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Abstract: A class of multistage and multistep integration methods which can obtain r new values simultaneously at 

each integration step was developed. Their stability regions were derived and sketched by MATLAB, and their regions 

are either A-stable or ( )A α -stable. Their applications to numerical solutions of nonstiff and stiff equations by 

predictor-corrector scheme were also studied.  

    

1. Introduction 

 

Numerical solutions for ordinary differential equations (ODEs) have great importance in 

scientific computation, as they were widely used to model in representing the real world problems. 

The common methods used to solve ODEs are categorized as one-step (multistage) methods and 

multistep (one stage) methods, which Runge-Kutta methods represent the former group, and 

Adams-Bashforth-Molton method represents the later group [5]. Some multistage methods are also 

available in the community. Implicit one-step method has been studied by Stoller and Morrison [9], 

Butcher [2], Fang [4], and Shampine and Watts [10]. We will consider a class of explicit and 

implicit with multistep and multistage methods for solving ordinary differential equations; we can 

call it a block method [1,6,7]. This method can obtain a block of new values simultaneously which 

makes its computation be competitive, and especially its implicit type formulas can be used in 

solving stiff ODEs effectively. Our aim of this paper is to sketch their stability regions to know how 

they can be implemented effectively in numerical implementation. The size of stability region of a 

numerical method is especially important in the choice of methods suitable for solving stiff system. 

Indeed, for numerical solution of stiff systems, it requires an interval of stability region to be as 

large as possible to avoid restricted stepsize implementation during numerical integration. A method 

with large interval of stability may be sufficient in the integration for stiff ODEs; for example, when 

the Jacobian matrix of right-hand side function has eigenvalues which are located in a large, narrow 

strip along the negative real axis. Such equations often arise when a second order hyperbolic 

differential equations in semi-discretized with respect to space variable [11].  



This paper is organized as follows. In section 2, we will show some block multistage/multistep 

method, and their stability regions will be sketched and be given in section 3. In section 4, a fixed 

stepsize and a variable stepsize implementation for numerical solutions of nonstiff and mildly stiff 

ODEs by Block formulas are implemented. Their numerical results show its efficiency and 

effectiveness. Section 5 gives the conclusion.  

 

2. Block Multistage and Multistep Method 

 

Given a class of s stages and m steps integration formulas [1,6,7], where 
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formulas are given in the following:  

a. For s=m=1, it is exactly the same as the classical BDF formula. 

b. For s=2, m=3, explicit and implicit formula are the following: 
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c. For s=2, m=4, an implicit formula is the following:   
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d. For s=3, m=5, explicit and implicit formulas are the following:  
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These formulas can be implemented by either Newton iteration with respect to implicit formulas or 

by predictor-corrector schemes. In this paper, we only implement by a predictor-corrector scheme to 

see how its implementation in nonstiff and mildly stiff ODEs. Implicit solutions of this block 

method will be given elsewhere. The block PECE numerical results are given at section 4.  

 

2. Stability regions 

 

The main difficulty associated with stiff equations is that even though the component of the true 

solutions corresponding to some eigenvalues that may becoming negligible, the restriction on the 

stepsize imposed by the numerical stability of the method requires that hλ  remain small 

throughout the range of integration. So a suitable formula for stiff equations would be the one that 

would not require that hλ remains small. Dahlquist [3] investigated the special stability problem 

connected with stiff equations, he introduced the concept of A-stability, and we quote the definition 

as the following:  

 Definition 3.1 [3,5]: The stability region R associated with a multistep formula is defined as 

the set  

 { :R hλ= A numerical formula applied to y yλ′ = , 0 0( )y x y= , with constant stepsize 0h > , 

produce a sequence ( )ny  satisfying that 0ny → as n → ∞ }.  

 Definition 3.2 [3,5]: A formula is A-stable if the stability region associated with that formula 

contains the open left half complex place.  

 Definition 3.3 [3,5]: A convergent linear multistep method is ( )A α -stable, 0 / 2α π< < , if 

{ : arg( ) ,  0}S Sα µ µ α µ⊃ = − < ≠ . A method is A(0)-stable if it is ( )A α -stable for some 

(sufficiently small) 0α > . To derive the absolute stability, one may consider the model problem (2). 

We apply formulas Eqs. 2.1~2.2, and 2.5 to y yλ′ = , 0 0( )y x y= , and manipulation is skipped. 

Let hµ λ= , we have the following results: 

a. Formula 2.1, 2.2 respectively. :  



    
Figure 3.1: Stability region of explicit Formula 2.1. 

The region is the interior of blue line 

 

Figure 3.2: Stability region of implicit Formula 2.2 

The region is the exterior of the blue line 

 

Figure 3.3: Stability region of implicit Formula 2.5 

The region is the exterior of the blue line 

 

We notice that at Figure 3.3, the stability region shows that Formula 2.5 is an ( )A α -stable method, 

which means the region covers almost all the left half plan. It is crucial to implement in stiff 

differential equation.  

In this paper, we are trying to use a cheap implementation method to solve some mildly stiff 

ODEs, which is a standard PECE scheme. Though an implicit implementation is also possible, but 



in consideration of the high cost of Jacobian evaluations, we would like to know how good this 

cheap scheme with block formulas can lead us to. For the stability region of the numerical 

Predictor-Corrector scheme, we can approach by the following. Let H = λh . We could rewrite Eqs. 

2.1 and 2.2 by the following, Eqs. 2.4 and 2.5 is done by exactly the same way, we do not give the 

details here. 
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and  
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or in matrix formulation  
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Define  

 ( ) ( )2
P H A HB A H B B

∗ ∗ ∗= + +  (3.6) 

 

Then the locus of H determines the boundary of the stability region and can be ploted by MATLAB 

as the following. We use one predictor and one corrector and denote it as 1)(CEPE . More iteration 

of correctors can be derived similarly.  



 

Figure 3.4: Stability region of a 1)(CEPE  by Formulas 2.1 and w2.2 

The region is the interior of the blue line 

 

Without further derivation, we also present a stability region by using s=2, m=3, which is Eq. 2.1 as 

a predictor, and s=2, m=4, which is Eq. 2.3 as a corrector. We derive a similar locus plot as the 

following: 

 

Figure 3.5: Stability region of 1)(CEPE  by formulas 2.1 and 2.3 

The region is the interior of the blue line 

 

Define From Figures 3.4 and 3.5, the largest intercept 

is about -2.5. According to [4,8,10], their interval of intercept are all less than 1. That makes our 

scheme has a better control of the length of stepsize in the integration when it is implemented by 

variable stepsize strategy. 

 

3. Numerical Experiments 

 

We will show few examples to see the results of applying a variable stepsize selection strategy, 

which readers may refer to [3] and a block Predictor-Corrector numerical scheme on both nonstiff 

and mildly stiff ODEs. The effectiveness of obtaining many step-points value in each iteration drive 

us to derive new block formulas to take advantage of this efficiency of our new method. It can help 

{ .}0)Re(,,1)((sup* <=<−= λλρ hHHPHH



us in the future to solve many application problems, such as simulation of multibody problems, and 

flexible mechanism.  

 

Example 1: A nonstiff ODE. yy λ−=′ , ,1)0( =y  ]5,0[∈t .  

The exact solution is t
ey

λ−= . Case 1: 1=λ . 

 

Figure 4.1: Block PECE numerical solution with 1=λ  

  

Figure 4.2: Absolute error log plot with fixed stepsize when 1=λ  

(the y-axis is 5.1311 10~10 −− ) 

  

Figure 4.3: Absolute error log plot with variable stepsize when 1=λ  

(the y-axis is 5.108.9 10~10 −− ) 

Example 2: A mild stiff ODE. yy λ−=′ , ,1)0( =y  ]5,0[∈t . 

The exact solution is t
ey

λ−= . Case 2: 60=λ  



 

Figure 4.4: Block PECE numerical solution with 60=λ  

  

Figure 4.5: Absolute error log plot with variable stepsize when 60=λ  

(the size of y-axis is 125 10~10 −− ) 

Example 3: 
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True solutions: 

 

 

 

Figure 4.6: Block PECE numerical solutions 
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Figure 4.7: Absolute error of Block PECE numerical solutions with fixed stepsize 

(with variable stepsize the order is (the y-axis is 125 10~10 −− ) 

  

Figure 4.8: Absolute error of Block PECE numerical solutions with variable stepsize 

(with variable stepsize the order is (the y-axis is 125 10~10 −− ) 

 

In example 1, it is a nonstiff ODE. Figure 4.1 gives the trace of the numerical solution, Figure 4.2 

gives the accuracy of the numerical solution when h= 310− by fixed stepsize implementation. The 

accuracy is about 1110− . In Figure 4.3, the accuracy is about 1010− by variable stepsize 

implementation. In example 2, it is a mildly stiff ODE. Figure 4.5 gives the accuracy, and it is about 

910− by variable stepsize implementation. In Example 3, it is a mildly stiff ODEs with three 

components. The accuracy is almost the same in example 2 which is about 910− ~ 1010− in three 

components. As in [7], we have shown that this block method is of order 3 when s=2,m=3. For these 

figures, we know the method is accurate, especially in nonstiff ODEs.  

 

4. Conclusion 

 

In this paper, we have derived several new block numerical schemes with different stages s and 

steps m. Absolute stability regions of several methods have been sketched and a predictor corrector 

scheme by these block formula is established, their intercept of stability region is the best among 

known results in articles. In addition, numerical results by implementing predictor corrector scheme 



to some nonstiff and mildly stiff ODEs are obtained, the numerical results show the method is 

effective and accurate regarding to be able to obtain many step-points values in each iteration and 

rate of convergence respectively. 
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