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Abstract 
In this paper, I will describe research over several decades that has aimed to enhance mathematics 
learning and engagement through construction and collaboration making innovative use of digital 
technology. I will dwell in some detail on my most recent and ongoing project that is designing and 
building a computational system to support teachers in helping students to make the step to algebraic 
generalisation, with functionalities that encourage students to share and reflect upon their own 
constructions and rules as well as those of others.  

Introduction 
The paper raises issues concerning the ways that mathematical meanings are shaped by the 

symbolic tools in use, and the representational infrastructures that underpin them. It was Kaput who 
coined the term ‘representational infrastructure’ to refer to the kind of cultural tool epitomized by 
the Arabic numeral system (his work in this regard and its implications for mathematics learning is 
summarised in Hoyles & Noss, 2008). One characteristic of such a representational system is that it 
is taken-for-granted: this ubiquity and invisibility are critical facets of tool systems that become 
infrastructural. A key point here is that students of mathematics learning need to be aware not only 
of how mathematics is learned but also what is learned and the language in which this is expressed. 
Multiplication, like Newton’s laws, or elementary calculus, is learnable, precisely because we have 
Arabic numerals, the machinery of simple equations and Leibniz’s calculus notation respectively. 
What is to be learned depends on the representational forms with which it is expressed.   We ignore 
the semiotic mediation of the tools we use at our peril! This is of course particularly apparent in the 
use of digital technology. 

Turning to the issue of connectivity: it continues to change the landscape of human-human 
and human-computer interaction. To what extent is this shift reflected in the mathematical 
meanings learners develop? There is no lack of potential, see for example Roschelle, Penuel, & 
Abrahamson (2004), Hoyles & Lagrange, (2009). However given that access to computers is still an 
issue in many schools, there is rather limited research to identify in any systematic way the 
implications and potential of enhanced connectivity on mathematical learning and development.  

Background 
I distinguish two areas where I consider connectivity has considerable potential for 

enhancing the teaching and learning. First, for connectivity within and between classrooms, an 
individual’s communication can be changed into an object in a shared workspace, and thus become 
available for collective reflection and manipulation by the originator of the communication  - but 
also by others. Second, the very need for remote communication of mathematical ideas – either 
synchronous or asynchronous – provides a motivation to produce explicit formal expression of 
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mathematical ideas including the processes by which solutions were obtained.   Finally I will 
present how these scenarios have informed our ongoing project, the Migen project 2. 

 Objects for reflection and manipulation in a shared classroom space 
There are technologies where each student in a class can build a particular case or part of a 

mathematical object, and these different instances can be brought together in a common workspace. 
Students can therefore view their own production alongside that of their peers, so all responses 
become an object of collective reflection and to be manipulated to draw attention to similarities and 
differences. This affordance appears to have – so far from mainly anecdotal evidence - a marked 
impact on mathematical learning. As Hivon et al (2009) argue (in the case of a class of students 
working with TI Navigator):  “Each student becomes detached from his/her production as a distance 
is created between student and the expression of his/her creation and this distance seemed to 
improve collective reflection on practice. The student becomes involved in the class activity in a 
different way as the tool maintains this distance between a student and the results proposed to the 
class and to the teacher”. (Trouche & Hivon, 2009).  

 Designing to share objects at a distance 
Turning to the issue of sharing at a distance, we have undertaken two projects that both set 

out to exploit intersite connectivity (as well as face-to-face collaboration) to promote synchronous 
and asynchronous sharing, discussion and co-development of mathematical ideas.  The overarching 
objective of both studies was to foster appreciation of the structures and processes underlying a set 
of mathematical ideas through carefully designed collaborative activities. The first project, the 
Playground project sought to design systems in which children aged between 4 and 8 years, could 
design, build and share simple video games, (see for example, Hoyles, Noss, & Adamson, 2002). 

 As part of the study we noted an interesting shift when children moved from face-to-face 
collaboration to collaborating across remote sites. This shift was characterised by a move from 
socially derived rules to govern the games in the former scenario to system rules (computational 
expressions) in the latter. This shift seemed to be a result of the necessity to formalise in the 
absence of all the normal richness of interaction that characterises face-to-face collaboration, 
where the narrative of the game was fore grounded and rules frequently only tacitly agreed. At a 
distance such tacit agreements were not available, and the narrative had to be translated into a form 
that the computer could accept (for elaboration, see Noss, R., Hoyles, C., Gurtner, J-L., Adamson, 
R. & Lowe, S, 2002). 

The absence of face-to-face collaboration does not in any sense guarantee the shift towards 
formalisation. That it arose at all, undoubtedly owes much to the activity structures, relationships 
between children, and of course, the presence of the researchers. Nevertheless, it is interesting to 
speculate whether, by a more focused and prolonged emphasis on remote collaboration with 
suitably designed computational systems, new kinds of formalised discourse might be engendered 
in a wider range of learning environments.  

In a later project, WebLabs, (described earlier) (www.lkl.ac.uk/kscope/weblabs), we 
attempted to scaffold interactions at a distance by devising a web-based system, WebReports, that 
allowed students to post their ideas—and their working models — so that students working in other 
classrooms could download the models, run and interpret them, reflect on them before sending 
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comments and possibly amended models (see for example, Simpson, Hoyles, & Noss, 2005). This 
work built on the importance for learning of externalising cognitive processes and sharing these 
externalised representations: for example, Scardamalia & Bereiter had argued that an electronic and 
networked discussion board would foster conversations between students and thus would 
“contribute to the development of a “knowledge building community” (Scardamalia & Bereiter, 
1996).  Our key idea was that learners could not only discuss, conjecture with and comment upon 
each others' ideas, but they could also inspect and edit each others' working models, the computer 
programs, so that the processes underlying outcomes were made to some extent more visible.  The 
grain size of what to make visible remains however is a huge challenge.  

I now turn to briefly describe our latest research, the MiGen project. 
 

The MiGen project  
The MiGen project set out to design a pedagogical and technical system to support students 

in developing a propensity to strive for algebraic generalisation, a mathematical way of thinking 
fundamental to making progress in the subject. A key design aim is to find ways to help students 
“see the general through the particular”; while working on the specific to develop an awareness of 
what this would imply for a general case. Our guiding methodology is derived from constructionism 
(Harel & Papert, 1991) and based on the design principle that by building objects (on the screen), 
students will more easily be enabled to grasp their meaning and – crucially - express any 
relationships within and between them.  

At the core of the MiGen system is a microworld, the eXpresser, in which students can 
construct figural patterns using coloured square tiles and express their structure by defining the 
building blocks of the patterns and any relationships between them. However, underlying the 
surface goal of building patterns is our main objective: namely, that through interaction in the 
system, students develop “algebraic ways of thinking” that underpin algebraic generalisation, within 
which we characterise three key components: 

1. perceiving structure and exploiting its predictive power; 
2. seeing the general in the particular, including identifying variants and invariants; 
3. recognising and articulating generalisations, including expressing them symbolically. 
 
This paper sets out how our research is beginning to evaluate whether, engaging with the 

system, students will not only complete the tasks successfully, but also develop these algebraic 
ways of thinking. 
 

Building models in eXpresser 
First, we provide a brief description of eXpresser and the accompanying activities to help 

the reader gain an appreciation of the environment3. For more detail, see also Noss, Hoyles, 
Mavrikis, Geraniou, Gutierrez & Pearce, (2009) and Mavrikis, Noss, Hoyles and 
Geraniou(submitted paper). In eXpresser students are presented with a model and asked to construct 
it using one or more pattern (see Figure 1). The model is animated, with the Model Number 
changing randomly. The animation serves to emphasise the generality expected (see Noss et al. 
2009 where this is discussed in more detail): i.e. the task is not to count the tiles. Rather it is to find 
a rule that would give the number of tiles for any given model number.  
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Figure 1. The ‘Train Track’ task in eXpresser. The model to be constructed is animated with the ‘Model Number’ (the 

number of 'holes' in this case) changing in random steps every few seconds. 

In setting about constructing the model, students first have to express how they visualise its 
structure as sets of patterns. Each pattern takes the form of repeated building blocks that are 
appropriately placed on the canvas. Students then make explicit their rules to calculate the number 
of tiles in each pattern. When the rule is correct, the pattern becomes coloured. Finally, students are 
encouraged to use their rules to obtain the total number of tiles needed in the model; the sum of the 
tiles needed for each of the constituent patterns. Of course, there is always more than one way to do 
this, as we see later. 

Figure 2 shows a snapshot of the eXpresser with the Train-Track task completed. 'My 
Model' has been built on the left canvas this time by combining two patterns, one coloured green 
and the other red4. A pattern in eXpresser comprises a repeated element, called a building block 
(shown in A), which is created by grouping several tiles together5. 
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Figure 2. Constructing a model and expressing its rules in eXpresser. 

(A) Building block to be repeated to make a pattern. (B) Expression of construction of the 
building block (C) The number of tiles of the building block (D) The number of repetitions 
of the building block in this case 4 i.e. the value of the ‘variable’ `Model Number’. (E) 
Number of tiles required for the pattern, with general rule. (F) Any variable used in ‘My 
Model’ takes a random value in the ‘General Model’. (G) For the General Model to be 
coloured a general rule is required that expresses the total number of tiles in the whole 
model. (H) Patterns can be animated using the PLAY button which randomly sets the value 
of the variables in the General Model, with the model remaining accurate and coloured if 
and only if the rule is correct.  

 

When making a pattern, students have to specify the translations across and down for each 
repetition of the building block, as well as an initial number of repetitions. In Figure 2, a C-shaped 
building block (A) has been created and it is repeated by placing each repetition two squares across 
and zero places down6. When the C-shaped building block (A) is made, its properties are shown in 
an expression (B). In Figure 2, the building block is repeated as many times as the value of a 
variable called ‘Model Number’ (D), in this case 4. As students build their constructions in ‘My 
Model’, a second canvas is seen alongside (the ‘General Model’). This mirrors exactly My Model 
until the student has introduced a variable into their model. 

Patterns will be coloured by calculating and then allocating the exact number of coloured 
tiles to its construction. In the case of the pattern made of C-shapes, using the expression for 
construction (B) and the number of times the building block is repeated, the rule for the total 
number of tiles in the green pattern is ‘Model Number × 7’, in Figure 2 (E). When variables have 
been introduced in My Model, eXpresser will randomly change their value in the General Model. In 
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Figure 2, the value of the Model Number in the General Model is randomly set to 9, resulting in a 
different instance of the model (F). The General Model is coloured only when students express 
correct general rules in the ‘Model Rule’ area of the screen (G). Students cannot interact directly 
with the General Model. They are, however, encouraged to click the play button (H) to animate 
their general model to test its generality. 

To support students during their interaction, the microworld has a toolbar that students can 
activate for support (see Figure 3). The support toolbar contains two components. One is  a 
suggestion button (Figure 3A), which only lights up if the system observes an action that implies 
that help is warranted. Rather than interrupting the student directly, the icon simply lights up to 
indicate that a suggestion is available: the students are free to ignore these suggestions or evaluate 
and follow them. The other component, a 'request-maker', comprises a list of drop-down menus that 
allow students to construct a sentence asking for help. Without constructing this sentence, the help 
button (Figure 3B) is not enabled. The request maker provides the system with an indication of the 
student's need, and an incentive for the student to reflect on what they are trying to do by engaging 
further with the discourse of eXpresser. 

 

 
Figure 3. The HELP toolbar alerts students to suggestions (A),  

and allows them to construct a specific request for help (B). 

Reflecting and sharing models and rules 
As we have seen, when students are presented with a model by the system, they have to 

think about its structure in terms of its constituent patterns, in order to be able to construct it. The 
choice of patterns and structures is left to the students who tend to visualise the same models very 
differently, leading to different conceptualisations of structure and rules. Table 1 shows the 
different ways with which Alicia, Conor, Fiona, Maria chose to construct the “Train Track” pattern. 

 

 

 

 

 

 

 



 

Table 1 Different conceptualisations of the structure of TrainTrack model. 

Student Model showing different 
constituent patterns 

Building Block(s) with expressions for 
construction 

Alicia 

 

 

 

Conor 

 
  

Greg 

 
  

Fiona 

 
 

Maria 

     

 
Alternative ways of seeing and expressing the relationships serve in our activity sequence as 

a basis for potentially fruitful discussions between students, giving them the opportunity to 
appreciate the qualities of different models in terms of their complexity and generality. We have 
found that allowing students to collaborate and reflect on their actions in their efforts to justify their 
solutions to their peers has proved an invaluable step towards developing their algebraic ways of 
thinking. 

The analysis of their productions and discussions is ongoing but I can report that this 
process has proved to be important in helping students ‘read’ their eXpresser rules and we foresee 
being able to align these with corresponding algebra rules. More detail will be available in Geraniou 
et al., in preparation). Examples of such rules in eXpresser can be seen in Table 2.  

 



 

Table 2. Students’ models (cf. Table 1) and their corresponding eXpresser and algebraic rules. 

Student Model showing different 
constituent patterns 

eXpresser rules and corresponding algebraic rules 

 
Alicia 

 (x +1) × 5 + x × 2 

 
Conor 

 x × 3× (x × 2 −1) × 2 

 
Greg 

 5+ (7× x) 

 
Fiona 

 (4 × x + 3× 5) +1× 5 

 Maria 

 7 × x + 5 

 
These relatively simple linguistic elements allow students to express themselves quite naturally, 
emerging as a direct consequence of the model construction, and as an answer to the challenge of 
colouring the pattern i.e. finding the total number of tiles. By making available to students a 
language that allows them to express the relationships they perceive, students can begin to 
experience the power of symbols without reference to conventions, but situated in the microworld: 
to express situated abstractions (Noss & Hoyles, 1996) within the constraints and discourse of the 
system. 

 



 

Conclusions 
In this paper, I have considered the question of connectivity, and suggested some ways in which 
there is potential for mathematical learning: in the possibility of bringing students’ constructions 
and their formal expression as rules, together as objects so both are visible for reflection and 
comparison – in the same classroom or at a distance. 

There are many challenges still to be faced, in MiGen but more broadly. One is to research 
the exact balance between intelligent support and student autonomy, and what indeed can and 
should be left to the teacher. Another has been designing and developing an extensible, scalable 
client-server architecture to support multiple concurrent users in a classroom setting. In MiGen, this 
will enable teachers to view all the models and their expresser rules, and then with the help of the 
system pair students based on differences in their models and rules, to discuss the correctness and 
equivalence of their rules. Thus students will be able to log on in their allocated pairs and draw 
down their models and rules in a combined space on which to reflect, discuss and compare. 

I end by emphasising a key idea in this paper and that is design.  The obvious but often 
overlooked fact is that technology per se is unlikely to influence mathematical development in any 
significant ways.  It is how it is designed to support learning and how it is embedded in activities 
designed with specific learning objectives that it critical and challenging. 

The research challenges are considerable, not least because of the rapid advances of the 
technology. But just in case I am accused of technocentrism, I reiterate that none of these 
developments will happen without more design research to tease out the ways the tools shape 
mathematics and its learning, and reciprocally, to better understand how we as teachers and 
researchers can shape the evolving technology.  



 

References  
[1] Cuoco, A., Goldenberg, E. P., and Mark, J. (1996). Habits of mind: an organizing principle for 

mathematics curriculum Journal of Mathematical Behavior. 15(4): 375-402. December. 
[2] Cuoco, A., Goldenberg, E. P., Mark, J. (2010). Organizing a Curriculum Around Mathematical 

Habits of Mind, Mathematics Teacher, v.103, 682. 
[3] Harel, I., & Papert, S. (eds.) (1991). Constructionism. Norwood, NJ:  Ablex Publishing Corporation. 
[4] Hoyles. C & Lagrange J-B (eds)  (2009) Mathematics Education and Technology-  Rethinking the 

terrain  Springer   

[5] Hivon, L., Hoyles, C., Kalas, I., Noss, R., Trouche, L., & Wilensky, U. (2009) Connectivity and 
virtual networks for learning in Hoyles, C., & Lagrange, J. B. (eds), Digital technologies and 
mathematics teaching and learning: Rethinking the terrain, Springer. 

[6] Hoyles, C., Noss, R. & Adamson, R. (2002) Rethinking the Microworld Idea.  Journal of Educational 
Computing Research, 27, 1&2, 29-53. 

[7] Hoyles, C. & Noss, R. (2008) Next steps in implementing Kaput's research programme. (2008) 
Educational Studies in Mathematics. Vol 68, No. 2, pp. 85-94 

[8] Küchemann, D. & Hoyles, C.  (2009) From empirical to structural reasoning in mathematics: 
tracking changes over time.  In: Stylianou, D. A., Blanton, M.  L. & Knuth, E. J. (eds) Teaching and 
Learning Proof Across the Grades K-16 Perspective.  Lawrence Erlbaum Associates, 171- 191. 

[9] Mavrikis, M, Noss, R. Hoyles, C. & Geraniou E. (submitted) Designing to support the development 
of algebraic ways of thinking: the case of eXpresser J of Computer Supported Collaborative 
Learning 

[10] Noss, R. and Hoyles, C. (1996) Windows on Mathematical Meanings: Learning Cultures and 
Computers. Dordrecht: Kluwer Academic Publishers. 

[11] Noss, R., Hoyles, C., Mavrikis, M., Geraniou, E., Gutierrez-Santos, S. & Pearce, D.  (2009, issue 4). 
Broadening the sense of ‘dynamic’: a microworld to support students’ mathematical generalisation. 
In Hegedus, S. & Moreno-Armelia,  L. (eds) Transforming Mathematics Education through the use 
of Dynamic Mathematics Technologies, Special Issue, Zentralblatt für Didaktik der Mathematik 
(ZDM). The International Journal on Mathematics Education pp 493- 503 

[12] Noss, R., Hoyles, C., Gurtner, J-L., Adamson, R. & Lowe, S. (2002) Face-to-face and online 
collaboration: Appreciating rules and adding complexity. International Journal of Continuing 
Engineering Education and Lifelong Learning, 12, 5&6, 521-540. 

[13] Roschelle, J., Penuel, W. R., & Abrahamson, L. (2004). The Networked Classroom. Educational 
Leadership, 61(5), 50-54. 

[14] Scardamalia, M., & Bereiter, C. (1996). Computer support for knowledge-building communities. In: 
T. Koschmann (ed.), CSCL: Theory and practice of an emerging paradigm (pp. 249-268). Mahwah, 
NJ: Lawrence Erlbaum. 

[15] Simpson, G., Hoyles, C., & Noss, R. (2005) Designing a programming-based approach for 
modelling scientific phenomena. Journal of Computer Assisted Learning, 21, pp143-158. 

[16] Trouche, L. and Hivon, L.  (2009) Connectivity: new challenges for the ideas of webbing and 
orchestrations.  In: Hoyles, C., & Lagrange, J. B. (eds), Digital technologies and mathematics 
teaching and learning: Rethinking the terrain, Springer. 


