
Analysis of Discrete Models Using an Electronic
Spreadsheet—A Survey of Examples

Thomas C. McMillan
tcmcmillan@ualr.edu

Department of Mathematics & Statistics
University of Arkansas at Little Rock

72204-1099
U.S.A.

Abstract

This paper surveys examples in which questions are answered by developing recurrence rela-
tions that model certain situations and then exploring those recurrence relations using an electronic
spreadsheet. The goals of this approach are (1) to develop an understanding of and a facility for
using recurrence relations as a modeling tool to motivate the need to derive analytical methods
for solving recurrence relations, (2) to increase awareness of the spreadsheet as a problem solving
tool, (3) to validate intermediate steps in analytical solutions using the spreadsheet, and (4) to use
the spreadsheet’s computational and graphics capabilities to explore and analyze questions that do
not lend themselves to an easy analytical solution. The examples described here have been used
in discrete mathematics courses and professional development courses for licensed teachers.

1 Introduction
In this paper we discuss and illustrate through examples how to use an electronic spreadsheet to
analyze discrete models. The ease with which formulas can be entered into the spreadsheet’s data
array make it an ideal tool for exploring recurrence relations with one or two independent variables.
Students in discrete mathematics courses can, using the spreadsheet, numerically solve recurrence
relations and explore their properties with little programming effort. The advantages of incorporating
the spreadsheet into a discrete mathematics courses are many. Perhaps most important is that students
can solve recurrence relations numerically before studying the analytical techniques. Thus students
can see early on real applications of discrete mathematics, explore the resulting models, and, in the
process, develop a motivation for learning the analytic techniques. Representing the solutions to
discrete models in a graph is relatively easy. When analytical methods are developed, the spreadsheet
models can be adapted to illustrate the required steps. Finally, students can develop an appreciation
for the spreadsheet as a powerful problem solving tool by applying it to problems that are difficult or
impossible to solve analytically.

Most of the examples discussed here have been incorporated into discrete mathematics classes and
classes for teachers. With the ubiquitous availability of spreadsheets, the author has not encountered
a problem with students not having access to the required software. In these classroom applications,
there is no sensitivity to operating system or the particular brand of spreadsheet. The rare student who
doesn’t have a spreadsheet installed on his or her computer can download Open Office or NeoOffice,
or use an online spreadsheet, as in Google Documents. The examples given here were analyzed using
Excel 2008 on a MAC computer (OS X). This paper assumes some familiarity with the spreadsheet
and includes only a rudimentary introduction, through example, to the details of entering formulas.

The emphasis here is on using the spreadsheet to analyze recurrence relations. Examples of the
spreadsheet’s utility in other educational contexts abound. The electronic journal Spreadsheets in
Education (eJSiE) is a rich source for these applications.

2 A Simple Example
This section uses the Fibonacci sequence, a1 = a2 = 1, an = an−1 + an−2 for n ≥ 3, as an example
to illustrate how a recurrence relation is encoded in a spreadsheet. This section can be skipped if you
are familiar with spreadsheet basics.

The contents, data and formulas, of a spreadsheet are contained in cells arranged in a two-
dimensional data array. The columns are identified with letters, and the rows are identified with
numbers. Letter-number pairs are the coordinates of a specific cell, for example B3 identifies the cell
in the second column and the third row. (Some spreadsheets would give the coordinates of this cell as
R3C2, row 3, column 2.) The content of a cell is either a constant or a formula based on the contents
of other cells. The spreadsheet displays the value stored in each cell, either the constant or the result
of applying the formula.

Figure 1: The Fibonacci Sequence

Enter the first two elements of the Fibonacci sequence by typing a 1 in cells A1 and A2. Now
enter the formula =A1+A2 into cell A3. This is accomplished by selecting cell A3 and entering the
formula using one or a combination of two methods: (1) type it in character by character, or (2) type
the =, which indicates the cell contains a formula, select A1 with the mouse, type +, and then select

http://epublications.bond.edu.au/ejsie/
http://epublications.bond.edu.au/ejsie/

A2 with the mouse. Whichever technique is used, the formula builder shows the formula =A1+A2
as it is constructed. The formula in cell A3 depends on the values in cells A1 and A2. The data
area in the top three cells of column A will display the values 1, 1, and 2, the result of the formula
=A1+A2. The coordinates for a formula seen in the formula builder are the external representation
of the cells on which the formula is based. Internally, the formula in A3 is “The value stored in me
(this cell) is the sum of the value stored in the cell two cells above me and the value stored in the cell
immediately above me.” When the formula is copied to a new cell, it is this internal representation
that is copied, and the external representation displayed in the formula builder is adjusted accordingly.
For example, selecting cell A3, copying its contents, and then pasting into cell A10 will result in the
formula building showing =A8+A9 as the contents of cell A10. Figure 1 illustrates the first few rows
of this spreadsheet.

The letter-number coordinates of a cell give its address. The user sees in the formula builder the
absolute adresses of the cells the formula is based on. Internally the spreadsheet stores relative ad-
dresses, which give the position of the cells in the formula relative to the cell containing the formula.
In our example, the relative addresses are “the cell two positions above me” and “the cell immedi-
ately above me.” It is this relative addressing scheme that simplifies storing recurrence relations in a
spreadsheet.

Column A contains the first three elements of the Fibonacci sequence. In Excel, if you highlight
cell A3, you will see a small square in the lower right hand corner of the cell. This is a handle that
simplifies copying the contents of the cell into other cells. Clicking on the handle and dragging it
straight down copies the formula in A3 into the cells below it in column A. In spreadsheets other than
Excel, you may need to use copy and paste to copy the formula into other cells. After copying the
contents of A3, the nonempty cells of column A contain the elements of the Fibonacci sequence—a
numerical solution for the recurrence relation a1 = a2 = 1, and an = an−1 + an−2 for n ≥ 3, because
each cell contains the sum of the two values immediately above it. Notice that it is the relative
addressing that encodes the Fibonacci recurrence. The formula in cell A3 describes its value as the
sum of the values in the two cells above. It is this dependence on the two previous cells that is copied
into each of the cells below A3.

Relative addressing facilitates entering recurrence relations in a spreadsheet, but occasionally it is
necessary to specify a fixed cell in a formula. The $ is used to indicate that the absolute address is
stored both internally and externally. For example, if the content of A3 is the formula =A1+A2,
then copying this formula to A10 would result in =A1+A9 being copied into that cell. All copies
of this formula use the contents of A1 for the first term. Absolute addressing can be used on each
coordinate independently. We will see examples of absolute addressing in the examples that follow.
Note that our spreadsheet solution gives us as many terms for the Fibonacci sequence as we want,
but it doesn’t give us a formula for the sequence. The spreadsheet is a powerful tool for exploring
recurrence relations without having to find an explicit solution.

3 A Finance Example
This section contains a problem used in a technology course for licensed teachers. A business pays
back a loan of $10,000 over a period of 12 months at an annual interest rate of 6%. What is the
monthly payment? Rather than using the spreadsheet’s built-in formula for the monthly payment, we

Figure 2: Loan Spreadsheet

develop a recursive model that will lead to the solution and incorporate that model into a spreadsheet
that can be used to illustrate the derivation of the formula. Students use a worksheet and, through a
series of “leading questions,” are guided to a recurrence relation with boundary conditions. Letting
B(n) denote the balance owed after the nth payment, r the monthly interest rate, and M the monthly
payment, then “the balance after the nth payment equals the balance after the (n − 1)st payment
plus the interest earned on the previous balance minus the monthly payment” is encoded as B(n) =
(1 + r)B(n− 1)−M . The boundary conditions are B(0) = $10, 000 and B(12) = $0.00.

The spreadsheet in Figure 2 encodes the recurrence for B. The boundary condition B(0) =
$10, 000 is entered as a constant in cell F1 . The formula in cell B8 calculates the the interest charged
on the previous balance (D7). The formula in cell D8 encodes our recurrence: The current balance is
the previous balance (D7) plus the interest charged (B8) minus the monthly payment (F2). These
formulas are entered with the correct coordinates first in cells B6 . . .D6. These cells are then selected
and dragged down to populate the rest of the table. Note the use of absolute addressing for the monthly
interest rate (C2) and the monthly payment (F2). If absolute addressing had not been used here,
then when the formulas are dragged down these would refer to cells other than the ones containing
the desired values. The formula in cell C8 is another illustration of absolute addressing and of the
spreadsheet function SUM. It could also have been entered as =C7+B8.

The value in cell D16 is the result of calculating the balance after the last monthly payment. When
the correct monthly payment is entered into cell F2, the value displayed in D16 is the other boundary
condition, B(12) = $0.00. The constant in F2 is initially a guess. Students can manipulate it until
the final balance is $0.00, at which point F2 contains the correct monthly payment.

The spreadsheet, in addition to containing the solution to the problem posed, also contains a
complete example of the type of transaction we are considering. Students can refer to this table and
validate the intermediate steps encountered in solving for the monthly payment M when a loan of P
is repaid with N monthly payments. From the recurrence

B(n) = (1 + r)B(n− 1)−M,

it follows that
B(n)−B(n− 1) = (1 + r)(B(n− 1)−B(n− 2)).

Applying this to successive values of n, using B(1)−B(0) = Pr −M , yields

B(n)−B(n− 1) = (Pr −M)(1 + r)n−1.

Now,

B(N)−B(0) =
N−1∑
n=0

(B(n)−B(n− 1)) = (Pr −M)
N−1∑
n=0

(1 + r)n = (Pr −M)
(1 + r)N − 1

r
.

Using the boundary conditions B(0) = P and B(N) = 0 and solving for M yields

M =
Pr

1− (1 + r)−N
.

Every stage in the derivation of M can be related to the complete example contained in the
spreadsheet. Additional columns, e.g. for B(n) − B(n − 1), (1 + r)(B(n − 1) − B(n − 2)), and
(Pr − M)(1 + r)n−1, can be added to the spreadsheet for the purpose of validating the intermedi-
ate steps in the derivation of the formula for M . Thus the spreadsheet, in addition to containing the
complete solution for the original problem and illustrating the application of the recurrence relation,
supports the student during the analytical solution to the problem.

The main benefit of this approach is that students can develop a recursive model and complete
a fairly extensive analysis of it before learning the analytical techniques for solving recurrence rela-
tions. This helps (1) to develop the skill of thinking recursively about problems that lend themselves
to solution by recurrence relations and (2) to motivate the study of recurrence relations. Although
students will learn techniques for solving difference equations analytically, they have seen how the
spreadsheet is a powerful tool that can yield solutions without having to derive a formula from the
model—a tool that can be used when finding a solution analytically is difficult or impossible. More
illustrative examples follow.

The loan payment calculation is an example for which the spreadsheet provides a numerical so-
lution to the problem but also for which an analytical solution is possible. The next section gives an
example of a problem that does not have an easy analytical solution.

4 The Birthday Problem
This problem arose serendipitously in one of my Finite Mathematics classes. A standard example in
Finite Mathematics is the derivation of the formula for pn, the probability that, in a group of n people,
at least two of them have the same birthday. For groups with 23 or more people, the probability of
a birthday match is greater than 50%. My class of 30 students (p30 ≈ 0.706) decided to check out
this surprising result. One by one we announced our birthdays and found a match after only seven
announcements. My students were surprised that it took so few tries, and we wondered if this is an
anomalous result or close to what is expected. This prompted the following question: “In a group of
n people, what is the expected number of queries (birthday announcements) required to find a match

Figure 3: Birthday Problem Spreadsheet

or determine that one does not exist?” This problem lends itself to a spreadsheet analysis. Although
my class did not conduct the analysis, they had little trouble understanding the recurrence relation
that I used, and those who had used a spreadsheet before could see how it was used to analyze the
recurrence.

Our analysis begins with a definition. Let E(n, m) denote the average number of queries required
to find a match among n people who are known to have birthdays among a set of m possible dates,
or to determine that there is no match. Our goal is to find E(30, 365). The boundary conditions
E(n, 1) = E(1, m) = 0 for all n, m ≥ 1 are easily justified. If n people are known to have birthdays
in a set containing only one date, then we know without making any queries that a match exists if
n > 1 or doesn’t exist if n = 1. If there is only one person in the group, then regardless of the number
of possible dates, we know without having to make a query that there is not a match.

Our recurrence is

E(n, m) = 1 +

(
m− 1

m

)n−1

E(n− 1, m− 1), for all n ≥ 2 and m ≥ 2. (1)

The 1 appears in this formula because at least one query will be required if there is more than one
person with birthdays in a set with more than one date. The factor

(
m−1

m

)n−1 is the probability that the
remaining n − 1 people have birthdays different from that of the person making the announcement,
and it is with this probability that we need to continue the search with n − 1 people who are known
to have birthdays in a set with m− 1 days. E(n− 1, m− 1) is the average number of queries needed
in the event that the current announcement does not find a match.

Figure 3 is a representation of the spreadsheet for solving this recurrence. The zeroes in row 3
and column C record the boundary values E(n, 1) = E(1, m) = 0. The squares indicate cells in
which a formula is stored. Each of these formulas, as for the ones depicted for cells D4 and F5, relies
on the number of dates for the previous row, the number of dates for the current row, the number of
people for the previous column and the calculated average value for the previous row and column in

exactly the manner prescribed by (1). Only the formula in cell D4 is entered “manually.” Selecting
this cell and dragging to the right enters all the formulas in row 4. Selecting the formulas in row 4
and dragging down populates the table, at which point the numeric values for E(m, n) are available
in the table. Observe that the entire array of formulas (92,092 cells) is populated with two dragging
operations.

The answer to our question is E(30, 365) ≈ 14.289, found in cell AF367. This is the average
number of queries needed to find a birthday match, or determine that one does not exist, in a group
of 30 people. Since the probability of a match is p30 ≈ 0.706, this calculated average includes the
29 queries that will be needed in the 29.4% of the cases when there is no match. It follows that the
average number of queries needed when there is a match is approximately 8.163—so our classroom
experience is not out of line with what is expected.

We can also find, using the spreadsheet, the probability mass function (pmf) p(t), the probability
that t queries are needed to find a match in a group with N people, N ≤ 365, or to determine that
there is not a match. Since, if there is a match, it will be found in at most N − 1 queries, p(t) is the
probability of finding the match in exactly t queries when 1 ≤ t ≤ N − 1, and p(N) is the probability
that there is no match (which will require exactly N − 1 queries to determine). Letting p(0) = 0, the
domain of p can be taken to be 0 ≤ t ≤ N . Let P (t) =

∑t
i=0 p(i) be the cumulative distribution

function. Then P (0) = 0, P (N) = 1, and P(t) satisfies the recurrence

P (t) = 1−
(

365− t

365− t + 1

)N−t

(1− P (t− 1)) for 1 ≤ t ≤ N − 1. (2)

As justification, note that 1− P (t− 1) is the probability that t or more queries (announcements) are
required, and

(
365−t

365−t+1

)N−t is the probability that the last N − t people have birthdays different from

that announced by the tth person. Therefore
(

365−t
365−t+1

)N−t
(1 − P (t − 1)) is the probability that t or

more queries are required and the tth query fails to produce a match. The complementary probability
1−

(
365−t

365−t+1

)N−t
(1−P (t− 1)) is thus for the event that fewer than t queries are required or that the

tth query succeeds, i.e. is equal to P (t).
The recurrence in (2) can be encoded for, say N = 30, in a single column of a spreadsheet, giving

a tabular representation for the cumulative distribution function P . The pmf p can be encoded in an
adjacent column using the formula p(t) = P (t)−P (t−1), for 1 ≤ t ≤ 30, and finally, a third column
can be used to calculate the expectation E(30, 365) =

∑29
t=1 t p(t) + 29p(30). Consistent with our

earlier analysis, the calculated expectation is E(30, 365) ≈ 14.289.
More details about this problem, together with the results of simulations that validate the results

and discussions relating this problem to other problems in computer science and the analysis of algo-
rithms can be found in [2].

5 Tossing Coins
This section describes a problem used in one of our professional development classes for secondary
teachers. The students solve the problem by encoding recurrence relations into a spreadsheet. Here
is the problem. Two players, Tom and Jim, play a coin tossing game. Tom begins with 13 pennies
and Jim begins with 27 pennies. A fair coin is flipped. If it comes up heads, Tom wins one of Jim’s

A B C D · · · AO AP

1 Number of Coins 0 1 2 · · · 39 40
2 Probability of Winning 0 0.1 · · ·
3 · · ·
4 Expected Number of Coin Flips 0 20 · · ·

Figure 4: Spreadsheet for Coin Tossing Problem

pennies. If it comes up tails, Jim wins one of Tom’s pennies. The process is repeated until one player
wins all of the pennies. Answer the following questions: (1) What is the probability that Tom wins all
the pennies? (2) What is the probability that Jim wins all the pennies? (3) What is the probability that
the game will not terminate? (4) What is the expected number of coin flips until the game ends? (i.e.
If games were played many times from the same starting condition, what, in number of coin flips,
would the average length of the games be?)

In class, an analysis is accomplished with a worksheet that asks a sequence of “leading ques-
tions” and directs students to recursive models that can answer the questions. We begin by defining
some functions. Let p(n), for 0 ≤ n ≤ 40 denote the probability that a player with n pennies
ends up winning the game, and let l(n) denote the expected number of coin tosses to end the game
when a specific player (say Tom) has n coins. Then p(0) = 0, p(40) = 1, and for 0 < k < 40,

p(k) =
1

2
p(k − 1) +

1

2
p(k + 1), or p(k + 1) = 2p(k) − p(k − 1). Students develop and justify this

recurrence on their worksheets. For l, we reason that l(0) = l(40) = 0, and, for 0 < k < 40,

l(k) = 1 +
1

2
l(k − 1) +

1

2
l(k + 1), or l(k + 1) = 2l(k)− l(k − 1)− 2.

To solve the recursive models for p and l, students are asked to make a spreadsheet like the one
in Figure 4. The entries in C2 and C4 are constants—not formulas. The entries in B2 and B4
encode the boundary conditions p(0) = 0 and l(0) = 0, respectively. Now, encode the recurrence
p(k + 1) = 2p(k) − p(k − 1) by installing the formula =2*C2-B2 into D2 and then dragging it
into cells E2 . . .AP2 (so that, for example, M2 now contains the formula =2*L2-K2). If the value
displayed in AP2 is not the other boundary condition, p(40) = 1, then the constant entered in C2 is
not correct. Students are instructed to manipulate the value in C2 until the value 1 appears in cell
AP2. When the correct value (0.025) is found for C2(= p(1)), the spreadsheet contains a complete
tabular representation for p(n). Similarly, the recurrence l(k + 1) = 2l(k) − l(k − 1) − 2 can be
installed in D4 . . .AP4 by entering the formula =2*C4-B4-2 into D4 and then dragging it into
the remaining cells. The value in C4 is manipulated until the value in AP4 matches the boundary
condition l(40) = 0. This occurs when the value in C4 is 39 = l(1). The spreadsheet now contains a
tabular representation of l(n).

We can now read from the spreadsheet the answers to our questions. The probability that Tom
wins all the pennies is p(13) = 0.325, and the probability that Jim wins them all is p(27) = 0.675.
Since these add up to 1, the probability that the game does not terminate is 0. The expected length of
the game is l(13) = 351.

When the spreadsheet contains the correct recurrence relations and the boundary conditions are
satisfied, the formulas for p(n) and l(n) can be found by inspection. With a little reflection, most
students can see that the formulas are p(n) = n/40 and l(n) = n(40 − n). That we can discover

Figure 5: Probability Distribution for Game Length

the formulas is a bonus. Note that the recurrence p(k + 1) = 2p(k) − p(k − 1) can be rewritten as
p(k+1)−p(k) = p(k)−p(k−1), implying a constant difference between consecutive values of p. The
formula for p(n) can be found analytically by collapsing the telescoping sum

∑40
1 (p(k)− p(k − 1))

and using the boundary conditions to find the value (1/40) for the common difference p(k)−p(k−1).
A similar approach that exploits the symmetry of l(n) can be used to find a formula for l(n). Details
can be found in [1] and [3]. The intermediate steps of the analytical solutions can be validated by
adding the appropriate formulas into additional lines of the spreadsheet.

Suppose Tom has 5 of 21 coins. As in the previous example, Tom wins or loses a coin based
on the toss of a fair coin, and the game is played until Tom loses all of the coins or wins all of the
coins. Find the pmf for the number t of tosses required for the game to end. Again, we can set up a
recurrence that can be entered into a spreadsheet in order to find a tabular representation of the pmf.

We begin with a definition. Let q(n, t), for t ≥ 0 and 0 ≤ n ≤ 21 denote the probability that
the game ends in t moves (tosses of the coin) when Tom has n coins. The boundary conditions
q(0, 0) = q(21, 0) = 1, q(n, 0) = 0 for 1 ≤ n ≤ 20, and q(0, t) = q(21, t) = 0 for t ≥ 1 are easily
justified. If Tom has n coins, 1 ≤ n ≤ 20, and t ≥ 1, then the probability that the game ends in t
moves is the sum of the probabilities for two mutually exclusive events: Either Tom loses a coin and
then the game concludes in t − 1 more moves, or Tom wins a coin and then the game ends in t − 1
more moves. This yields the recurrence

q(n, t) =
1

2
q(n− 1, t− 1) +

1

2
q(n + 1, t− 1). (3)

The pmf we seek is q(5, t), t ≥ 0.
As with the other examples, this recurrence relation with boundary conditions can be encoded in

a spreadsheet table. Arrange the table with 22 column headings representing the number of coins
held at the beginning of the game (0, 1, . . . , 21) and with rows labelled with possible values for t
(0, 1, 2, . . .), each row holding the probabilities that the game ends in t moves. Since t can be any

nonnegative integer, the desired table has infinitely many rows. Clearly only a finite part can be
entered. Enter the boundary conditions in the top row and in the left and right boundary columns,
column 0 and column 21—a 1 in each top corner and zeroes elsewhere in the boundary. Now encode
the the spreadsheet formula for the recurrence (3) in the cell corresponding to q(1, 1) and drag that
formula so that the interior 20 columns are populated with the recurrence. (For example, if D4 is the
cell to contain the calculated value of q(1, 1), the D4 contains the formula =0.5*C3+0.5*E3.)

The number of rows to populate can be determined with some experimentation. At somewhere
around t = 2000, all the cumulative sums of the probabilities in each column sum to one, within
the precision of my spreadsheet, so the first 2000 or so columns is probably good enough. With the
formulas entered into the table, column 5 contains the pmf q(5, t) for the number of moves in a game
from a starting position of 5 coins. The spreadsheet’s graphics tools can quickly produce a plot of the
pmf. Figure 5 shows the spreadsheet graph for q(5, t), t = 0, 1, 2, . . . , 150. The spreadsheet has the
capability to remove the lines in the graph, and it would be appropriate to to this, but leaving them
in helps to maintain the vertical alignment visually. The graph prompts some discussion questions:
Why, for even values of t, do the probabilities that the game will end in t moves tend to be lower than
for odd values of t? Why are the probabilities for even values of t ≤ 14 and for all values ≤ 4 equal
to zero? Is there a value for t beyond which the pmf is monotonic?

An analysis similar to the above, with a total of 40 coins in play, indicates that with 21 coins in
play, the expected number of moves until the end of the game is 5(21 − 5) = 80. Using the pmf to
calculate the expected value should therefore yield

∑∞
t=0 t q(5, t) = 80. An additional column in the

spreadsheet can be added to calculate the partial sum
∑2000

t=0 t q(5, t) = 79.9999997, a result consistent
with our earlier analysis.

6 Conclusion
The spreadsheet is a powerful computational tool for exploring discrete models. Its computational
and graphical capabilities allow the investigator to explore the characteristics of a model that may
be difficult or impossible to solve analytically. In all of the examples given here, the emphasis has
been on developing a recursive model and exploring and analyzing that model with a spreadsheet.
By applying these techniques, students develop a facility for discrete modeling and can include the
electronic spreadsheet as one more tool in their problem-solving arsenals.

References
[1] Honsberger, Ross, Mathematical Gems I, The Mathematical Association of America (1973), pp

128–130.

[2] McMillan, Thomas C. “The Birthday Problem: Using an Electronic Spreadsheet in a Gentle
Introduction to Discrete Mathematics,” Proceedings of the 2nd International Conference on the
Teaching of Mathematics, CD-ROM link, John Wiley & Sons, Inc., July, 2002.

[3] McMillan, Thomas C. “The Gambler’s Ruin–How Long Does It Take?”, The AMATYC Review,
Vol. 23, No. 2, (Spring, 2002), pp 33–38.

	Introduction
	A Simple Example
	A Finance Example
	The Birthday Problem
	Tossing Coins
	Conclusion

