x, g, h ∈ G〉.

The important fact about ν(G) is that Rocco [13] and Ellis and Leonard [11] have shown
that it is isomorphic to the nonabelian tensor square of group G as given in the following
theorem.

Theorem 2 Let G be a group. The map σ : G⊗ G → [G,Gϕ] C ν(G) defined by σ(g ⊗ h) =
[g, hϕ] for all g, h in G is an isomorphism.

Blyth and Morse [5] have provide an analysis of the group ν(G) for arbitrary finite and
infinite group G as a tool to compute G⊗G and other homological functors as in diagram (2).
Their results which specialized on polycyclic groups are shown in the following theorem.

Theorem 3 Let G be a polycyclic group with a finite presentation 〈G|R〉 and polycyclic gen-
erating set B. Then

(i) The group G⊗G and ν(G) are polycyclic.

(ii) The group ν(G) has a presentation that depends only on G,R, and B.

These results actually give us two methods to compute the nonabelian tensor squares of
polycyclic groups that are hand computation within the subgroup [G,Gϕ] of ν(G), aided with
the commutator calculus, commutator identities of ν(G) (referred to Rocco [13], Blyth and
Morse [5]) and a computer method. The computer method is done by computing a consistent
polycyclic presentation of ν(G) using polycyclic quotient algorithm provides by Eick and Nickel
[9] and computing the subgroup [G,Gϕ] of ν(G) using the GAP Polycyclic package [10].

The goal of this paper is to compute the nonabelian tensor square of a centerless Bieberbach
group of dimension four with the dihedral point group of order eight. The group will be shown
to be polycyclic, hence the method to compute the nonabelian tensor squares introduced by
Blyth and Morse [5] mentioned above is chosen. The research has been aided by the used of
computational method in group theory via the library of Bieberbach group, CARAT [17] and
a computational group theory system, Groups, Algorithms, and Programming (GAP)[16]. GAP
provides varieties of algorithmic methods to compute with groups of various types including
crystallographic groups and polycyclic groups. Eick and Nickel [9] have shown that the Poly-
cyclic package [10] is significantly more effective than the previously known method for many
finite polycyclic groups and it also extends to infinite polycyclic groups. In this paper, we
demonstrate how we can use GAP to aid us in the computation.

2 Preliminaries

In this section we list some related definitions and structural results used in computing the
nonabelian tensor square of a Bieberbach group of dimension four with the dihedral point group.
We start with definitions of a polycyclic presentation and a consistent polycyclic presentation
that are taken from Eick and Nickel [9].



Definition 4 Polycyclic Presentation
Let Fn be a free group with generators g1, . . . , gn and R be a set of relations of group G. The
relations of a polycyclic presentation Fn/R have the form:

gi
ei = gxi,i+1

i+1 . . . gxi,n
n for i ≤ I,

g−1
j gigj = gyi,j,j+1

j+1 . . . gyi,j,n
n for j < i,

gjgig
−1
j = gzi,j,j+1

j+1 . . . gzi,j,n
n for j < i and j /∈ I

for some I ⊆ {1, . . . , n}, ei ∈ N for i ∈ I and xi,j, yi,j,k, zi,j,k ∈ Z for all i, j and k.

Definition 5 Consistent Polycyclic Presentation
Let G be a group generated by g1, . . . , gn. The consistency of the relations in G can be determined
using the following consistency relations.

gk(gjgi) = (gkgj)gi for k > j > i,

(g
ej

j )gi = g
ej−1
j (gjgi) for j > i, j ∈ I,

gj(g
ei
i ) = (gjgi)g

ei−1

i for j > i, i ∈ I,
(gei
i )gi = gi(g

ei
i ) for i ∈ I,

gj = (gjg
−1
i )gi for j > i, i /∈ I.

The Bieberbach group of dimension four with the dihedral point group is a polycyclic group.
Our method of computing the nonabelian tensor square of the group is based on method
developed by Blyth and Morse [5] which is aided by the following Proposition.

Proposition 6 (Proposition 20 [5]) Let G be a polycyclic group with a polycyclic generating
sequence g1, ..., gk. Then [G,Gϕ] a subgroup of ν(G), is generated by

[G,Gϕ] = 〈[gi, gi], [giε, (gjϕ)δ], [gi
ε, (gj

ϕ)δ][gj
δ, (gi

ϕ)ε] 〉

for 1 ≤ i < j ≤ k, where

ε =

{
1 if |gi| <∞;

±1 if |gi| =∞
and δ =

{
1 if |gi| <∞;

±1 if |gi| =∞.

3 Computing The Nonabelian Tensor Squares

A centerless Bieberbach group with dihedral point group of dimension four is given in the form
of matrix representation by CARAT. Based on the matrix representations and Definition 4, the
polycyclic presentation of this group is obtained as follows:

G =〈a, b, c, l1, l2, l3, l4 | a2 = l−1
3 , b2 = l2, c

2 = l−1
1 , (3)

ba = cl−1
3 , ca = bl−1

3 , cb = cl1l2l
−1
4 , la1 = l−1

2 , la2 = l−1
1 , la3 = l3, l

a
4 = l−1

4 ,

lb1 = l−1
1 , lb2 = l2, l

b
3 = l−1

3 , lb4 = l−1
4 , lc1 = l1, l

c
2 = l−1

2 , lc3 = l−1
3 , la4 = l−1

4 ,

llij = lj, l
l−1
i
j = lj for j > i, 1 6 i, j 6 4〉



The polycyclic presentation of G given above can be shown to be consistent by Definition
5. The proof is omitted here. Since G has a consistent polycyclic presentation, we now can
construct this centerless Bieberbach group G with GAP Polycyclic package [10]. GAP commands
will be written in teletype font with double semicolon if we want to suppress the output, except
the output is of interest. The # symbol is used for comment in GAP for clarity and we fix
the GAP object G which is a finitely presented group that is isomorphic to G. Follows are the
commands to construct the group G in GAP.

gap> F := FreeGroup("a","b", "c", "l1", "l2", "l3", "l4");;

gap> a := F.1;; b := F.2;; c := F.3;; l1 := F.4;;

> l2 := F.5;; l3:=F.6;; l4:=F.7;;

gap> R:=[a^2/l3^-1, b^2/l2, c^2/l1^-1, b^a/(c*l3^-1),

> c^a/(b*l3^-1), c^b/(c*l1*l2*l4^-1),

> l1^a/l2^-1, l2^a/l1^-1, l3^a/l3, l4^a/l4^-1,

> l1^b/l1^-1, l2^b/l2, l3^b/l3^-1, l4^b/l4^-1,

> l1^c/l1, l2^c/l2^-1, l3^c/l3^-1, l4^c/l4^-1,

> l2^l1/l2, l3^l1/l3, l4^l1/l4, l3^l2/l3, l4^l2/l4, l4^l3/l4,

> l2^(l1^-1)/l2, l3^(l1^-1)/l3, l4^(l1^-1)/l4,

> l3^(l2^-1)/l3, l4^(l2^-1)/l4, l4^(l3^-1)/l4];;

gap> # Construct the finitely presented group

gap> Gfp:=F/R;

<fp group on the generators [ a, b, c, l1, l2, l3, l4 ]>

gap> iso := IsomorphismPcpGroup(Gfp);

gap> G:=Image(iso);

Pcp-group with orders [ 2, 2, 2, 0, 0, 0, 0 ]

It should be noted here that GAP cannot run in getting the group iso if the presentation of G
is not consistent.

Next we compute a finite presentation for the nonabelian tensor square G⊗G of G. Actually
GAP can compute the nonabelian tensor square of the group G easily and fast. The following
commands give the output of the non-abelian tensor square of G by GAP. Here GAP object of
NonAbelianTensorSquare(G) is isomorphic to G⊗G of G.

gap> ts:=NonAbelianTensorSquare(G);

Pcp-group with orders [ 2, 0, 0, 0, 0, 4, 8, 8 ]

gap> List(Igs(NonAbelianTensorSquare(G)),Order);

[ infinity, infinity, infinity, infinity, infinity, 4, 8, 8 ]

The above GAP output tells us that the nonabelian tensor square of G has eight generators
in which five of them are of infinite orders, two of them are of order eight and one of them is of
order four. However the result does not give us the insight of the structure of the nonabelian
tensor square of the group such as its exact generators and presentation. With the theory of
the computation of the nonabelian tensor square of polycyclic group by Blyth and Morse [5],
we compute exactly the generators and the presentation of the nonabelian tensor square of the
group G. Since our computation is within ν(G), we use [G,Gϕ] and G⊗G also [g, hϕ] and g⊗h
for g, h ∈ G interchangeably.



By Proposition 6, the subgroup [G,Gϕ] ∼= G⊗G of ν(G) is generated by the following set:

{[a, aϕ], [b, bϕ], [c, cϕ], [l4, l
ϕ
4 ], [a, bϕ], [a, cϕ], [a, lϕ1 ], [a, lϕ2 ], [a, lϕ4 ], (4)

[b, cϕ], [b, lϕ1 ], [b, lϕ3 ], [b, lϕ4 ], [c, lϕ2 ], [c, lϕ3 ], [c, lϕ4 ],

[a, bϕ][b, aϕ], [a, cϕ][c, aϕ], [a, lϕ1 ][l1, a
ϕ], [a, lϕ2 ][l2, a

ϕ], [a, lϕ4 ][l4, a
ϕ],

[b, cϕ][c, bϕ], [b, lϕ1 ][l1, b
ϕ], [b, lϕ3 ][l3, b

ϕ], [b, lϕ4 ][l4, b
ϕ],

[c, lϕ2 ][l2, c
ϕ], [c, lϕ3 ][l3, c

ϕ], [c, lϕ4 ][l4, c
ϕ]}

This set is not independent where some of the generators are identities and some of them are
products of powers of other generators. By hand computation with commutator calculus and
commutator identities of ν(G) ([13], [5]), we can show that, for example, [c, lϕ3 ] = [b, lϕ3 ] as
below:

[c, lϕ3 ] = [a−1bal3 , l
ϕ
3 ] by relation of G

= [a−1, lϕ3 ] [[a−1, l3], (bal3)
ϕ] [b, lϕ3 ]

[[b, l3], (al3)
ϕ] [a, lϕ3 ] [[a, l3], l

ϕ
3 ] [l3, l

ϕ
3 ] by commutator calculus

= [a−1, lϕ3 ] [b, lϕ3 ] [l23, (al3)
ϕ] [a, lϕ3 ] [a, aϕ]4 by relation of G

= [a−1, lϕ3 ] [b, lϕ3 ] [l3, (al3)
ϕ] [[l3, al3] , l

ϕ
3 ]

[l3, (al3)
ϕ] [a, lϕ3 ] [a, aϕ]4 by commutator calculus

= [a−1, lϕ3 ] [b, lϕ3 ] [l3, l
ϕ
3 ] [l3, a

ϕ] [[l3, a] , lϕ3 ]

[l3, l
ϕ
3 ] [l3, a

ϕ] [[l3, a] , lϕ3 ] [a, lϕ3 ] [a, aϕ]4 by relation and commutator calculus

= [a, aϕ]2 [b, lϕ3 ] [a, aϕ]4 [a, aϕ]−2 [a, aϕ]4

[a, aϕ]−2[a, aϕ]−2 [a, aϕ]4 by relation of G

= [b, lϕ3 ].

We can see that the above hand computation is quite lengthy and tedious. As to that, we make
GAP to assist our computation in computing the rest of the independent generators of G⊗G.
The computation of the independent generators are shown in the following lemma.

Lemma 7 Let G be the Bieberbach of dimension four with the dihedral point group which has
a polycyclic presentation as in (3). Then the nonabelian tensor square G ⊗ G of the group G
is generated by the following set

{a⊗ a, c⊗ c, a⊗ b, a⊗ c, a⊗ l1, b⊗ l3, c⊗ l2, (a⊗ c)(c⊗ a)}.

Proof. In GAP, we first construct the group nu which is isomorphic to ν(G) and for more
efficient computation, we find a group Nu which is isomorphic to nu.

gap> # Construct the group Nu which is isomorphic to group nu

gap> nu:=NonAbelianTensorSquarePlus(G);

Pcp-group with orders [ 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2,

0, 0, 0, 0, 4, 8, 8 ]

gap> nuiso:=IsomorphismPcpGroup(Image(IsomorphismFpGroup(nu)));;

gap> Nu:=Image(nuiso);

Pcp-group with orders [ 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0,

0, 2, 0, 0, 0, 0, 4, 8, 8 ]



We then construct a group L which is isomorphic to G and and a group R which is isomorphic
to Gϕ in ν(G). The GAP object CommutatorSubgroup(L,R) is isomorphic to the subgroup
[G,Gϕ] ∼= G⊗G of ν(G).

gap> # Copy of $G$ in Nu

gap> L:=Subgroup(Nu, Igs(Nu){[1..7]});

Pcp-group with orders [ 2, 2, 2, 0, 0, 0, 0 ]

gap> # Copy of $G^\varphi$ in Nu

gap> R:=Subgroup(Nu, Igs(Nu){[8..14]});

Pcp-group with orders [ 2, 2, 2, 0, 0, 0, 0 ]

gap> CommutatorSubgroup(L,R);

Pcp-group with orders [ 2, 0, 0, 0, 0, 4, 8, 8 ]

We find generators Comm(L,R) that are isomorphic to commutators in the set (4). Below are
the GAP commands.

gap> a:=Igs(Nu)[1];; ap:=Igs(Nu)[8];; b:=Igs(Nu)[2];;

> bp:=Igs(Nu)[9];; c:=Igs(Nu)[3];; cp:=Igs(Nu)[10];;

> l1:=Igs(Nu)[4];; l1p:=Igs(Nu)[11];; l2:=Igs(Nu)[5];;

> l2p:=Igs(Nu)[12];; l3:=Igs(Nu)[6];; l3p:=Igs(Nu)[13];;

> l4:=Igs(Nu)[7];; l4p:=Igs(Nu)[14];;

gap> list:=[a,b,c,l1,l2,l3,l4,ap,bp,cp,l1p,l2p,l3p,l4p];;

gap> # Commutators isomorphic to the commutators in the set (4).

gap> t1:=Comm(a,ap);; t2:=Comm(b,bp);; t3:=Comm(c,cp);;

> t4:=Comm(l4,l4p);; t5:=Comm(a,bp);; t6:=Comm(a,cp);;

> t7:=Comm(a,l1p);; t8:=Comm(a,l2p);; t9:=Comm(a,l4p);;

> t10:=Comm(b,cp);; t11:=Comm(b,l1p);; t12:= Comm(b,l3p);;

> t13:=Comm(b,l4p);; t14:=Comm(c,l2p);; t15:= Comm(c,l3p);

> t16:=Comm(c,l4p);;

> t17:= Comm(a,bp)*Comm(b,ap);; t18:= Comm(a,cp)*Comm(c,ap);;

> t19:= Comm(a,l1p)*Comm(l1,ap);; t20:= Comm(a,l2p)*Comm(l2,ap);;

> t21:= Comm(a,l4p)*Comm(l4,ap);; t22:= Comm(b,cp)*Comm(c,bp);;

> t23:= Comm(b,l1p)*Comm(l1,bp);; t24:= Comm(b,l3p)*Comm(l3,bp);;

> t25:= Comm(b,l4p)*Comm(l4,bp);; t26:= Comm(c,l2p)*Comm(l2,cp);;

> t27:= Comm(c,l3p)*Comm(l3,cp);; t28:= Comm(c,l4p)*Comm(l4,cp);;

We interpret the results of the above commands given by GAP and write the commutators in
set (4) that are not independent in terms of dependent ones. We have the following:

gap> t2 = t1^-4*t3*t18^2; true gap> t4; id

gap> t8=t7*t3^4; true gap> t9=t5^-2*t6^2; true

gap> t10 = t1^2*t3*t5^-1*t6*t7^-1; true

gap> t11=t3^-4*t7^2*t14^-1; true gap> t13=t1^4*t3^4*t5^-2*t6^2; true

gap> t15=t12; true gap> t16=t1^4*t3^4*t5^-2*t6^2; true

gap> t17=t1^-4*t18; true gap> t19=t18^2; true

gap> t20=t18^2; true gap> t21; id

gap> t22= t3^2*t18^2; true gap> t23=t3^4; true



gap> t24=t18^2; true gap> t25; id

gap> t26=t3^4; true gap> t27=t18^2; true

gap> t28; id

Hence we have the generating set (4) is reduced to the following set

{[a, aϕ], [c, cϕ], [a, bϕ], [a, cϕ], [a, lϕ1 ], [b, lϕ3 ], [c, lϕ2 ], [a, cϕ][c, aϕ]}

We then check whether the above set generates G⊗G and we also check the order of each
generator by the following commands.

gap> list:=[t1, t3, t5, t6, t7, t12, t14, t18];;

gap> CommutatorSubgroup(L,R)= Subgroup(Nu, list);

true

gap> List(list,Order);

[ 8, 8, infinity, infinity, infinity, infinity, infinity, 4 ]

Hence this prove the lemma.
The main goal of the computation of the nonabelian tensor square G⊗G of the centerless

Biebergroup G with dihedral point group is to determine its presentation. The presentation of
G⊗G is given by the following theorem.

Theorem 8 Let G be the Bieberbach of dimension four with the dihedral point group which
has a polycyclic presentation as in 3. Then the nonabelian tensor G ⊗ G of the group G is
nonabelian and is given as follows

G⊗G = 〈 g1, g2 . . . g8 |g8
1 = g8

2 = g4
3 = [g4, g5] = [g4, g7] (5)

= [g5, g7] = [g6, g7] = [g6, g8] = [g7, g8] = 1,

[g4, g6] = [g5, g6] = g4
2g

2
6, [g4, g8] = [g5, g8] = g4

2g
2
8,

[gi, gj] = 1 for 1 ≤ i ≤ 3, 1 ≤ j ≤ 8 〉,

where

a⊗ a = g1, c⊗ c = g2, (a⊗ c)(c⊗ a) = g3, a⊗ b = g4

a⊗ c = g5, a⊗ l1 = g6, b⊗ l3 = g7, c⊗ l2 = g8.

Proof. By Lemma 7, G⊗G is generated by the set

{g1, g2, g3, g4, g5, g6, g7, g8}. (6)

Next, we determine the relations of G⊗G.
Lemma 7 gives us that g1 , g2 are of order eight and order of g3 is four, hence we have

g8
1 = g8

2 = g4
3 = 1. (7)

By commutator identities of ν(G) in Rocco [13], we have g1, g2, and g3 are central in ν(G).
Hence, we have

[gi, gj] = 1 for 1 ≤ i ≤ 3, 1 ≤ j ≤ 8. (8)

The commutator of the elements of G⊗G that are not in the central of ν(G) are as follows:
[g4, g5], [g4, g6] , [g4, g7], [g4, g8], [g5, g6], [g5, g7], [g5, g8], [g6, g7], [g6, g8] and [g7, g8]. Now we
compute the above commutators. Again hand computations are very lengthy and tedious and
are ommited here and we make GAP to assist the computation.



gap> Comm(t5,t6); id gap> Comm(t5,t7)=t3^4*t7^2; true

gap> Comm(t5,t12); id gap> Comm(t5,t14)=t3^4*t14^2; true

gap> Comm(t6,t7)=t3^4*t7^2; true gap> Comm(t6,t12); id

gap> Comm(t6,t14)=t3^4*t14^2; true gap> Comm(t7,t12); id

gap> Comm(t7,t14); id gap> Comm(t12,t14); id

With the above results, we have [g4, g5] = [g6, g7] = [g6, g8] = [g7, g8] = 1, [g4, g6] = [g5, g6] =
g4
2g

2
6 and [g4, g8] = [g5, g8] = g4

2g
2
8

Hence with these results and by (6), (7) and (8), it is proved that G⊗G has a presentation
as in (8) and by its relations, G⊗G is not abelian.

4 Conclusion and Future Work

This paper gives the computation of the nonabelian tensor square of a centerless Bieberbach
group of dimension four with the dihedral point group of order eight. We can see that calcula-
tions along with the theories of the nonabelian tensor square of groups, particularly of polycyclic
groups can give us the generators and the presentation of the nonabelian tensor squares of the
group that computer computational cannot give. However, the computer computational, par-
ticularly GAP, is powerful in helping us to make the computation faster and more efficient.
GAP is very helpful especially when we are dealing with higher dimension of, not restrict to
only Bieberbach groups with dihedral point group but to other general Bieberbach groups and
polycyclic groups as well. In future, we will explore GAP in computing other homology functors
such as G ∧G,∇(G), J2(G) and others as in (2).
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