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ABSTRACT 
In this paper we explore Hilbert geometry in a triangle, using Maple to illustrate some concepts 
such as Hilbert distant, projective and affine coordinates, unitary circle, etc. and to introduce 
new “trigonometric functions” for this geometry.  
 

1. Introduction. 
 
There has recently been growing interest in Hilbert Geometry [1] and many research 
papers were published, see [2 - 11] to cite just a few of them. 
We begin by recalling the Hilbert geometry. Let H be a nonempty bounded open convex 
set in n� , 2n ≥ . The Hilbert distance “ distH ” on H was introduced by D. Hilbert as 
follows. For any P H∈ , let ( ), 0distH P P = . For distinct points P  and Q in H, assume 

the line passing through P ,Q  intersects the boundary H∂ at two points ,X Y such that 
the order of these four points on the line is , , ,Y P Q X , see figure 1. 
Denote the cross-ratio of these points by: 

                                                    ( ) :PX PYPQXY
XQ YQ

=  

Where the bar on letters means Euclidean distant on n� . Then the Hilbert distance is 
defined by: 
                                                      ( ) ( ), logdistH P Q PQXY=  
This is a well defined distance under which the points at boundary are “at infinite”. 
The metric space ( ),H distH is called Hilbert geometry. When H is the unit open ball 
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∑K � , ( ),H distH  is the Klein model for the hyperbolic 
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2. Distance and coordinates. 
 
To explore Hilbert geometry in a triangle it will be convenient to recall alternative 
definition for the Hilbert metric. Since the cross-ratio is invariant under any projective 
mapping T, ( ),H distH  and ( ) ( )( ),T H distT H  are isometric as Hilbert geometry 
(figure 2). We will use this property of the cross-ratio to introduce coordinates for 
points in ( ),H distH  when H is a triangle.    
We know that given two points A  and B in a segment, then a point Q divides this 

segment in a ratio k  if  AQ k
QB

= . Solving for Q  we have Q a A b B= ⋅ + ⋅  

with 1a b+ = . Where 1
1

a
k

=
+

 and 
1

kb
k

=
+

. These relations are independent of the 

chosen origin of coordinates. In the same way, given the vertices A , B  and C of a 
triangle H, a point P  inside of it can be written as: 
 
                   P a A b B c C= ⋅ + ⋅ + ⋅ , 1a b c+ + = , 0, 0, 0a b c≥ ≥ ≥  
We will call ( ), ,a b c  the projective coordinates of a point P . Using these coordinates 

we can see, for example that points with ( )0, ,b c correspond to the side BC  etc.  

Let be CP  the projection of a point ( ), ,P a b c=  onto the side AB  then:  

1 1C
a bP A B

c c
= +

− −
 

The point CP  divides the segment AB  in a ratio bk
a

=  (figure 3). 

PROPOSITION 1: If ( )1 1 1, ,P a b c= and ( )2 2 2, ,Q a b c=  are two points inside the 

triangle H and the straight line that joins them intersect the sides AC and BC  then: 
                                       

                                         ( ) 2 1

2 1

, log b adistH P Q
a b

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
.                  (2.1) 
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Proof: 
By projection from C we will have (figure 4): 

 ( ) ( ) ( ), log log :C C
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In the same way, if the straight line that joins points ( )1 1 1, ,P a b c= and ( )2 2 2, ,Q a b c=  

intersects the sides AB and BC  then: 

                                          ( ) 1 2

1 2

, log a cdistH P Q
c a

⎛ ⎞
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⎝ ⎠
               (2.2) 

 If the straight line joining these points intersects the sides AB and AC  then:   

                                          ( ) 1 2

1 2

, log b cdistH P Q
c b

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
                (2.3) 

To explore the metric space ( ),H distH  we construct the Maple procedure “disT” (see 
appendix A), which consider all these cases. 
 
PROPOSITION 2: If ( )1 1 1, ,P a b c= and ( )2 2 2, ,Q a b c=  are two points inside the 

triangle H There exists a point ( )3 3 3, ,Z a b c H= ∈ such that P , Q  and Z  are not 
collinear and: 
                                   ( ) ( ) ( ), , ,distH P Q distH P Z distH Z Q= +  
Using the procedures “disT” (appendix A) and “ttn” (appendix B) we colored the inside 
of the triangle H according to the value of the function: 
                    ( ) ( ) ( ) ( ), , ,distH P Z distH Z Q distH P Q Z+ − = Φ         (2.4) 
The results can be seen in the figure 5. Inside the quadrilateral represented in the figure, 
we have ( ) 0ZΦ = .  
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Proof: 
Taking Z  inside the quadrilateral as it is shown in the figure we have: 
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If Z is outside of the quadrilateral then the distance must be calculated using different 
formulas because the straight line joining the points ,P Z  and ,Q Z  intersects different 
pairs of sides of the triangle ■ 
Together with the projective coordinates we will consider the affine coordinates of a 
point P . If  ( ), ,P a b c=  with  1a b c+ + =  then affine coordinates for P are: 

                                 [ ]yxP ,=      with    
⎩
⎨
⎧

=
=

cby
cax

/
/

                    (2.5) 

We suppose P  is strictly at the interior of the triangle, where a, b, c are positives. 
If we know affine coordinates [ ],x y  then we can obtain the projective coordinates by 
the following formulas: 
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                        (2.6) 

These affine coordinates has the advantage to be two (and not three as projective 
coordinates) in a space of dimension two. 
The formula for distance “distH” in these coordinates however varies and we write it 
down here: 
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For example, the affine coordinates of the points in figure 8 for 1r =  are: 

[ ]1, 1O = ; [ ]1 1,P e= ; 1
2 ,1P e−⎡ ⎤= ⎣ ⎦ ; 1 1

3 ,P e e− −⎡ ⎤= ⎣ ⎦ ; 1
4 1,P e−⎡ ⎤= ⎣ ⎦ ; [ ]5 ,1P e= ; 

[ ]eeP ,6 = . 

3. Circles and Disks. 
 
For our Maple explorations of Hilbert geometry we will use an equilateral triangle with 

vertices at points ( )0,0A = , ( )1,0B =  and 1 3,
2 2

C
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

.  Using the procedure “disT” 

(appendix A) together with the procedure “tt2”(appendix C) we explore the shapes of 

disks centered at the points 1 1 1 1 1 1, ,
3 3 3 3 3 3

O A B C ⎛ ⎞= ⋅ + ⋅ + ⋅ = ⎜ ⎟
⎝ ⎠

 (see figure 6) and   

3 1 25 3 1 25, ,
7 8 56 7 8 56

O A B C ⎛ ⎞′ = ⋅ + ⋅ + ⋅ = ⎜ ⎟
⎝ ⎠

 (see figure 7) with different radius. Note that the 

“circles” are really hexagons.     
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This property is independent of the used triangle. If we use another triangle for example, 
with vertices at points ( )0,0A = , ( )1,0B =  and ( )0,1C =  we obtain again “circles-
hexagons” as in the following figures: 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can parameterize “circles” (boundary of the hexagons) centered at O  and radius 
r using the following formulas (see figure 8): 
 
                         ( )1 2 , ,1r rPP t e t t e t= ⋅ − − ⋅ ;    ( )2 3 ,1 ,    r rP P t t e t e t= − − ⋅ ⋅  

                         ( )3 4 1 , ,r rP P t e t t e t= − − ⋅ ⋅ ;    ( )4 5 , ,1r rP P e t t t e t= ⋅ − − ⋅            (3.1) 

                         ( )5 6 ,1 ,r rP P e t t e t t= ⋅ − − ⋅ ;    ( )6 1 1 , ,r rP P t e t e t t= − − ⋅ ⋅  

with 1 1
2 1 2r rt

e e
≤ ≤

⋅ + +
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using these formulas with Maple commands given in the appendix D we obtain circles 
with center O  and radius r  as it is shown in figure 9. 
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4. Trigonometric Functions. 
 
Consider now the following definition of an angle for the Hilbert geometry in a triangle. 
Let’s take two semi-straight lines that intersect each other in a vertex P . By an isometry 
we can take P  to the central pointO ; the semi-straight lines intersect the unitary circle 
in two points defining an arch in the circle. The length of this arch will be the measure 
of the angle. 
 
 
 
 
 
 
 
 
 
 
 
           
                ( ) ( )2 2, ,UOV distH U P distH P Vα = = +�      (4.1) 

It is easy to show that ( ) ( )
5

1 6 1
1

, , 6i i
i

distH P P distH P P+
=

+ =∑  so the complete angle 

measures 6. 
As in the classic case, we now consider a semi-straight line 1O P  that starts to move in a 

counter clockwise direction. We define ( ) ( ),C Sα α⎡ ⎤⎣ ⎦  as the affine coordinates of the 

point P  if 1POP α=� , (figure 11). 
Using the procedure “Arch” (appendix E) we can determine the angle α  for any point 
P  on the unitary circle given its affine coordinates. This procedure uses the formulas 
(3.1), automatically determines to which segment of the unitary circle P belongs and 
applies the correct formula for the distance of P from a point 1P . With this procedure we 
can construct the graphics of functions ( )C α  and ( )S α as it is shown in figures 12 and 
13. 
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Moreover, these functions can be given in analytic form as it is shown in the following 
proposition.  
 
PROPOSITION 3: The trigonometric functions take the following values: 
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These formulas can be extended by periodicity for α ≤ 0 or also for α ≥ 6, (see figures 
14 and 15). 
Proof: 
We will verify for instance formula (1). By using different versions of distance (2.7 – 
2.9) can be proved in the same way the rest of the formulas  
Using formula 2.7 we have: 

( ) [ ]( )1, 1,1 , ,distH O P distH e eα α− −⎡ ⎤= ⎣ ⎦  
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Using formula (2.9) 
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Using ( )S α  and ( )C α we can define new functions:  
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The graphics of these functions are shown in figures 16 and 17 respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
With the proposition 3 and the graphics of the functions ( )S α , ( )C α , ( )T α  and 

( )Ct α  we can proof the following proposition: 

PROPOSITION 4: The functions ( )S α , ( )C α , ( )T α  and ( )Ct α   satisfy the following 
relations:   
   ( ) ( )1C Sα α− = ; ( ) ( )1C Ctα α+ =  

( ) ( )1S Tα α− = ; ( ) ( )2 1Ct Tα α− = +  

5. Alternative definitions for trigonometric functions.  
 
With the view to gaining more familiar properties of trigonometric functions for Hilbert 
geometry in a triangle, we could adopt the following alternative definitions:                                         
 ( ) ( )( )lns Sα α= ;                               ( ) ( )( )lnc Cα α=  

( )
( )
( )

( )( )
( )( )

11 ln 22
ln

Ss
t

c C

αα
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α α

−−
= = ; ( ) ( )

( )
( )( )

( )( )
ln

1 1ln2 2

Cc
ct

s S

αα
α

α α
= =

− −
 

The graphics for these functions are shown in the figures 18 - 21:   
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PROPOSITION 5: The functions ( )s α , ( )c α , ( )t α  and ( )ct α   satisfy the following 

relations:   ( ) ( )6s sα α= + ; ( ) ( )6c cα α= + ; ( ) ( )1c sα α− = ; 

( ) ( )c cα α− = − ; 1 1
2 2

s sα α⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

; ( ) ( )3t tα α= + ; ( ) ( )3ct ctα α= +  .       
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