
Analysis of a Tumour Growth Model with MATLAB

Keng-Cheng Ang
kengcheng.ang@nie.edu.sg

National Institute of Education
Nanyang Technological University

1, Nanyang Walk, Singapore 637616
Singapore

Abstract

Mathematical modelling can play a very important role in cancer research. In particu-
lar, modelling the growth of tumour has the potential of shedding light on the mechanisms
of tumour cell growth and proliferation. In this paper, we examine and analyze one such
model with the aid of MATLAB.

The model, first proposed by Sherratt and Chaplain in 2001, is based on a set of partial
differential equations. The equations describe the growth, movement and death of tumour
cells, accompanied by a supply of nutrients. This spatial-temporal model depends on a
number of parameter values as well as rate functions. The model is solved numerically
using finite difference method implemented on MATLAB. Effects and influence of the
parameter values and rate functions are analyzed. Results are validated against a set of
known experimental data, and good agreement is observed.

1 Introduction

Cancer, the name given to a group of diseases in which abnormal cells grow and reproduce
uncontrollably, is one of the major causes of death in the world (http://www.who.org). In
Singapore, cancer ranks as the number one killer and one in three people will die of cancer
(http://www.moh.gov.sg). It is, therefore, not surprising that cancer research receives a lot of
attention in the scientific world.

Under normal conditions, cells in our body grow, divide, die and replace themselves in an
orderly, controlled manner. However, if the process gets out of control, cells can grow too rapidly
without any order and develop into a lump which is called a tumour [7]. These tumours can be
benign or malignant, and the latter is cancerous. A malignant tumour essentially consists of
cancer cells that are able to spread beyond the original site, invade neighbouring tissues, and
spread to other parts of the body in a process called metastasis.

The early stages of tumour growth are difficult to be studied clinically as the size of the
tumour is too small. However, experiments have been carried out to study early growth of
tumour in vitro, using the multicellular spheroid approach [10]. In such studies, a seed cell
taken from a tumour cell line is placed in a medium containing appropriate nutrients. The
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resulting culture grows into a ball of cells (or spheroid), and the cell mass can grow up to
several millimetres in diameter.

As the tumour grows, it becomes more difficult for nutrients to reach the core or centre of
the spheroid since the outer cells tend to consume these nutrients first. Eventually, cells near
the core can become so deficient that they lose their ability to be proliferative and enter the
quiescent stage. Quiescent cells are still alive, and can recover with sufficient nutrients [4]. As
the tumour grows further, prolonged nutrient deficiency can cause the cells near the core to die,
forming a group of dead cells known as a necrotic core. Thus, it is believed that at this stage of
tumour growth, three layers of tumour cells are observed: necrotic, quiescent and proliferating
cells. This is shown schematically in Figure 1. As depicted, a typical multicell spheroid consists
of an outer shell of proliferating cells, an inner layer of quiescent cells which are dormant but
viable, and a central core of necrotic material.

necrotic core

proliferating zone

quiescent layer

Figure 1: Three-layer structure of a tumour spheroid

Experiments and studies such as the above are useful in shedding light on the growth
dynamics of tumour cells. One main experimental observation is that cancer cells need a high
nutrient environment to proliferate, while low nutrient levels lead to cell death. In addition,
tumour growth is influenced by cell movements as well as other cell growth factors.

The tumour growth described thus far is restricted to the early stage where the tumour has
yet to develop its own blood vessels. This is known as the avascular stage, and is the focus of
discussion in this paper.

2 Mathematical models of tumour growth

Mathematical modelling of avascular tumours can be seen as the first step in building models
for tumour growth in later stages and can play a very important role in cancer research. In
particular, modelling the growth of tumour can possibly provide valuable insights into the
mechanisms of tumour cell growth and proliferation.

Different approaches, resulting in different types of models, have been used to develop
mathematical models of avascular tumour growth. Burton [2] was probably the first to propose
that diffusion and nutrient concentration limit the growth of solid tumour growth. Since then,
numerous models based on spatio-temporal interactions between tumour cell populations and
nutrients have been suggested. An example of these early models is in the influential work
by Greenspan [6]. In addition to limited nutrient supply and production of growth inhibitors,
Greenspan’s model assumes that the disintegration of dead cells in the necrotic core further
regulate the tumour size.



Another model suggested by Adam [1] assumes that the self-inhibitory effect can be ex-
plained by non-uniform production of the growth inhibitors. Ward and King [12] considered a
tumour spheroid in terms of a continuum of live and dead cells, and showed that the tumour
will grow exponentially at first, and then levelling off to a linear growth.

Sherratt and Chaplain [9] formulated a model in terms of cell densities of proliferating, qui-
escent and necrotic cells in a one-dimensional domain in space. Cell movement is incorporated
in the model, which is essentially based on a simple competitive model. More recently, Tan and
Ang [11] modified the model to include random variation in cellular and extracellular processes.
This model succeeds in providing a more realistic description of avascular tumour growth and is
a reasonably good attempt at modelling complex biological tumour growth processes through
the use of random terms in the model equations.

The model chosen for further analysis in this paper is the Sherratt-Chaplain model and its
variants as proposed by Tan and Ang.

2.1 The Model

In this model, the cell densities for the proliferating, quiescent and necrotic cells are denoted by
p(x, t), q(x, t) and n(x, t) respectively, where t represents time and x is the spatial coordinate.
Necrotic cells are dead and hence non-motile, while proliferating and quiescent cells can move.
However, in a close-packed environment such as a tumour spheroid, movement of cells can be
restricted. This phenomenon, known as contact inhibition of migration, is incorporated into
the model by assuming that the overall viable cell flux is given by ∂

∂x
(p + q). Moreover, if

we assume that the two cell populations have equal motility, then the movement terms of the
proliferating and quiescent cells will be given as

∂
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respectively.

Suppose proliferating cells grow at a rate that is limited by crowding of the total cell
population, and that they become quiescent at a rate that depends on the concentration c(x, t)
of some nutrients. Suppose quiescent cells become necrotic also at a rate that depends on
c(x, t). Then, we can write down the following set of model equations.
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=
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+ g(c) p(1− p− q − n)− f(c) p (1)
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+ f(c) p− h(c) q (2)

∂n

∂t
= h(c) q (3)

Note that in this set of model equations, the value of 1 corresponds to a completely close-
packed population. Also, g(0) is set to 1 to provide a suitable initial condition. Also, the
functions f and h are decreasing functions, with both tending to zero as c tends to +∞, while
g is an increasing function. Since the rate of cells becoming quiescent is normally higher than



the rate of cells entering necrosis, we expect f(c) > h(c). Given these conditions, one can
specify suitable or appropriate functional forms for f , g and h.

As for nutrient concentration, we use the form suggested by [9]. That is,

c =
c0γ

γ + p
(1− α (p + q + n)) , (4)

where α and γ are dimensionless parameters.
The system of equations (1) to (4) may be solved numerically using the finite difference

formulations for the equations. Using forward differencing for time and central differencing for
space, we obtain the following set of finite difference equations.
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In the above finite difference equations, ∆t and ∆x refer to the time steps and space intervals
respectively, and the superscript for the dependent variables indicate the time level and space
position respectively. For instance, pj

i would refer to the density of the proliferating cells at the
jth time level and ith space position.

The finite difference scheme given by equations (5) to (11) can be implemented on matlab
to provide a platform for analyzing the model itself. However, several parameters need to be
set, and functional forms of f , g and h must be given. In addition, one has to decide what kind
of output is desired.

The program list in Appendix A is one possible implementation with α = 0.9 and γ = 10.
These parameter values are chosen arbitrarily, and can be changed if so desired for further
analysis. Three sets of graphs showing the distribution of proliferating, quiescent and necrotic
cells at different times are generated in this program. These will be discussed in detail in
Section 3.

2.2 Functional forms, initial and boundary conditions

The model (and hence the program) requires the functions f(c), g(c) and h(c) to be defined.
In this discussion, we choose f(c) = (1− tanh(4c− 2))/2 and h(c) = f(c)/2, as in [9]. For g(c),
in contrast to the linear form chosen by Sherratt and Chaplain, a more appropriate Gompertz
growth rate is used. That is, we set g(c) = βeβc with β = 0.5. These functions are written in
matlab as shown below.



function y = f(c)

y=0.5*(1-tanh(4*c-2));

function y=h(c)

y=0.5*f(c);

function y=g(c)

global beta

y=beta*exp(beta*c);

%y=1+0.2*c;

In addition to the above functions, we need to specify the initial conditions and boundary
conditions. We shall assume that at t = 0, q(x, 0) = 0, n(x, 0) = 0, c = 1, and the proliferating
cell density decreases exponentially as x increases. Thus, we let p(x, 0) = e0.1x. As for the
boundary conditions, it is usual to assume zero-flux at the boundaries. That is,

∂p

∂x
= 0 and

∂q

∂x
= 0 at x = 0 and as x→∞.

In terms of implementation, it is not possible to let x → ∞. We therefore need to choose
a value of x that is sufficiently large. After experimenting with various values, it is found that
x = 210 is appropriate and good enough to observe patterns of the evolution of cell densities.

2.3 Model Calibration

One way to analyze this model further is to compare its results with experimental data. To do
so, we first need to calibrate the model to the data set. In this discussion, the data chosen are
the experimental results from Nirmala et al [8]. Graphs of the data and results obtained from
the calibrated model are shown in Figure 2.

Figure 2: Comparison of cell counts between calibrated model and data from [8]



The model is calibrated by choosing an appropriate scaling factor to transform cell densities
to match the cell counts in the experimental data. The reference point in this calibration is
chosen to be t = 1, at which time the experimental total cell count is about 7015. The total cell
density from the model is around 15.809; hence a scaling factor of about 443.7249 is used. With
this value, the total live cells (that is, proliferating and quiescent) and dead cells (necrotic) as
predicted by the model can be compared against the experimental data. As can be observed
in Figure 2, the model produces results which compare quite well with the experimental data.

3 Results and Discussion

3.1 Graphical results

The calibrated model is solved for the set of functional forms of f , g and h, and initial and
boundary values as described earlier. Parameters values may be varied to observe and analyze
their effects on the model results. Due to space constraints, only one set of results (with α = 0.8,
β = 0.5 and γ = 10 is presented as graphs as shown in Figure 3.
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Figure 3: Numerical solutions with α = 0.8, β = 0.5 and γ = 10. Cell densities of proliferating,
quiescent and necrotic cells plotted as a function of space at times t = 0, 2, . . . , 14. Curves
move from left to right as time increases.



From Figure 3, it is observed that an advancing pulse of proliferating cells is accompanied
by a corresponding band of quiescent cells as time increases. The necrotic cells seem to be
concentrated at the core initially (t = 2 to t = 8). As time passes, the necrotic cells continue
to develop at the core, but begin to disperse towards the outer edge of the tumour spheroid.

Although necrotic cells are building up with time, no tumour regression is detected. This
is expected as the model does not restrict or limit nutrient flow sufficiently, and no therapy or
control measure is introduced. These results compare well with experimental findings in [8].
Both the current model and the experiment results report no limiting spheroid volume.

The graphical output presented in Figure 3 shows the differences in the evolution of the
tumour sub-populations of proliferating, quiescent and necrotic cells. Apart from nutrient
supply and the inherent differences in their growth dynamics, other factors such as cell stress
and growth inhibiting factors could play a role in influencing the model results. One could
further analyze the model by varying the nutrient coefficient α. In fact, if a smaller value of α
is chosen (such as α = 0.4) to represent increased access to nutrients, we observe a higher and
quicker build-up of live tumour cells over a longer span of time.

3.2 Visualizing Tumour Growth

Although the model is one-dimensional in space, by assuming radial symmetry, one can con-
struct an image of the cell distribution in two or three dimensions at any time t. At a particular
time t, the distribution of a cell type over the x space dimension is obtained from the model.
For this distribution, at any point x = r, one could distribute the cells around the circle with
radius r.

As an example, consider the number of proliferating cells at time t = T and at position
x = r, which would be given by p(r, T ). We distribute the these cells along the circumference
of the circle with radius r. This may be done by randomly picking a number θ between 0 and
2π (to represent an angle from a reference line) and plotting a marker on this circumference
at the point (r, θ) in polar coordinates. This is done for the whole range of values of x and at
various time intervals to construct a sequence of images showing how the tumour evolves over
time. A series of snapshots of tumour images generated in this manner is shown in Figure 4.

Figure 4: Snapshots of simulated tumour growth at t = 2, 4, . . . , 16 units, with blue, red and
black coloured dots representing proliferating, quiescent and necrotic cells respectively



The images shown in Figure 4 are saved to files using the matlab statement (with a
systematic way of naming the output files),

print(’-djpeg’,’-r100’,sprintf(’%s_%s’,prefix,num2str(Nm)));

These can then be pieced together to provide an animation of tumour growth. The matlab
program segment is listed in Appendix B. This segment is to be appended to the main program
listed in Appendix A to construct the images, and produce a short movie clip or animation of
the tumour growth process for better visualization.

As can be seen in Figure 4, the tumour starts with a high concentration of proliferating cells
and relatively small concentration of quiescent and necrotic cells. This gradually changes as t
increases and the tumour is seen to be growing fast. When t increases to 8 and beyond, a clear
necrotic core begins to form. The quiescent region begins to thicken while the proliferating
layer becomes thin. These observations in the model are consistent with experimental results
reported by Dorie et al [3] and Folkman and Hochberg [5].

4 Conclusion

In this paper, we discuss a slightly modified model for an avascular tumour growth, originally
proposed by Sherratt and Chaplain. The model is solved using a finite difference scheme, and
implemented on matlab. Calibration of the model is done using experimental data obtained
from Nirmala. Results are presented in the form of graphs and as a series of tumour images for
better visualization.

Quantitatively, the model had produced results which compare fairly well with the experi-
mental results reported by Nirmala. More importantly, this model provides qualitative results
which can be further analyzed and studied.

The use of matlab in this discussion illustrates the important role of technology in research
in mathematical modelling. Not only does matlab help in providing a computing platform
for implementing the numerical scheme efficiently, it also serves as a useful tool for generating
visual images resulting from the model.
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Appendix A: Listing of main matlab program

%% main program for tumour growth

clear; clc;

global alpha beta gamma

% set parameter values

alpha = 0.9; beta = 0.5; gamma = 10;

dx = 1; X = 210; dt = 0.004; T = 16;

c0 = 1;

% set up arrays

x = [dx:dx:X]; Nx = round(X/dx); Nt = round(T/dt);

p = zeros(1,Nx); nextp = zeros(1,Nx);

q = zeros(1,Nx); nextq = zeros(1,Nx);

n = zeros(1,Nx); nextn = zeros(1,Nx);

u = zeros(1,Nx); v = zeros(1,Nx); r = zeros(1,Nx); c = zeros(1,Nx);

P = zeros(Nt,Nx); Q = zeros(Nt,Nx); N = zeros(Nt,Nx);

% set initial values

p = exp(-0.1.*x);

% start FDM time-stepping

for k=1:Nt



r = p + q;

c = (c0.*gamma./(gamma+p)).*(1-alpha.*(p+q+n));

for i=2:Nx-1

u(i)=((p(i+1)-p(i-1))*r(i)*(r(i+1)-r(i-1))+ ...

4*p(i)*r(i)*(r(i+1)-2*r(i)+r(i-1))- ...

p(i)*(r(i+1)-r(i-1))^2)/(2*(dx*r(i))^2);

v(i)=((q(i+1)-q(i-1))*r(i)*(r(i+1)-r(i-1))+ ...

4*q(i)*r(i)*(r(i+1)-2*r(i)+r(i-1))- ...

q(i)*(r(i+1)-r(i-1))^2)/(2*(dx*r(i))^2);

end

nextp=p+dt.*(u+g(c).*p.*(1-(p+q+n))-f(c).*p);

nextq=q+dt.*(v+f(c).*p-h(c).*q);

nextn=n+dt.*(h(c).*q);

p=nextp;

q=nextq;

n=nextn;

P(k,:)=p; Q(k,:)=q; N(k,:)=n;

end

figure(1)

for n=1:500:Nt

plot(P(n,:),’LineWidth’,1.2); hold on;

end

axis([0 270 0 0.6]);

figure(2)

for n=1:500:Nt

plot(Q(n,:),’LineWidth’,1.2); hold on;

end

axis([0 270 0 0.6]);

figure(3)

for n=1:500:Nt

plot(N(n,:),’LineWidth’,1.2); hold on;

end

axis([0 270 0 1]);

Appendix B: Listing of program segment on constructing animation

% create images for cells

rand(’state’, sum(100*clock));

prefix=’t’;

Nm=0;

figure(1)

for n=1:250:Nt

Nm=Nm+1;

for i=1:Nx

tP=round(P(n,i)); tQ=round(Q(n,i)); tN=round(N(n,i));

for m=1:tP



theta=2*pi*rand();

plot(i*sin(theta),i*cos(theta),’b.’); hold on;

end

for m=1:tQ

theta=2*pi*rand();

plot(i*sin(theta),i*cos(theta),’r.’); hold on;

end

for m=1:tN

theta=2*pi*rand();

plot(i*sin(theta),i*cos(theta),’k.’); hold on;

end

axis square

axis([-300 300 -300 300])

end

print(’-djpeg’,’-r100’,sprintf(’%s_%s’,prefix,num2str(Nm)));

end

clear MM

for i=1:Nm

[XX,map]=imread(sprintf(’%s_%s’,prefix,num2str(i)),’jpeg’);

imagesc(XX);

MM(i)=getframe;

pause(0.1);

end
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