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1. Introduction by personal experience 
For years I have been admiring the cleverness and 
mastery of ancient local village carpenters who had 
constructed a roof covering a cattle shed which is 
nowadays used after refurbishment as a holiday 
cottage. Just before falling asleep I stared at a post 
and four wooden elements forming a strange X. Half 
of the X is in one plane and half of it is in a plane 
perpendicular to the initial one. These elements 
support the roof construction. The upper ones called 
swords prevent the roof from shifting in the direction 
of the ridge and the lower ones called struts prevent it 
from shifting in the perpendicular direction. The roof 
is stable in spite of changing weather conditions. 
Sometimes one can hear squeaking noises coming 
from the wooden elements which indicates 
continuous action of forces. 

Another astonishing fact is how it is possible that 
filaments of byssus keep together in a woven cloth 
over two thousand years and they  do not separate. 

My husband runs a chiropractic practice. Sometimes 
I have to explain to some prospective patients over 
the phone how the therapy works. I compare the 
action of  the practitioner on patient’s fascia to an 
actor performing at a puppet show. The actor pulls 
one string and the marionette moves its hands, bows, 
etc. Similarly the practitioner gives an impulse to 
fascia, then muscles and tendons move and cause 
bones, in particular those in joints, to move. They 
move to their natural equilibrium position and a 
patient feels healthy. 

At the time when these particular experiences 
attracted my attention I had no idea that they all had a 
common denominator. 



2. The idea of tensegrity 
The above examples belong to a wide range of constructions, structures and actions which became 
formalized in the twentieth century, hence not so long ago. Their common denominator is a concept 
of structure with a property called TENSEGRITY. The term was coined from two words: tensional 
integrity. This concept is based on a balance between tension and compression forces acting within 
the structure. The realization of this concept appears in Nature since the creation of living 
organisms or even earlier. It may be recognized, according to recent investigations, in every cell, 
every tissue, every organ, in most  architectural constructions, in mechanical devices like for 
example bicycles. 

However, we only recognize something when it gets its name. The term tensegrity was coined by 
Buckminster Fuller in the middle of the twentieth century. And it was Buckminster Fuller, an 
architect, who developed an icosahedron based on the tensegrity technology. It was not the first 
mathematical model of a tensegrity structure, since already in the twenties Karl Ioganson 
contributed his work to the main exhibition of Russian constructivism in 1921. It was a tensegrity 
prism,  a mathematical model consciously constructed to illustrate a mathematical notion. 

Fuller is known by constructing geodesic domes. He had experimented before with incorporating 
tensile components in his architectural works. 

However, it was Kenneth Snelson, a student of arts, attending Fuller’s lectures, who created a 
sculpture which was an answer to a longstanding Fuller’s problem. Fuller was rejecting Snelson’s 
priorities, claiming that 

Snelson’s discoveries would never receive proper attention without Fuller noticing that it was the 
solution to his problem. The history of discovering and applying more tensegrity structures is rich 
and might require more time. 

The notion was used, but what it actually described. It  is relatively easy to recognize designata of  
the notion, but what about a definition? 

Let us quote some of them: [VGJ] 

1. ”a plurality of discontinuous compression columns arranged in groups of three non-
conjunctive columns connected by tension elements forming tension triangles” (Fuller, 
1962), 

2. “structural framework, a novel and improved structure of elongate members which are 
separately placed either in tension or in compression to form a lattice, the compression 
members being separated from each other and the tension members being interconnected to 
form a continuous tension network”(Snelson, 1965), 

3. “A tensegrity system is established when a set of discontinuous compressive components 
interacts with a set of continuous tensile     components to define a stable volume in 
space”.(Pugh, 1976), 

4. “Tensegrity  system is a system in a stable self-equilbrated state comprising a discontinuous 
set of compressed components inside a continuum of tensioned components.”(Motro, 2003). 

The above do not resemble definitions of mathematical objects. 

Donald Ingber, professor of pathology from Yale University gives a clear explanation what 
tensegrity systems are. “The term (tensegrity)  refers to a system that stabilizes itself mechanically 
because of the way in which tensional and compressive forces are distributed….Tensegrity 



structures are mechanically stable not because of the strength of individual members but because of 
the way the entire structure distributes and balances mechanical stresses...An increase in tension in 
members throughout the structure - even ones on the opposite side. The global increase in tension is 
balanced by an increase in compression within certain members spaced throughout the 
structure…The structure stabilizes itself through a mechanism that Fuller described as continuous 
tension and local compression… Tensegrity structures offer a maximum amount of strength for a 
given amount of building material.” [DI] 

3. Mathematical definitions 
Let Rd  be d-dimensional Euclidean space. For simplicity let d = 2,3. 

Definition 1.   A finite ordered set  (p1, p2, …,pn),   pi Є Rd   is called a configuration. Points pi are 
called vertices (or nodes) of the configuration. 

Definition 2.   A tensegrity graph G is an abstract graph with a set of vertices V = {1,2,3,…,n) and a 
set of edges E such that E is a disjoint union of three sets E-, Eo, E+. Elements of E- are called 
cables, elements of Eo are called bars and elements of E+ are called struts. Denote G =  (V; E-, Eo, 
E+.). 

Definition 3. If in the graph G  the set V corresponds to the configuration p = (p1, p2, …,pn),   pi Є 
Rd , then the pair (G,p) is called a tensegrity construction and denoted by G(p). 

For visualization of a construction we use the following convention: 

• vertices          

• cables             

• bars                

• struts              

 Let us consider examples of tensegrity constructions. The first and the third one have even-
isometric configurations. 

 
Edges of the second and the third one are bars only. Therefore they are called bar constructions. 

The problem of interest is as follows: 

Given a tensegrity construction G(p) we would like to describe families G'(p') of equivalence 
classes of configurations p' (with respect to even isometries) such that the following constraints are 
satisfied: 

 



• if (pi, pj) Є E- , then d(pi',pj') ≤ d(pi, pj) which means that cables can be shortened, 

• if (pi, pj) Є Eo ,  then d(pi',pj') = p(pi, pj) which means that bars do not change their lengths, 

• if (pi, pj) Є E+ , then d(pi',pj')  ≥ d(pi, pj) which means that struts can extend their lengths. 

In this case we will say that G(p) dominates G'(p'). In other words it means that the construction 
G(p) with longer cables and shorter struts dominates the construction G'(p').We write G(p) ≥ 
G'(p'). 

 
Note that in the family of bar constructions the relation of dominance is an equivalence relation.  

 
Definition 4. We say that G(p) is globally rigid in Rd  if G(p) ≥ G'(p') in Rd implies that 
configurations p and p' are even-isometric in Rd. 

 

The construction is globally rigid. The bar constructions above are not globally rigid .The whole 
continuous family of constructions depending on the angle between struts is creating non-isometric 
constructions such that each one dominates the other one because the bars are all of equal lengths 
and there are neither struts nor cables. 

 
There are constructions which are globally rigid on a plane, like the one at the picture. 



 
Global rigidity depends on where the construction is considered.  

 
The above construction is globally rigid on a plane and  is not globally rigid in the space. 

Definition 5. For a given tensegrity construction G(p) if  there exists a  number s, s>0 ,such that for 
every configuration p', if G(p) dominates G(p') and configurations p and p' are closer than s, then 
p and p' are congruent, then G(p) is said to be rigid. 

The notion of rigidity also depends on the ambient space, since there are rigid tensegrity 
constructions on the plane which are not rigid in the space. 

Definition 6. If a tensegrity construction is not rigid then we say that it is elastic. 

Deciding on type of rigidity can be a tedious and serious mathematical job. 

How to formalize the notion of stress? 

To each edge of the graph underlying the construction we associate a stress coefficient . This 
number is non-negative if the edge is a cable, it is non-positive if the edge is a strut. There are no 
constraints on these coefficients if the edge is a bar. To obtain an n by n matrix  S(G(p)) we fill in 
the remaining places with zeroes. 

Definition 7.This matrix S(G(p)) is called the proper stress of the tensegrity construction G(p). 

Definition 8. We say that the construction is in the equilibrium if for every vertex i of the graph the 
sum of  vectors pj - pi with the corresponding stress coefficients is the zero vector. 

The theory of just defined structures is being developed in specialized papers and is rather difficult. 
These definitions are due to Robert Connelly. [RC] He is famous by his example of a flexor, that is 
a non-convex polyhedron that admits a continuous family of bends such that they do not destroy the 
faces. Only the edges act as hinges. 



4. Some properties and examples  
All tensegrity structures are systems that stabilize themselves mechanically. Tension forces acting 
on one of the elements  cause increased tension in other members throughout the whole structure – 
even far away from the stressed element. This can be illustrated by the following example. [LR] 

 
From the point of view of forces acting on tensegrity structures, we may divide them in categories. 
In one category there are frameworks made up of rigid bars. The bars making up the construction 
are connected in polygons, mostly triangles, sometimes pentagons or hexagons. Each bar is 
oriented. 

Examples of such constructions are geodesic domes and other roof supporting constructions. 

 
In the other category of tensegrity structures there appears the phenomenon known as prestress. In 
those structures the elements that bear tension only are distinct from those which bear compression. 
Independently from external forces like gravity all elements: cables, bars and struts are in tension 
and compression. Therefore it is said they are prestressed. 

Models of such structures are made of soda straws and rubber bands or sticks and strings. 



 
In biotensegrity, which relates to the tensegrity theory within biological sciences, other structures 
are also considered. 

If we look at the fibers of some of our muscles under a microscope, we 
can see a resemblance to the woven tower, which was pleated out of 
stripes of paper. The stripes take a form of pieces of a helix. These forms 
may be extremely compressed without being destroyed. 

5. Weaving as a genesis of tensegrity structures 
Let us look again at the tensegrity prism mentioned above. How is it 
constructed?  Let us take three parallel bars of equal length. Join three 
ends on one side by  three cables and three other ends  by three other 
cables, to receive a regular triangular prism. Twist one of the bases. Now 
join by cables opposite vertices of parallelograms in such manner that 
lengths of  these cables  are of minimal lengths. This structure is called a 
stable tensegrity triangular prism and it dominates other such structures 
with the same bars and cables in the bases. Depending on the direction of 
the angle of twisting we in fact may obtain two types of  prisms, an L-
prism and its  mirror image, an R-prism.  One may experiment with 
copies of this prisms by building towers of prisms. One type of tower may 
be built of L-prisms only. The other type may be constructed by  
alternating types L and R. Even simple observation indicates distinct 
properties of these constructions. 

 



 
We may similarly construct other regular prisms and consider their projections along a line parallel 
to the line passing through centers of bases. 



They somehow resemble small fragments of woven cloths joined with additional elements which 
are cables.  

 
Like in the prisms we could obtain their left or right version, in the same way meshes of the woven 
fabric may be considered as left or right ones. 

,  

If we use Archimedean mosaics on a plane as underlay for weaving, we get the following patterns. 

 
It was Kenneth Snelson who experimented with weaving not only in the plane but also in the space. 
He also noticed the helical behaviour of bars in the nodes of woven constructions. He modelled his 
weaving on some Archimedean space fillings. His pleated polyhedra also had  two versions L and 
R. 



 
Now, by joining ends of bars by cables in such a spatial woven structure one may obtain examples 
of polyhedral tensegrity structure. In each case  they appear in two versions L and R. 

 

6. Transformations of regular tensegrity polyhedra 
 Experimenting with models of tensegrity polyhedra may be a source of nice surprises. We used  
soda straws and rubber bands models. The steps of transformations are depicted on the sequences of 
photographs. To begin with we started with an R- model of a cube and ended up with an L-model of 
a regular octahedron. 



Now start with an R-model of a dodecahedron. After performing a sequence of transformations we 
ended up with an L-model of an icosahedron. (see next page) 

These transformations are not unique of that type. One may for example discover relationships 
between other Archimedean polyhedra. They reveal a small mystery hidden behind most precious 
gems which are Platonic solids. 

In this paper some graphics from [EK] were used. 
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