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Abstract: As Cabri 3D does not contain the tool “net of a cone”, a middle school teacher complains to me because she 
needed it to help her students to understand that the net of a cone is not always half a disk. I have explored this problem 
and present a process of modelling the (un)folding of a cone. This result allows to open a window on new problems that 
can be explored: some invariants about the net of a cone and some 3D curves obtained when unfolding the cone. By the 
way we enrich the cooperation between a researcher and a teacher. Some of the problems explored thanks to my model 
can be posed to the students of the middle school teacher and enhance their experimental practice of mathematics using 
ICT 
 
1. Introduction 
 
1.1. First approach  
As a circle can be approximated with a sequence of regular polygons inscribed in this circle, a cone 
can be approximated with a sequence of regular pyramids inscribed in this cone. As Cabri 3D 
returns the net of any polyhedron and as this net can be folded or unfolded, this net could have been 
a good tool to provide to the middle school teacher a response to her pedagogical problem. Helas, 
the net provided by Cabri 3D for such a pyramid is not the one expected because  it does not unfold 
around the summit of the pyramid (figure 1 on the right). The one expected, obtained after cutting 
the cone along a generatrix would have been like in figure 1 on the left. 
 

 
Figure 1 

 
1.2. Second approach  
We still want to use a regular pyramid as a model for a cone. This model will be all the more 
accurate than the number of its lateral faces is big. Let us choose 2n as  the number of the lateral 
faces (which are isosceles triangles) of the pyramid we use for modelling  a cone. We will use now 
transformations in order to open our pyramid like two wings from its closed initial position to the 
very last one which will be the opened and flat position. 



Crucial remark: it is possible to obtain all the faces of the 2n-pyramid in knowing only the first one 
and in using reflections with respect to planes we will specify. So we can get an algorithm of 
construction of the unfold wings modelling the unfolding of the pyramid. 
Description of this algorithm (figure 2): in this figure B1, B2,…, Bn+1, B’n,…, B’2, B1 is the 
sequence of points defining a regular 2n-polygon inscribed in the circle which is the base of our 
initial cone. Given only points B1, B2 and S, that is to say the initial isosceles triangle defining our 
regular 2n-pyramid (S is its summit), here is the process of construction of this pyramid that will be 
used later: 
Construct triangle B1B’2S as the symmetric of triangle B1B2S with respect to the xB1z plane 
Construct triangle B2B3S as the symmetric of triangle B1B’2S with respect to the perpendicular 
bisector plane between B1 and B2. 
If triangle Bk-1BkS is constructed, the next one BkBk+1S is obtained as the symmetric of the triangle 
Bk-2Bk-1S with respect to the perpendicular bisector plane between Bk-1 and Bk. 
When all triangles between B1B2S and BnBn+1S are constructed, their symmetric with respect to the 
xB1z plane will give all the missing triangles between B1B’2S and B’nB’n+1S (Bn+1 = B’n+1). 
 

 
Figure 2 

 
2. Un(folding) a 2n-regular pyramid 
 
2.1. Onto a tangent plane of the initial cone 
-The cone is cut along SBn+1. The plane on which we will unfold the cone (really the pyramid 
modelling this cone) is the plane defined by (SB1) and the y axis (figure 3 on the left). In order to 
use the previous algorithm, let us construct the first face SB1B2 of our 2n-pyramid modelling our 
cone. Let us display an integer for n and the value of 360°/n. B2 is the image of point B1 with the 
rotation around (SB) having the displayed number 360°/n as an angle (figure 3 on the middle). As 
the value of n can be changed at any moment, the angle of the rotation can be decreased as much as 
we want. 
-The trick of this construction is the choice of the way to “unfold” the triangle SB1B2 from its initial 
position to a position on the tangent plane. So we create a circle having SB1 as an axis and passing 

through B2. This circle cuts the tangent plane on C2. On this circle we create the arc �2 2B C  and a 

point M2 on this arc (figure 3 on the middle). The triangle SB1M2 is the initial triangle on which we 
will apply our previous algorithm to obtain the unfolded 2n-pyramid that can be dragged in 
dragging point M2 from B2 to C2 (figure 3 on the right). 



 
Figure3 

 
The chosen value of n in figure 3 (n = 3) is not big enough to obtain an acceptable model, but it will 
help us to realise the constructions given by the algorithm. 
-Another technical problem needs to be solved: when we will increase the value of n to 12 to get a 
net of a 24-regular pyramid, it will be impossible to grab point M2 in order to drag it along the arc 
�

2 2B C . The trick is to create a slider, the segment [S1S2]: the motion of a point P along this segment 

will command the motion of point M2 along this tiny arc with a great accuracy. The technical work 

on Cabri 3D is quite simple: calculate and display length(�2 2B C )*S1P/S1S2. Transfer this 

measurement on the last circle constructed from point B2: choose the orientation of this transfer in 

order to obtain a point belonging to the arc �2 2B C ; at last redefine point M2 to be this point. 

Therefore, dragging point P along [S1S2] from S1 to S2 will generate a continuous motion of point 

M2 on arc �2 2B C  from B2 to C2.  

-Applying the algorithm to triangle SB1M2: 
First  (figure 4 on the left), construct triangle SB1M’ 2 as the symmetric of triangle SB1M2 with 
respect to the xB1z plane; hide the maximum of objects in order to facilitate the next stages of the 
algorithm.  
Second (figure 4 on the middle), construct triangleSM2M3 as the symmetric of triangle SB1M’ 2 with 
respect to the perpendicular bisector of points B1 and M2. Iterate this process in order to obtain the 
sequence B1, M1, M2, M3…, Mn+1. Stop when you have got M13 even if the value displayed for n is 
not 12 (we will change this value later).  
Third  (figure 4 on the right), construct the symmetric triangles of these ones with respect to the 
xB1z plane. We have got a model of a folding net commanded by point P. Figure 3 does not display 
all the 24 triangles in order to be more readable and so, more understandable. 
 

 
Figure 4 



 
At last: after having constructed the 24 triangles, let us change the value of n onto 12; commanded 
by point P, we have realised for our middle school teacher a model of the net of a cone that can be 
folded and unfolded (figure 5 on the left and on the middle). The unfolded one will belong to the 
tangent plane to the cone along SB1 (figure 5 on the right). This will be improved in the next 
paragraph in order to obtain the unfolded net on the vertical yB1z plane. 
 

 
Figure 5 

 
A last improvement in the design (figure 6) of this file: until now, we see the net of a pyramid and 
not the net of a cone. To hide this default, we choose an empty border style and an empty point style 
for each constructed triangle. We can also delete the option “display object hidden parts” in the 
Window options, so the objects will not be transparent. 

 

 
Figure 6 

 
2.2. Onto a parallel plane to the vertical axis of the cone 
Let us create a circle around the y axis passing through S. It cuts the upper part of the z axis in T. 
Let us create an arc on this circle from S to T and a point s on this arc. We transform now all the 
triangles we have constructed with the rotation around the y axis mapping point S towards to s 
(figure 7 on the left and on the middle). To finish, we hide the model obtained in the previous 
paragraph (figure 7 on the right).  
 

 
Figure 7 



 
The border style of all triangles can be changed like we did before. But we can add the border of the 
cone (figure 6 on the left). The summit s of our new model can be dragged from S to T and so the 
net can be unfolded on the yB1z plane when P reaches S2 (figure 8 on the middle). To return to the 
initial and given cone, s must be on S and P must be on S1 (figure 8 on the right). 

 

 
Figure 8 

 
3. Some explorations with this model 
 
3.1. When the unfolded cone is half a disk (figure 9 on the left)  
Experiments and conjecture: we display the measurements in degrees of ∠ESB1 and ∠F’TF; we 
change the parameters of the initial cone in dragging either B to enlarge the radius of the basis circle 
or S to change the height of the cone until ∠F’TF reaches 180°: we observe that when this case 
occurs, ∠ESB1 is displayed as 60°. For the other positions of B and S, we get the same observation. 
So we can plausibly conjecture that the only cones that can be unfolded onto half a disk are cones 
such as the top angle is 60°. 
 

 
Figure 9 

 

Formal proof (figure 9 on the left): if SB = h and BB1 = r, therefore SB1 = ² ²r h+ ; having a cone 

unfolding in half a disk means that ∠F’TF= π rad or 
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and to ∠BSB1= 30° or ∠ESB1= 60°.That is the end of this proof. This proof that can be discovered 
by a french student at the end of the middle school after the experimental work leading to the 
conjecture if the model of the cone is available. 
 
 



3.2. Playing with parameters can lead to discovery (figure 9 on the right)  
Experiments and conjecture: we know that very often in geometry as well in algebra, a good way to 
explore a problem is to transform a constant into a variable. Let us change the position of B and S 
such as BB1 becomes very small (B approaches B1) and SB as big as possible (S is lifted up). Let us 

observe the values taken by the ratio 
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have proven that the ration between the angle of the unfolded cone and the top angle of the cone 

admits π as a limit when 
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goes to infinity or when 
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3.3. Visualizing a property of the basis of the unfolded cone (figure 10) 
If we create an arc from F’ to F passing through B1, we can observe that this arc seems to be 
superimposed to the basis of the unfolded cone (figure 10 on the left). It is confirmed by the 
construction of the plane containing these three points: this plane seems always to contain this basis 
(figure 10 on the right). The proof is easy (properties of the reflections) 
 

 
Figure 10 

 
4. Some curves generated with our model 
 
4.1. Trajectories of points F and F’ during the unfolding process (figure 11)  
We unfold the cone when s is on S; we obtain two curves in 3D connected in E after activating the 
trajectory of F and F’ and dragging point P along the segment [S1S2] (figure 11 on the left). We can 
check that these curves are naturally included in the sphere centred in S with SE as a radius (figure 
11 on the right). 
 



 
Figure 11 

 
In figure 12 we unfold the cone when s is on T. The trajectories of F and F’ are more than the 
previous ones rotated around the y axis (figure 12 on the left). In reality, we have explored another 
situation: we have redefined point P on the line (S1S2), so we can continue to unfold mathematically 
our cone behind the yB1z plane and the trajectories of F and F’ are extended. We have displayed 
their projections on the xB1y plane to obtain a curve which will be interesting to investigate (figure 
12 on the right). It is another problem for another paper. 
 

 
Figure 12 

 
4.2. Volume of the convex hull of the unfolded cone (figure 13) 
 
The tool “Convex polyhedron” in Cabri 3D allows us to construct the convex hull of the unfolded 
pyramid (figure 13 on the left). We can now investigate the variations of the volume of this hull 
with respect to the variable S1P/S1S2. Using the tools “measurement transfer” and “trajectory” , we 
display the curve of this function (figure 13 on the middle). We observe that this volume increase 
from the volume of the initial cone to a maximum and decrease until 0 when the unfolding process  
is finished. If we increase the number of digits of the displayed numbers to 4, we can investigate 
accurately for what value of S1P/S1S2 we reach this maximum (one particular case is shown in 
figure 13 on the right). By now, I haven’t found any interesting result even when I tried to find a 

relation between this maximum and the value of 
r

h
. In the next paragraph, I give nevertheless the 

function explaining the volume of this convex hull. The important thing in this exploration is that 



Cabri allows the production of data and we know that the production of data is the beginning of an 
experiment whose  role is to lead to a conjecture. A good research can lead to a discovery but it can 
open a window on new problems to explore. 
 

 
Figure 13 

 
4.3.Volume of the convex hull of the unfolded cone (figure 13) 
 
The result obtained in 3.3. leads to another model of the (un)folding of the cone (figure 14 on the 
left). This new model will help us to find the function giving the volume of the previous convex 
hull. The new way of unfolding the cone is to move the segment sB1 around the y axis and keep the 
basis in contact with the xOy plane. We know that this contact is an arc included in the circle 
intersection between the xOy plane and the sphere centred in s and passing through B1. The arc is 
defined with a measurement transfer of π.r on this circle (from B1). 
A pedagogical consequence: we can create an experiment with middle school students with paper 
and pencil. We can propose them to start with a cone created with its net in paper (posed on a table), 
to flatten this net like in figure 14 (on the left), to draw the curve in contact with the table and to 
conjecture its nature (it will be an arc included in a circle centred on the point which is the 
projection on the table of the point s). 
The volume of the convex hull will be given by the volume of a part of a cone, plus or minus the 
volume of a prism. The two possibilities are displayed in figure 14 (on the middle and on the right). 
 

 
Figure 14 

 
On figure 15 (on the left), we choose as a variable the distance B1T = t ; t varies between r and 
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Figure 15 

 
Now we can understand that it is difficult to find the value of t such as V’(t) = 0. The formula of 
V’( t) obtained with the CAS application of TI NSpire is displayed below in the figure 15.  
 

 
Figure 16 

 
But the same CAS cannot solve the equation V’(t) = 0. 
 
We have also used the Graphs & Geometry application of TI NSpire to visualize the curve of the 
function V (figure 15 on the right) for some particular values of h (h = 2) and r (r = 1). This curve 
validates the conjecture we did about the variations of function V. It would be interesting to 
continue the exploration in changing the values of h and r with a slider which is possible in this 
environment to try to discover some relationship between these values and the maximum of the 
volume of the convex hull. It could be the starting point of another research for another paper. 
 



5. Conclusion 
 
As a response to the needs of a middle school teacher, we have modelled the (un)folding of a cone 
with the (un)folding of a 2n-regular pyramid (n =12 in this paper) in Cabri 3D; we have used some 
mathematical tricks allowed especially by the tools “Rotation”, “Perpendicular Bisector” and 
“Reflection in a Plane” in Cabri 3D. The improvement of the design of the model has led to a 
realistic tool for our middle school teacher. We have shown how she could use it to convince her 
students that the net of a cone is not necessarily half a disk. We have used it to explore new 
problems in relation to this net and solve some of them after conjecturing the results dynamically. 
We have explored a problem related to the volume of the convex hull of our unfolded net: we 
haven’t solved this problem but the importance of this unsuccessful process is to show that a 
problem is a good problem not because we solve it but often when this problem opens a windows 
on new interesting problems. Thanks to this research we have created a second modeling of the 
(un)folding of a cone (in 4.3. with n = 24) and also an experimental activity for the middle school 
students using paper and pencil. This paper aims to show the power of experimentation in 
mathematics, especially when experiments are conducted with ICT, here with Cabri 3D. 
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