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Abstract

Our aim is to describe a relationship between frieze groups, wallpaper groups, rod
groups and symmetry groups of circular and spiral mosaics.
All is known about frieze and wallpaper groups and they were approached in many ways.
However, rod groups are far less popular and symmetry groups of circular and spiral mo-
saics of the Gaussian plane were not so extensively investigated and popularised.
The relationship between these groups is given by means of an interpretation dictionary
translating isometries of the Euclidean space into isometries of the Euclidean plane re-
stricted to a stripe and further, into the inversive transformations of the Gaussian plane.
In this dictionary axes of transformations are important since f.e. distinct translations of
the Euclidean plane may correspond to translations, rotations and screws of the Euclidean
space.
We thoroughly investigate a few significant examples of creating rod groups and symme-
try groups of spiral mosaics from wallpaper groups.The lecture uses little formalism and
illustrates every notion by numerous pictures and diagrams.

1 Introduction

In this paper we would like to establish connection between some discrete subgroups of isome-
tries of the Euclidean plane Iz2 , isometries of the Euclidean space Iz3 and the inversive
transformations of the Gaussian plane Inv(C). In order to visualize the transformations we
use the invariant subsets of the plane and the space, respectively, on which the groups are act-
ing. These subsets are called, correspondingly, friezes, wallpapers, decorated rods (or tubes),
circular and spiral mosaics.
For the description of groups related to friezes and wallpapers we use the fact that every

isometry of the plane can be expressed in terms of a complex function

f(z) = az + bz + c



where a, b, c ∈ C, ab = 0, and |a|2 + |b|2 = 1.
A convenient way to compose such functions is given by multiplication of matrices of the

form: a b c

b a c
0 0 1


where a, b, c ∈ C, ab = 0, and |a|2 + |b|2 = 1.

2 Friezes and wallpapers

We are mainly interested in the following situations:
Let Trk be the subgroup of translations of Izk, k = 2, 3.
G is of our interest if and only if the following conditions hold:

1. G∩Trk = 〈τ〉 or G∩Trk = 〈τ 1, τ 2〉 , τ 1, τ 2 —translations by linearly independent vectors,

2. J = G�G ∩ Trk is finite.

In case k = 2, G is either a frieze group for G ∩ Tr2 = 〈τ〉 or a wallpaper group for
G ∩ Tr2 = 〈τ 1, τ 2〉 .
Chapters of many books have been devoted to the classification of frieze groups and wall-

paper groups and to the description of friezes and wallpapers (see [1, 2, 3, 4, 6]).
Let us briefly present these classifications in a diagrammatic and a pictorial way, in terms

of their patterns that are preserved by given symmetries.

Fig. 1 Classification of friezes and elements of their symmetry groups



Fig. 2. Creation of friezes by means of group generators

Fig. 3. Classification of wallpapers and elements of their symmetry groups



2.1 Examples of wallpapers and their group generators

Fig. 4a Examples of wallpapers with groups p1, p2
and their generators

Fig. 4b Examples of wallpapers with groups pm, pg, p2mm, p2gm, p2gg and
their generators



Fig. 4c Examples of wallpapers with groups cm, c2mm
and their generators

Fig. 4d Examples of wallpapers with groups p4, p4mm, p4gm and their generators



Fig. 4e Examples of wallpapers with groups p3m1, p3, p6, p31m, p6mm and their
generators

3 From friezes and wallpapers to decorated rods

By extending our situation to the case k = 3, where G ∩ Tr3 = 〈τ〉 and G�G ∩ Tr3 is finite,
we jump into the beautiful, however more complicated world of spatial isometries.
They were already known to Leonhard Euler in 1776 when the classification theorem of

spatial isometries was given.

Theorem (see [6]) An isometry in the Euclidean space is exactly one of the following:

translation reflection
rotation glide reflection
screw rotary reflection

How to approach this classification problem for the above groups G? And paralelly in such
a way that for each group G we can find a corresponding pattern on a rod or, if we assume a
rod to be empty inside, on a tube. In the literature on symmetry it was dealt with already in
1940 by Shubnikov (see [7]).



It is not an easy task since it covers lots of cases. One possible approach is to follow the same
method as when classifying the wallpaper groups. However, there, we, in principle, are fighting
with ten cases of possible finite groups J. Here, the number of cases increases dramatically,since
the number of orthogonal subgroups of Iz3 includes 32 types (see [4]).
And the tools are not so handy as they involve quaternions which serve for the description

of isometries in space (see [5]).
The diffi culties arise as situations like the following may occur.
Let G∩Tr3 = 〈τ〉 . Then there may exist a screw γ in G such that γr = τ s for some r, s ∈ Z,

gcd(r, s) = 1.
And even "worse" things can occur, like the existence of two screws:
γ1 = ρτ 1 and γ2 = ρ−1τ 1, where ρ is the rotation component and τ 1 is the translation

component of the screw γ.
One may think of another approach which produces quite a number of patterns on rods. If

we have a decorated rod, the pattern can be viewed as a pattern on a tube.
Now, we can make a cut and flatten the tube on the Euclidean plane. We get a single

patterned stripe. At first, we may assume that the tube has circumference equal to 1 and is
flattened with one edge on the real axis of the complex plane. Then we can consider a procedure
like taking a covering space of this stripe and extending the pattern from one stripe to the whole
plane.

Fig. 5. Tube, its flattening and covering

Definition We say that a pattern on a plane E is a covering of a tube T if there exists a stripe
S which is a flattening of the tube T and E =

⋃
k∈Z

µkS, where µ is a translation whose

vector is perpendicular to the edges of S and of length equal to the distance between
edges of the stripe S.



Now, building an interpretation dictionary between spatial isometries of a tube and plane
isometries of its covering arises naturally (see appendix 1).
Now, we can look again at our familiar patterns of friezes and wallpapers to produce a

whole range of patterns on tubes. We simply can stick a frieze on a tube. This can be done by
sticking it parallel to the main axis or winding it on a circle perpendicular to the main axis or
winding it spiral like.
The second case is out of our interest, since then Tr3 ∩ G = {id} , contrary to our initial

assumption that Tr3 ∩ G = 〈τ〉 . In the third case we consider only such windings that if the
screw has a presentation γ = ρτ 1 then there exists such a number m ∈ Z that ρm = id. When
such a number does not exist, again, Tr3 ∩G = {id} .It is also possible to wind more friezes on
one tube, i.e. one producing a screw γ = ρτ 1 and the other one producing a screw γ′ = ρ−1τ 1. In
this procedure a process of dessymmetrization may occur (see [9]). We may be loosing certain
symmetries of a frieze if they are not becoming symmetries of a tube in the space. For example,
if we are winding some frieze then, depending on the way of winding, we may obtain different
patterns on a tube (represented by its flattening).
Up to this moment we were sticking or winding friezes. Now, we may wind wallpapers on

a tube and in this way produce patterns on a tube and determine its symmetry groups.
This process is equivalent to finding a stripe on a wallpaper such that this wallpaper is

a covering space for the tube related to this stripe. In this way from one wallpaper we may
produce a whole family of patterns on a tube.

Fig. 7. An essential observation is that the edges of stripes may be paralel to vectors
l1v1 + l2v2, for arbitrary l1, l2 ∈ Z.

As the first on the list there are one-parameter families in which one of the vectors v1
corresponding to minimal translation τ 1 is parallel to the edge of a stripe. The parameter l
corresponds to the rank of rotation derived from the other minimal vector, i.e. lv2 = i.

However, there are patterns on tubes that can be obtained neither by sticking a frieze nor
by winding a wallpaper.
We do not aim here at giving a full classification of patterns on tubes (and equivalently

classification of rod groups) but at indicating how using computers aids to visualize possibilities
one might not think of. Full classification is a tedious job and may be derived from a series of
scientific papers listed in (see [9]).



4 From decorated rods and tubes to circular and spiral
mosaics

Once we have a whole load of examples we may think of transferring our knowledge to another
world - the world of inversive transformations. We may use either of their presentations

Inv(C) = 〈M,σπ,0〉 =
〈
P, σC(0,1)

〉
where M denotes the group of Möbius transformations of the Gaussian plane defined by
z � az+b

cz+d
, with ad− bc = 1, a, b, c, d ∈ C, and σπ,0(z) = z; P denotes the group of similarities

of the Gaussian plane and finally σC(0,1) is the inversion in the unit circle. To be consistent in
terminology recall:

Theorem (see [6]) A nonidentity similarity of the Euclidean plane is exactly one of the fol-
lowing: isometry, homotethy (κr0), homotethy followed by rotation (ρα0κr0) (called spiral
homotethy), homotethy followed by reflection (σlκr0 ,0 ∈ l).

Inversive transformations allow us to describe the so called circular and spiral mosaics. They
are invariants of circular and spiral groups.

Definition (see [8]) Let Ξ0 be the group of homotethies centered at 0. Group G is said to
be circular if its pattern has a fix point 0, G ∩ Ξ0 = 〈κr0〉 for some r ∈ R\ {−1, 0, 1} ,
G�G ∩ Ξ0 is finite and in G there is no spiral homotethy different from ρκr0, where κr0
is a generator of Ξ0. Moreover, for arbitrary z ∈ (C ∪ {∞})\ {0} there exists ε > 0 such
that C(z, ε) ∩Gz is a finite set, where C(z, ε) is a circle centered at z with radius ε.

Definition (see[8]) Let Ξ0 be the group of homotethies centered at 0. Group G is said to be
spiral if its pattern has a fix point 0, G∩Ξ0 = 〈κr0〉 for some r ∈ R\ {−1, 0, 1} , G�G∩Ξ0
is finite and in G there is a spiral homotethy different from ρκr0, where κr0 is a generator of
Ξ0. Moreover, for arbitrary z ∈ (C∪ {∞})\ {0} there exists ε > 0 such that C(z, ε)∩Gz
is a finite set, where C(z, ε) is a circle centered at z with radius ε.

Let us observe that in both cases an inversion ι(0, r) with center in point 0 may be a member

of G. Moreover, ι(0, r1) ι(0, r2) = κ
(
r1
r2
)2

0 .
Now we can establish an interpretation dictionary between symmetry groups of tubes and

circular or spiral groups (see appendix 1). In this case the interpretation proceeds by tran-
sitioning the problem at first to symmetries of the covering of a flattened tube on a complex
plane and next applying the complex function z 7−→ ez which transforms each flattened tube
in the covering to an annulus.



Fig. 8 Function x −→ ez transforms the flattened tube to an annulus

Fig. 9. Inversive transformations to be translated by the reader as an exercise



One may now start playing with producing circular and spiral mosaics.

Fig. 10. Circular and spiral mosaics depicted by Dynamic Geometry software Geometers
Sketchpad
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Appendix 1 - Interpretation Dictionaries 
 

 Symmetries of a tube in 
space 

Symmetries of the covering of a 
flattened tube on the complex 
plane 

Symmetries of a circular or 
spiral mosaics on the Gaussian 
plane 

1 Translation of a tube Translation by a real vector Homotethy 

2 Rotation about the 
main axis (minimal 
rotation) 

Translation by a purely imaginary 
vector (minimal translation) 

Rotation 

3 Half turn about an axis 
perpendicular to the 
main axis 

Half turn about a point Inversion in a point followed 
by a reflection 

4 Screw Translation by a vector non 
parallel and non perpendicular to 
the real axis 

Spiral homotethy 

5 Reflection in a plane 
containing the main 
axis 

Reflection in a line of the form   
Reℂ  di,     d ∈   

Reflection in a line 

6 Reflection in a plane 
perpendicular to the 
main axis 

Reflection in a line   Imℂ  d,     
d ∈   

Inversion in a point 

7 Glide reflection 
(translation part 
parallel to the main 
axis) 

Glide reflection  (reflection is in a 
line parallel to the real axis) 

Inversion in a point followed 
by a homotethy 

8 Rotary reflection  
(reflection is in a plane 
perpendicular to the 
main axis) 

Glide reflection  (reflection is in a 
line parallel to the imaginary axis)

Inversion in a point followed 
by a rotation 

9 Central symmetry Glide reflection (translation vector 

is equal to  
i
2   

Inversion in a point followed  
by a half turn 
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