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Abstract:   In this paper, we present four primality testings. Mathematica software is used to carry out the primality 
tests. The application of Fermat’s Litle Theorem as well as Euler’s Theorem on the tests are also discussed and this 
leads to the concept of pseudoprime. We also discussed some results on pseudoprimes with certain range and do 
quantitative comparison and in addition to this, we discussed the existence of carmichael numbers and Mersenne 
primes. 
 
1   Introduction 

Prime number plays an important role in the RSA (Rivest, Shamir & Adler) cryptography. Until 
now, there is no valid formula to produce prime number, one of the recent technologies is to 
determine primality or compositeness of an integer given. 

Primality testing is the process to test whether or not a given number n is a prime. Until now, 
primality testing is one of the fundamental problems concerning prime numbers. It becomes more 
important since prime number’s applications in some area, such as cryptography, detections of error 
in coding, and information security, especially communication and network security. Ability of 
primality tests has always been a centre of discussion. Those tests need to be evaluated in terms of 
its ability to compute as well as correctness in determining primality of given numbers. The answer 
to this is to create a source codes for those tests and evaluate them. These days there are many 
programming languages, but it requires sound understanding, and this takes up so much times just 
to learn how to use and get your job done. Mathematica has the solution to this problem. It is a user 
friendly software and do not takes up so much time to learn. 

 In this project four primality tests were being carried out using the help of Mathematica 
software to assess and compare their ability. We find Mathematica very easy to learn and the 
command is very simple. Mathematica has so many build-in functions that can carry out many 
technical tasks like counting digit number, solving congruency and modulo problems, where this 
function is so much needed in carrying out the tests that we will see later. Mathematica also has a 
build-in function to count number of primes less than an integer and many more functions related to 
number theoretical concept. In this work there are four primality tests source code that has been 
designed using Mathematica. Those are Miller-Rabin test, Solovay-Strassen test, Fermat test and 
Lucas-Lehmer test. Each test was coded using an algorithm derived from number theoretic 
theorems [Anderson] and coded using the Mathematica version 6.0. Miller-Rabin test, Solovay-
Strassen test, and Fermat test are probabilistic tests since they cannot certainly identify the given 
number is prime, sometimes they fail. This is due to the Fermat’s little theorem and Euler’s 
theorem which does not work in both ways [Jones]. Fermat Little Theorem says that if n is a prime 
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theorems do not guarantee the primality of n even if n satisfies the congruency. Therefore these 



theorems do not work in both ways but the tests assumed that it works. That is why pseudoprime 
exists.  

Lucas-Lehmer test is a deterministic test, where the accuracy of the test cannot be argued. 
However, the computation time is a bit too long compared to the three tests. In Lucas-Lehmer test, 
we deal with Mersenne numbers and the task was to determine whether or not a given Mersenne 
number is a Mersenne prime. The source code of each test using Mathematica 6.0 is shown in 
section 2. 

In section 3, the comparisons of the four tests are discussed, pseudoprime including carmichael 
number as absolute pseudoprime, Euler pseudoprime in Solovay-Strassen test, and strong 
pseudoprime that produced by Miller-Rabin test are also discussed, where we can see how 
Mathematica software has helped carrying out the tests without spending  much effort on the 
programming task. Lastly section 4 concludes. 

 
2   Coding the primality tests using MATHEMATICA 6.0 
The following source codes are derived from an algorithm obtained mainly from Fermat’s theorem, 
Euler’s Theorem and other related theorems from number theory to test whether or not the given 
number is a prime number. First, we set the first 100 integers as the input. The output will come up 
as a prime or a composite. After this is done we can enlarge the input range to the first 1000 and 
until 10,000. We show the source codes here as they are the main task for this project. We also used 
some build-in functions of Mathematica 6.0 to carry out some technical tasks, like finding the exact 
number of primes less than an integer, tabulating prime numbers, pseudoprimes, strong 
pseudoprime and Carmichael numbers obtained from the output of the following source codes, 
drawing and plotting facilities are also been used to facilitate our tasks. The build-in Mathematica 
commands, “PrimeQ[integer]” and “PrimePi[integer] are used to compare the list of primes and 
pseudoprimes and to compute percentage of pseudoprimes produced by each test. Due to space 
limitation, we are unable to show all tables and figures. To get a full picture of this project, we 
suggest one refers to [6 ].  
 
2.1 Source Code of Fermat Test 

a=__; *( the base a, an integer greater than or equal 2 )* 

n=__;*( any integer, the first 100 integers )* 

If [2≤a≤n-2,If [GCD [a,n]==1,r =PowerMod [a,n-1,n]]; 

If[r≠ 1,n "is composite",n "is Prime"],n "is composite"],"cannot be 

proceed, pick a any integer 2≤a≤n-2"] 

Once this is executed, if the input is a prime number then it will tells you that n is a prime. 
Otherwise it will gives you a message n is a composite. Take notes, there are numbers which also 
identified as prime numbers even though they are not. These numbers are called pseudoprimes. 
This is due again to the Fermat’s theorem. This source code can also identify Carmichael numbers 
(absolute pseudoprimes). Carmichael number is a pseudoprime for all bases a. From the output 
produced by this test, we have tabled list of primes for every base a which are less than 10,000. The 
build-in Mathematica command,   “PrimeQ[ integer]” is used to verify the primality of the test 
output and from here we can identify pseudoprimes, then the command, “PrimePi[ 10,000 ]”, is 



used to compute percentage of pseudoprimes. The smaller the percentage is, the better the ability of 
the test is, as this indicates the accuracy of the test. To look for Carmichael numbers, we just need 
to look out for common pseudoprimes for each base a. Here, we restrict the choice of the base a 
from 2 until 20 only. For a complete output list of pseudoprimes and carmichael numbers refer to 
[6]. 

2.2 Source code of Solovay-Strassen test 
a=__; *( the base a, an integer greater than or equal 2 )* 

n=__; 

If[2≤a≤n-1  OddQ[n]�True,If [GCD[a,n]�1, 

  r=PowerMod[a,(n-1)/2,n]; 

  If [r≠ 1  r≠ n-1, 

   s=JacobiSymbol [a,n]; 

If [ r≠Mod[s,n],n "is Composite",n "is Prime"], 

n "is Prime"],n "is composite"],"cannot be proceed, 

pick 2 ≤ a ≤ n-1"] 

Solovay-Strassen test is usually hard to implement since it involves Jacobi symbol computation but 
still Mathematica managed to compute this. Here the same things happen as the one in Fermat test. 
But here instead of using the Fermat theorem, we have used the Euler theorem to determine 
primality and it also works one way. In this test the pseudoprimes is called Euler pseudoprimes and 
based on the output list, carmichael number does not exist here as there is no common pseudoprime 
for each base a. For a complete output list of Euler pseudoprimes, refer to [6].  
 

2.3   Source Code Of Miller-Rabin Test 

n = __; 
a = __; *( the base a, an integer greater than or equal 2 )* 
k = FactorInteger [n - 1] 
s = k[[1, 2]]; 
r = (n - 1)/(2^s); 
OddQ[r]==True; 

If [EvenQ[n] == True  GCD[a, n]  1, n "is even,Another suitable test 
available",b = PowerMod[a, r, n]; 

If[b  1  b  n - 1, j = 1; While[j s - 1  b  n - 1,  

b = Mod[b^2, n]]];  
If[[b == 1, n "is comp"]; j++]; 
If[b  n - 1, n "is composite", n "is Prime"], n "prime"]] 
 
Writing Miller-Rabin source code is not as easy as the last two tests. In this test pseudoprimes are 
called strong pseudoprimes as the only pseudoprimes exist are those of odd pseudoprimes that 
passes the last two tests. Here the list of pseudoprimes is much shorter, when compared to the 



earlier ones, that means less fake primes and this makes Miller-Rabin test a much better test then 
the last two. In this test, no carmichael number is produced. For a complete list of strong 
pseudoprimes refer to [6]. 
 
2.4   Source Code of Lucas-Lehmer Test 

p=__; 
If [PrimeQ[p]==True, 
S[1]=4; 
n=2^p-1; 
 For [i=1,i<=p-1,i++, 
   S[i+1]= Mod[(S[i])^2-2,n];] 
   

  For [i=1,i p-1,i++,Print["S[",i,"]=",S[i]]]; 
If[S[p-1]==0,n "is a Mersenne Prime", 

 n "is Composite"],"p must be prime number"]  

   This test is a bit different from the other three tests that we have seen earlier. This test is to 
determine whether a given Mersenne number is a Mersenne prime. A Mersenne number is a 
number which is of form 2 1p −  for p integer. If the number 2 1p −  is a prime then p must also be 
prime [Jones]. It looks like, this test prefer an input p to be prime. Even so, that does not guarantee 
that the Mersenne number 2 1p −  produced from this test would also be a Mersenne prime. But 
anyway, we do not have to worry about that as we can input any number and the test will take care 
of the rest. Take notes that, we have adopted the build-in Mathematica function “PrimeQ[p] in the 
source code. The S[i] function in the above source code, computes the congruency task as in the 
Lucas- Lehmer Theorem [7]. 
   Unlike the last three tests, this test is a deterministic test and therefore there is no pseudoprimes listed 
as an output of this test. In other words, this test is reliable in determining the primality of a given number, 
even though  the scope of  the prime might be smaller compared to others. The base point  is, we can be 
100% certain on the output of this test. However this test takes more times compared to the rest. For a 
complete list of Mersenne primes produced from this test, again refer to [6]. 

3   Comparison between Fermat’s Test, Sollovay-Strassen Test, Miller Rabin 

Test and Lucas-Lehmer Test. 
Running through all the source codes indicated in the earlier section, we managed to make lists of 
prime numbers, differentiate pseudoprimes and strong pseudoprimes, as well as carmichael 
numbers. For pseudoprimes and carmichael numbers, we have used some build-in Mathematica 
functions to help us out in determining the exact number of primes, such that we can make 
comparison with the outputs from the source code. Most tables and figures pertaining to 
distributions of pseudoprimes, strong pseudoprimes and carmichael numbers are omitted due to 
space limitation. Comparisons between Fermat test, Solovay-Strassen test, Miller-Rabin test, and 
Lucas-Lehmer test using Mathematica 6.0 are as follows: 
1. There are absolute pseudoprimes (carmichael numbers) in Fermat test, but not on the other tests. 
 



2. Strong Pseudoprimes are fewer than pseudoprime produced by the Fermat and Solovay-Strassen 
test. Recall that Euler pseudoprime produced by Solovay-Strassen test and Strong pseudoprime 
produced by Miller-Rabin test. Mathematica has produced the number of pseudoprimes that exist in 
integers 10,000≤  with base a, 2 20a≤ ≤ . It is learnt from the output that strong pseudoprime is 
fewer than Euler and Fermat pseudoprime. In turn, Euler pseudoprime is fewer than Fermat 
pseudoprime. Mathematica also has enable us to get distribution list of Fermat, Euler and strong 
pseudoprime. Refer to table 3.1 for the list of percentage of pseudoprimes. The smaller the 
percentage the better the test is. 
Table 3.1 : Percentage of Fermat, Euler and strong pseudoprime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Miller-Rabin test is better in testing primality than the other primality tests. It is because the rest 
often wrong in identifying integer n. By the output obtained, Fermat test  
and Solovay-Strassen test have more pseudoprimes than Miller-Rabin test. From the test output list, 
we have deduced that for testing prime numbers, Fermat test has the biggest number of error, while 
Miller-Rabin test has the smallest value of error.  
4. From the Mathematica programming, we managed to compute the error of Miller-Rabin test 
which is less than 1/ 4 , where Fermat and Solovay-Strassen is bigger than 1/ 4 . Now it can be 
determined that the Miller-Rabin test has the least probability of error in identifying primes 

10,000≤ . Fermat and Solovay-Strassen test has the probability of error slightly greater than Miller-
rabin test.  
5. From the figure 3.1, we have put all the three output of probabilistic tests in a chart and compare 
the number of prime produced by each test in the range of the first 500 integers, followed by the 

Pseudoprime (%) 
a 

Fermat  Euler(Solovay‐strassen)        Strong (Miller‐Rabin) 
2  1.79% 1.14% 0.41% 
3  1.87% 0.98% ‐ 
4  3.82% 1.79% 0.81% 
5  1.55% 0.73% ‐ 
6  2.20% 1.38% 0.65% 
7  1.22% 0.98% ‐ 
8  5.70% 3.18% 1.06% 
9  3.99% 1.79% ‐ 
10  2.44% 1.30% 0.49% 
11  2.28% 1.14% ‐ 
12  2.69% 1.38% 0.73% 
13  2.03% 1.14% ‐ 
14  2.60% 1.79% 0.65% 
15  1.55% 0.73% ‐ 
16  5.13% 3.83% 2.93% 
17  2.03% 1.14% ‐ 
18  3.25% 1.95% 1.06% 
19  3.09% 2.04% ‐ 
20  2.60% 1.63% 0.65% 



first 1000 integers until the first 10,000 integers. We have also incorporated the number of prime 
produced using the build-in Mathematica function, PrimePi[ integer], for each specified range, 
where this is considered as the exact number of primes. It appears that, the Miller-Rabin test has the 
nearest number of prime to the  
exact one produced by the build-in Mathematica command. Thus this indicates that Miller-Rabin 
test has the least pseudoprimes compared to the two tests, and the Solovay-Strassen test has less 
pseudoprimes than the pseudoprimes produced by the Fermat test. Therefore, this makes the Miller-
Rabin test superior to Fermat and Solovay tests. It also appears that Solovay- Strassen test is better 
than Fermat test. 
 
6. Lucas-Lehmer test produced the largest prime numbers, where the other tests do not able to do 
that. This is supported by the work done under the GIMPS (great Internet Mersenne Prime Search). 
GIMPS has produced the largest Mersenne prime which is 1243112609 − , and it consists of 
12978189 digits. It was calculated in 2008. Using Mathematica, we have managed to list up 
mersenne primes up to p = 1279, which is the mersenne prime 121279 −   which consists of 392 
digits. Since this test is a deterministic test, so the issue of pseudoprime and carmichael number 
does not exist. Therefore the surety of this test is 100%. Nevertheless this test is estimated to take 
longer times to compute a bigger number when compared to the other three tests. 
 

 
Figure 3.1 the number of prime <10,001 by Fermat, Solovay-Strassen, and Miller-Rabin test comparing to 

exact number prime using MATHEMATICA 6.0. 
4 Conclusions 

Using Mathematica 6.0 for the primality tests, we have managed to conduct technical tasks and 
compare the ability of the four primality tests discussed earlier. These technical tasks were usually 
done using programming languages which take very long time to do the source code. For example 
programming language C or C++ and other programming languages that requires deep 
understanding and time consuming.  

Technically speaking, using Mathematica, we have managed to see that the Miller-Rabin 
primality test is better than Fermat and Solovay-Strassen probabilistic primality test as it produces 
less pseudoprimes when compare to the two of them. As for Lucas-Lehmer test, since it is a 
deterministic test, so it is 100% certain that no mistakes on determining the primality of a number, 



nevertheless this test is slower than the others. However, credit has to be given to contribution of 
Lucas-Lehmer test, since its ability to produce the largest prime numbers. Now, we can actually 
forecast that the same trend could also be seen when a much higher level of programming language 
is being used to carry out these four primality tests. This is to say that, we do not need to spend so 
much time and effort learning programming languages that takes ages to produce the same results. 

This project has actually taken an advantage of the technology offered by the Mathematica 
software. Without this software, we might not be able to produce such results, which is very fast in 
terms of producing lists of meaningful output, tabulates and interprets output data .The 
Mathematica source codes together with some build-in functions used in this project are suitable to 
be used in teaching and learning processes, especially in teaching number theory at the university 
level or another area that need contribution of them.  
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