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Abstract:  The demand-price relation in the real market can be approximated by a demand function (DF).  A DF can 

be derived from the first-order conditions of the maximization of a utility function, or estimated using data observed 

from the markets.  In an earlier work, a piecewise nonlinear DF which remain nonnegative at all high prices was 

proposed, and was called a Complementarity-Constrained Demand Function (CCDF). In this work, we use MATLAB 

to test a new complementarity-constrained (CC) pricing model. The novel feature of this model is attributed to the 

CCDF incorporated within it.  An algorithm to compare the revenues obtained from a generic pricing model and a CC 

pricing model was implemented on MATLAB. Results from these computational experiments indicate that the use of a 

CC pricing model is favourable, for certain ranges of parameters defining the demand function. This demonstrates the 

important use of computational tools such as MATLAB in pricing modelling studies, and provides justifications for 

further investigations of the CC pricing model. 

      

1.  Introduction 
 

     A demand function (DF) can be used to model the demand-price relation of products in the real 

market. Some commonly known DFs include linear and Cobb-Douglas DFs. These functions are 

derived from the first-order conditions of the maximization of utility functions. Though in 

microeconomics, utility maximization (UM) is a theoretically justified way to generate a DF, it may 

not enable us to model the real market realistically. In addition, a DF can be generated via UM only 

when a closed-form solution can be obtained. Thus only a few DFs derived from UM exist. 

Data-fitting is an alternative avenue used to determine DFs. That is, we can use some generic 

functions to fit data that is observed from the real markets. Linear functions are simple and 

commonly considered in practice. For more examples of DFs considered in the past literature, the 

reader can refer to [4] and the references therein. However, the DFs are usually defined on a 

restricted set of prices (we call it Omega), as they turn negative at sufficiently high prices. Thus we 

are unable to use the functions to account for demand data corresponding to these high prices. 

An approach to rectify this problem has been discussed in [5]. In that work, the extension of a 

DF within Omega to outside Omega is done via the solution of a Complementarity problem, 

generating a Complementarity-Constrained Demand Function (CCDF) as a result. This CCDF is a 

piecewise nonlinear DF which remains nonnegative at all high prices. The authors proceeded to 

introduce a new pricing model which incorporated the CCDF.  

In this paper, we use MATLAB to test the new complementarity-constrained (CC) pricing model 

as discussed above. We wrote an algorithm to compare a generic pricing model and a CC pricing 

model. Through the results of our MATLAB implementations, we observe that a CC pricing model 
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generates higher revenues for certain ranges of parameters defining the demand function. With 

these numerical results, we proceeded to provide theoretical justifications of the use of the new CC 

pricing model. Hence, our work demonstrates the important use of MATLAB in the modelling of 

demand-price relationships of products in a market. 
 

2.  Description of a CC Pricing Model  
 

 We will briefly discuss the CCDF and the CC pricing model proposed in [5]. For the detailed 

descriptions of the models and the motivations behind their constructions, the reader can refer to 

[5]. 

 

2.1  Illustration of a CCDF 

 

 Consider a demand function 𝑑: 𝑅+
𝑁 → 𝑅𝑁. Let Ω =  𝑝 ∈ 𝑅+

𝑁    𝑑 𝑝 ≥ 0}. The CCDF is denoted 

by 𝐷, and 𝐷 𝑝 = 𝑑(𝑝) for all 𝑝 ∈ Ω. To define 𝐷 outside Ω, the following map 𝐵 defined via a 

nonlinear complementarity problem (NCP) was introduced in [5].  

 

Definition 2.1 For any 𝑝 ∈ 𝑅+
𝑁 , 𝐵(𝑝) is defined as a solution of the 𝑁𝐶𝑃(𝑝): find 𝑥 (= 𝐵 𝑝 ) 

such that 

 

0 ≤ 𝑑 𝑥  ⊥  𝑝 − 𝑥 ≥ 0, 

 

where  0 ≤ 𝑑 𝑥  ⊥  𝑝 − 𝑥 ≥ 0 represents 𝑑 𝑥 ≥ 0, 𝑑 𝑥 ∙  𝑝 − 𝑥 = 0, 𝑝 − 𝑥 ≥ 0. 

 

 With the above map, a complete definition of the CCDF follows.  

  

Definition 2.2 The Complementarity-Constrained Demand Function (CCDF) 𝐷: 𝑅+
𝑁 → 𝑅+

𝑁  is 

defined by 

 

𝐷 𝑝 = 𝑑 𝐵 𝑝  ,      for all 𝑝 ∈ 𝑅+
𝑁 , 

 

where the map 𝐵 is as stated in Definition 2.1.  

 

2.2  A simple CC pricing model 

 

 We first present a simple generic pricing model involving a demand function defined only on 

Ω. Consider a single seller offering 𝑁 products. Let 𝑑(𝑝) be a function dependent on the price 

vector 𝑝 ∈ 𝑅+
𝑁  of all his products. To maximize his revenue, a seller can solve the following 

optimization problem: 

 

       max   𝑝𝑇𝑑 𝑝  

       s.t.      𝑑 𝑝 ≥ 0            (2.1)

                  𝑝 ≥ 𝐿𝐵, 
 

where 𝐿𝐵 is a given vector of lower bounds on prices to be set by the seller.  

 If we use a pricing model incorporating the CCDF, non-negative prices outside of Ω are 

allowed and we have the problem 



       max   𝑝𝑇𝐷 𝑝  

       s.t.      𝑝 ≥ 𝐿𝐵.             

 

Using Definition 2.1, it can be represented as 

 

       max   𝑝𝑇𝑑 𝑥  

       s.t.      0 ≤ 𝑑 𝑥  ⊥  𝑝 − 𝑥 ≥ 0          (2.2) 

                    𝑝 ≥ 𝐿𝐵. 
 

It is clear that if 𝑝 = 𝑥 in model (2.2), then models (2.1) and (2.2) are identical. Thus we can 

always obtain an optimal revenue from model (2.2) that is at least as high as that obtained if model 

(2.1) was used instead. In this work, our focus is on the cases where model (2.2) generates higher 

revenues.   
 

3.  Comparison of Pricing Models involving a Specific 𝒅   
 

 In this section, we wish to compare the models (2.1) and (2.2) with a particular form of 𝑑 

incorporated within. For simplicity, we consider a single seller offering two products. As discussed 

in [6], using past literature including [1], [2] and [3], it is reasonable to consider  

 𝑑𝑖 𝑝 = 𝑐𝑖𝑝𝑖
𝑎𝑖𝑖𝑝

𝑗

𝑎𝑖𝑗 − 𝑘𝑖  

for each product 𝑖  𝑖 = 1, 2 . Here 𝑐𝑖 , 𝑘𝑖 , 𝑎𝑖𝑖 , 𝑎𝑖𝑗  are some given constants, where 𝑐𝑖 , 𝑘𝑖 > 0 are 

demand parameters, 𝑎𝑖𝑖  represents the own-price elasticity of demand for product 𝑖, and 𝑎𝑖𝑗  is the 

cross-price elasticity of demand for product 𝑖 with respect to product 𝑗. It is clear that 𝑎𝑖𝑖  < 0 holds 

for normal goods and  𝑎𝑖𝑗 > 0  (or < 0) if products 𝑖 and 𝑗 are mutually substitutable (or 

complementary). We will consider only substitutable products in this paper. Note that if 𝑘𝑖 > 0 and 

𝑝𝑗  is fixed, the demand 𝑑𝑖  goes to 0 before 𝑝𝑖  approaches infinity, which seems realistic in the 

market. 
 

3.1  Solution of a generic pricing problem involving a single seller with two products    

 

 Incorporating the function 𝑑 as discussed above, the generic model (2.1) becomes 

  

     max    𝑝1 𝑐1𝑝1
𝑎11 𝑝2

𝑎12 − 𝑘1  +  𝑝2 𝑐2𝑝1
𝑎21 𝑝2

𝑎22 − 𝑘2    

     s.t.     𝑐1𝑝1
𝑎11 𝑝2

𝑎12 − 𝑘1 ≥ 0            (3.1) 

      𝑐2𝑝1
𝑎21 𝑝2

𝑎22 − 𝑘2 ≥ 0   

       𝑝1 ≥ 𝐿𝐵1 

       𝑝2 ≥ 𝐿𝐵2. 
 

To find the optimal solution of problem (3.1), we can use the well-known Karush–Kuhn–Tucker 

(KKT) conditions. Suppose that μ
1

, μ
2

, λ1 , λ2 are the lagrange multipliers corresponding to the four 

respective constraints in (3.1). Then the KKT conditions are: 

 

–  𝑎11 + 1 𝑐1𝑝1
𝑎11𝑝2

𝑎12 + 𝑘1 − 𝑎21𝑐2𝑝1
(𝑎21−1)

𝑝2
(𝑎22 +1)

− 𝑎11𝑘1μ
1
𝑝1

(−𝑎11−1)
− 𝑎21𝑐2μ

2
𝑝1

(𝑎21−1)
− λ1 = 0  

−𝑎12𝑐1𝑝1
(𝑎11 +1)

𝑝2
(𝑎12−1)

−  𝑎22 + 1 𝑐2𝑝1
𝑎21𝑝2

𝑎22 + 𝑘2 − 𝑎12𝑐1μ1𝑝2
(𝑎12−1)

− 𝑎22𝑘2μ2𝑝2
(−𝑎22−1)

− λ2 = 0   

𝑘1𝑝1
−𝑎11 − 𝑐1𝑝2

𝑎12 ≤ 0 



𝑘2𝑝2
−𝑎22 − 𝑐2𝑝1

𝑎21 ≤ 0 

𝐿𝐵1 −  𝑝1 ≤ 0 
𝐿𝐵2 −  𝑝2 ≤ 0 

μ1 ∙  𝑘1𝑝1
−𝑎11 − 𝑐1𝑝2

𝑎12 = 0 

 μ2 ∙  𝑘2𝑝2
−𝑎22 − 𝑐2𝑝1

𝑎21 = 0 

 λ1 ∙  𝐿𝐵1 −  𝑝1 = 0  
 λ2 ∙ (𝐿𝐵2 −  𝑝2) = 0 

 μ
1

, μ
2

, λ1, λ2  ≥ 0 

 

There are sixteen cases involved in the solution of the KKT conditions above. Some examples are 

μ
1

, μ
2

, λ1, λ2 > 0 and μ
1

, μ
2

, λ1 > 0, λ2 = 0. The basic idea is to compare the solutions of all the 

cases and identify the price vector that gives the maximum objective value. A more detailed 

discussion of the solution procedure of problem (3.1) can be found in [6]. We can use MATLAB to 

program an algorithm to solve the sixteen cases and find the optimal revenue, for given values of 

the parameters and lower bound constraints. 

  

3.2  Solution of a CC pricing problem involving a single seller with two products   

 

 If model (2.2) is considered , use of the same function 𝑑 as above leads to the problem 

 

max    𝑝1 𝑐1𝑥1
𝑎11 𝑥2

𝑎12 − 𝑘1  +  𝑝2 𝑐2𝑥1
𝑎21 𝑥2

𝑎22 − 𝑘2    

     s.t.     0 ≤ 𝑐1𝑥1
𝑎11 𝑥2

𝑎12 − 𝑘1  ⊥   𝑝1 −   𝑥1 ≥ 0         (3.2) 

      0 ≤ 𝑐2𝑥1
𝑎21 𝑥2

𝑎22 − 𝑘2  ⊥   𝑝2 −   𝑥2 ≥ 0   

       𝑝1 ≥ 𝐿𝐵1 

       𝑝2 ≥ 𝐿𝐵2. 
 

The following four cases are important in the consideration of model (3.2): 

 

(I)    𝑑1 𝑥 = 𝑑2 𝑥 = 0,  𝑝1 −   𝑥1 ≥ 0,  𝑝2 −   𝑥2 ≥ 0. 
(II)   𝑝1 −   𝑥1 = 0,  𝑝2 −   𝑥2 = 0,  𝑑1 𝑥 ≥ 0,  𝑑2 𝑥 ≥ 0. 
(III) 𝑑1 𝑥 = 0,  𝑝2 −   𝑥2 = 0,  𝑝1 −   𝑥1 ≥ 0,  𝑑2 𝑥 ≥ 0. 
(IV) 𝑑2 𝑥 = 0,  𝑝1 −   𝑥1 = 0,  𝑑1 𝑥 ≥ 0,  𝑝2 −   𝑥2 ≥ 0. 
 

It is easy to see that, to compare the optimal revenues obtained from models (3.1) and (3.2), we just 

need to find the objective function values of problem (3.2) under Cases (III) and (IV), and then 

compare them with that of model (3.1). As solving each of these two cases can be reduced to 

solving a constrained single-variable maximization problem (see [6] for details), the solution 

method is not difficult to program using MATLAB. The reader can refer to the Appendix for the 

program. 
 

4.  Numerical Observations   

 
Using MATLAB, we programmed an algorithm to implement the solution procedures discussed 

previously to compare the two pricing models (3.1) and (3.2). For simplicity of exposition, we 

consider the fixed parameters 𝑐1 = 𝑐2 = 𝑘1 = 𝑘2 = 𝑎12 = 𝑎21 = 1 throughout this section. These 

numbers were chosen for convenience of our qualitative study of the models. Note that 𝑎12 = 𝑎21  



implies that the two products are equally substitutable for each other, which can happen in the real 

market. We are in the process of calibrating our model to fit a real situation using data on ebay. The 

results will be reported in a later paper. 

 Due to the fixed parameters defining the functions 𝑑1 and 𝑑2, it is easy to verify that 𝑑1(𝑝) =
𝑑2(𝑝) = 0 at 𝑝 = (1, 1) [implicit upper bounds on prices]. Thus we consider 𝐿𝐵𝑖 < 1 [𝑖 = 1, 2]. 
We now present the graphs illustrating some of the numerical experiments that we undertook. 

There are three sets of cases with three cases in each set, namely, A1- A3, B1-B3 and C1-C3. For 

example, in all the Cases A1-A3, 𝐿𝐵1 is fixed at 0.5, 𝑎22  ranges from -10 to -3 and 𝐿𝐵2 ranges 

from 0.5 to 0.95. Thus only the parameter 𝑎11  is different across the 3 cases. However, the graphs 

of these 3 cases are the same, hence we only present one representative graph here. The 

descriptions of all the different cases are provided within the captions of the figures. Note that if 

the maximum revenue is obtained “outside Ω”, then it means that model (3.2) is better. 

 

Figure 4.1 Cases A1-A3 

Regions A and B are the sets of parameters where maximum revenues are obtained outside and 

inside Ω respectively, with 𝐿𝐵1 = 0.5, 𝑎11 = −6 (Case A1), 𝑎11 = −4 (Case A2) and 𝑎11 = −2 

(Case A3). 

 

Figure 4.2 Case B1  
Regions A and B are the sets of parameters 

where maximum revenues are obtained 

outside and inside Ω respectively, with 

𝑎11 = −6 and 𝐿𝐵2 = 0.5.      

 

      Figure 4.3 Case B2  
Regions A and B are the sets of parameters 

where maximum revenues are obtained 

outside and inside Ω respectively, with 

𝑎11 = −4 and 𝐿𝐵2 = 0.5. 
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Figure 4.4 - Case B3  

Regions A and B are the sets of parameters 

where maximum revenues are obtained 

outside and inside Ω respectively, with 

𝑎11 = −2 and 𝐿𝐵2 = 0.5. 
      

 

      Figure 4.5 - Case C1  

Regions A and B are the sets of parameters 

where maximum revenues are obtained 

outside and inside Ω respectively, with 

𝐿𝐵1 = 0.2 and 𝐿𝐵2 = 0.8. 

 

Figure 4.6 - Case C2  

Regions A and B are the sets of parameters 

where maximum revenues are obtained 

outside and inside Ω respectively, with 

𝐿𝐵1 = 0.3 and 𝐿𝐵2 = 0.8. 
                 

 
                 

Figure 4.7 - Case C3  

Regions A and B are the sets of parameters 

where maximum revenues are obtained 

outside and inside Ω respectively, with 

𝐿𝐵1 = 0.4 and 𝐿𝐵2 = 0.8. 
 

 From studying the graphs above and the output values generated from our customized 

MATLAB programs, we were able to obtain the threshold values which, when exceeded, cause the 

transitions from regions B to regions A.      

 For each of the cases A1-A3, the value of 𝐿𝐵1 is fixed. Since the graphs are identical though 

𝑎11  varies across the three cases, it is clear that the threshold values do not depend on 𝑎11 . In 

addition, from Figure 4.1, we observe that the threshold value of 𝐿𝐵2 decreases as 𝑎22  increases. 

We can illustrate the threshold values using the figures below. 

 Let 𝑥∗ be the vector where 𝑑2(𝑥∗)= 0 and 𝑥1
∗ = 𝐿𝐵1  [see Figure 4.8]. Then if  𝐿𝐵2 >  𝑥2

∗ , it is 

possible to set 𝑝∗ = (𝐿𝐵1 , 𝐿𝐵2) and 𝑥∗ as discussed, under Case (IV) of model (3.2). Under model 

(3.1), the feasible region of prices is restricted by Ω and the lower bound constraints [denoted by 𝑅 
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𝑅 

in Figure 4.8]. However, when  𝐿𝐵2 <  𝑥2
∗ , there is no advantage in considering model (3.2) as 

there will no longer be a situation where we can set 𝑝𝑖 = 𝐿𝐵𝑖  and 𝑥𝑖 < 𝐿𝐵𝑖  [𝑖 = 1, 2]. Thus the 

threshold value of 𝐿𝐵2 is 𝑥2
∗. From the expression 𝑑2(𝐿𝐵1 ,  𝑥2

∗) = 0, we can obtain 𝑥2
∗ =

(𝐿𝐵1 )
−1/𝑎22 . It is clear that this expression does not contain the 𝑎11  term. The correctness of this 

expression can be verified using the output values of our MATLAB programs. From Figure 4.9, we 

can see that this threshold value of 𝐿𝐵2 decreases as 𝑎22  increases [i.e., 𝑥 < 𝑥 ].   
 

 

 

 

  

 

 

 

 

 

 

 

 
Figure 4.8 Optimal 𝑝∗ outside Ω and  𝑥∗ in Ω Figure 4.9 Dependence of threshold values on 𝑎22  
 

  For Cases B1-B3, 𝐿𝐵2 is fixed and 𝑎11  varies across the three cases. It is clear that the 

threshold value of 𝐿𝐵1 for each case is independent of 𝑎22 . We also observe that as 𝑎11  increases, 

the threshold value decreases. See Figures 4.2-4.4.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Optimal 𝑝  outside Ω and  𝑥  on boundary of Ω 

 

Similar to the earlier discussion, suppose we now denote 𝑥  as the vector where 𝑑1 𝑥   = 0 and 

𝑥 2 = 𝐿𝐵2 [refer to Figure 4.10]. Once 𝐿𝐵1 >  𝑥 1 , it is possible to set 𝑝 = (𝐿𝐵1 , 𝐿𝐵2) and 𝑥   as 

defined, under Case (III) of model (3.2). Hence the threshold value of 𝐿𝐵1 is 𝑥 1. From the 

expression 𝑑1(𝑥 1, 𝐿𝐵2) = 0, we obtain 𝑥 1 = (𝐿𝐵2 )
−1/𝑎11 . Since 𝐿𝐵2 < 1 and 𝑎11 < 0, we can 

easily see why the threshold value decreases as 𝑎11  increases.   

 In the last set of cases, i.e., C1-C3, we fix 𝐿𝐵2 and vary 𝐿𝐵1 across the cases. According to 

Figures 4.5-4.7, the threshold values are independent of 𝑎11  and increase as 𝐿𝐵1 increases. Note 

that both 𝐿𝐵1 and 𝐿𝐵2 are fixed within each case. We can visualize using Figure 4.9, that once 𝑎22  

increases beyond a certain threshold value [say 𝑎 22], we can set 𝑝∗ = (𝐿𝐵1 , 𝐿𝐵2), 𝑥1
∗ = 𝐿𝐵1 and 
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∗ = (𝐿𝐵1 )

−1/𝑎22  [see the discussion on Cases A1-A3]. Higher revenues can then be obtained 

using model (3.2). It is easy to see that 𝑎 22  occurs at 𝑑2(𝐿𝐵1 , 𝐿𝐵2) = 0. That is, 𝑎 22 =
−ln 𝐿𝐵1 

ln 𝐿𝐵2 
. As 

before, we can verify this expression using our MATLAB output values. In addition, with  

𝐿𝐵1, 𝐿𝐵2 < 1, it is clear that 𝑎 22  increases with 𝐿𝐵1. 

 We are able to prove the mathematical expressions for the threshold values as discussed above, 

with the help of our MATLAB programs. The main idea is to show that higher revenues can be 

obtained using model (3.2) for parameters within the region A. As the methods of proofs for all the 

three types of cases are similar, we will only discuss the proof for Cases A1-A3. From Section 3.1, 

we saw that sixteen cases constitute the solutions of the KKT conditions of problem (3.1). Then in 

Section 3.2, we showed that we need to solve problem (3.2) under Cases (III) and (IV). However, 

from our MATLAB results, we observed that only three of the eighteen cases yielded non-trivial 

solutions. Using algebraic manipulations and reasoning specific to Cases A1-A3, we were able to 

show that, under certain trivial conditions, fifteen of the eighteen cases were inadmissible and can 

be ignored. We then found the solutions of the remaining three non-trivial cases and proved that 

the revenue obtained under Case (IV) of model (3.2) is the highest [for any given set of parameters 

in region A]. This showed that for certain parameters defining the demand function and lower 

bound constraints, the CC pricing model is indeed favourable. All technical details of our proofs 

will be reported in a later work. 

 

5.  Conclusion and further work   

 
 The use of MATLAB was instrumental in comparing a generic pricing model and our 

complementarity-constrained pricing model. We have shown through the numerical examples that, 

for a simple single-seller-two-product problem, we should not ignore prices outside Ω as they can 

lead to better revenues. Our MATLAB results were also useful in pointing the direction of our 

mathematical proofs. Henceforth, we can model the function 𝑑 using real data and conduct 

simulation studies of the demand-price relationships of certain specific products using MATLAB. 

An investigation of the two pricing models incorporating a realistic 𝑑 will then follow. 

 In addition, we can incorporate our project into the teaching of an Honours or Masters 

Operations Research (OR) course. Students can first be guided to obtain real data (for example, 

from ebay) to estimate the parameters defining the function 𝑑. They can then input these 

parameters into our given program to obtain the output of optimal prices and revenues, and analyse 

and compare pricing models. In this way, they can gain a deeper understanding of pricing models 

and learn a real application of OR techniques, without the need to write complicated programs. 

 

Acknowledgements This research is supported partly by NIE Academic Research Fund Project 

Reference No: RI 1/08 SWM. The authors would like to thank Mr Wee Wen Shih, their Research 

Assistant, for his help in this project.  

 

References 

 

[1] Chevalier, J., and Goolsbee, A. (2003). Measuring Prices and Price Competition Online: 

Amazon.com and Barnes and Noble.com. Quantitative Marketing and Economics, 1, 203-

222. 



[2] Ghose, A., Smith, M. D., and Telang, R. (2006). Internet Exchanges for Used Books: An 

Empirical Analysis of Product Cannibalization and Welfare Impact. Information Systems 

Research, 17 (1), 3-19.  

[3] Ghose, A., and Sundararajan, A. (2006). Evaluating Pricing Strategy Using e-Commerce 

Data: Evidence and Estimation Challenges. Statistical Science, 21(2), 131-142. 

[4] Soon, W. M. (2009). A review of multi-product pricing models. Submitted to Applied 

Mathematics and Computation. 

[5] Soon, W. M., Zhao, G. Y., and Zhang, J. P. (2009). Complementarity demand functions 

and pricing models for multi-product markets. European Journal of Applied Mathematics, 

20(5), 399-430. 

[6] Soon, W. M., Ang, K. C., and Teo, K. M. (2009). Numerical Implementations of a Pricing 

Model with Complementarity Constraints. In Yahya Abu Hasan et al. (Ed.) 5th Asian 

Mathematical Conference Proceedings (pp. 205-211). Kuala Lumpur: School of 

Mathematical Sciences, Universiti Sains Malaysia. 

 

Appendix (Program for Section 3.2)  
 
%Parameters given 

a11 = -3.5; 

a12 = 3.24; 

a21 = 0.23; 

a22 = -0.45; 

c1 = 1; 

k1 = 1; 

c2 = 1; 

k2 = 1; 

L1 = 0.5; 

L2 = 0.8; 

 

%To simplify notations for the program 

ck1 = c1/k1; 

ck2 = c2/k2; 

kc1 = k1/c1; 

kc2 = k2/c2; 

d = a11*a22 - a12*a21; 

 

% ------------------------------------------------------------------------------------- 

%To solve Case (III): p_2 = x_2, d_1(x_1,x_2) = 0 

 

UB2 = (ck2*(kc1^(a21/a11)))^(-a11/d);   %find upper bound on x_2 

x2 = (kc2*(ck1^(a21/a11))*(a11/(a11+d)))^(a11/d);   %find critical point 

fL2 = c2*(kc1^(a21/a11))*L2^(1+(d/a11)) - k2*L2;   %find function values at endpoints 

fUB2 = c2*(kc1^(a21/a11))*UB2^(1+(d/a11)) - k2*UB2; 

 

if UB2 < L2    %this case is infeasible  

   Rev2 = -1; 

   p1 = -1; 

   p2 = -1; 

else 

   if L2 < x2 & x2 < UB2 & isreal(x2) == 1 

http://projecteuclid.org/handle/euclid.ss


      fx2 = c2*(kc1^(a21/a11))*x2^(1+(d/a11)) - k2*x2; %find function value at critical pt  

      [Rev3,I] = max([fL2 fUB2 fx2]); 

      if I == 1 

         p2 = L2; 

      elseif I == 2 

         p2 = UB2; 

      else 

         p2 = x2; 

      end 

      p1 = max([L1 (kc1*(p2^(-a12)))^(1/a11)]); 

      else 

          [Rev3,I] = max([fL2 fUB2]); 

      if I == 1 

         p2 = L2; 

      else I == 2 

         p2 = UB2; 

      end 

      p1 = max([L1 (kc1*(p2^(-a12)))^(1/a11)]); 

   end 

end 

fprintf('CC Case (III): p1 = %g, p2 = %g, revenue = %g \n',p1,p2,Rev3); 

 

% ------------------------------------------------------------------------------------- 

%To solve Case (IV): p_1 = x_1, d_2(x_1,x_2) = 0 

 

UB1 = (ck1*(kc2^(a12/a22)))^(-a22/d);   %find upper bound on x_1 

x1 = (kc1*(ck2^(a12/a22))*(a22/(a22+d)))^(a22/d);   %find critical point 

fL1 = c1*(kc2^(a12/a22))*L1^(1+(d/a22)) - k1*L1;   %find function values at endpoints 

fUB1 = c1*(kc2^(a12/a22))*UB1^(1+(d/a22)) - k1*UB1; 

 

if L1 < x1 & x1 < UB1 & isreal(x1) == 1 

   fx1 = c1*(kc2^(a12/a22))*x1^(1+(d/a22)) - k1*x1; 

   [Rev4,I] = max([fL1 fUB1 fx1]); 

   if I == 1        

      p1 = L1; 

   elseif I == 2 

      p1 = UB1; 

   else 

      p1 = x1; 

   end 

   p2 = max([L2 (kc2*(p1^(-a21)))^(1/a22)]); 

else 

   [Rev4,I] = max([fL1 fUB1]); 

   if I == 1 

      p1 = L1; 

   else I == 2 

      p1 = UB1; 

   end 

   p2 = max([L2 (kc2*(p1^(-a21)))^(1/a22)]); 

end 

fprintf('CC Case (IV): p1 = %g, p2 = %g, revenue = %g \n',p1,p2,Rev4); 

 


