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Abstract: World over, Computer Algebra Systems (CAS) have greatly influenced mathematics teaching and learning.  The 
last two decades have witnessed extensive research in this area and Mathematics educators have been investigating various 
ways of integrating CAS with classroom teaching to develop a balanced curriculum, which lays less emphasis on paper-
pencil techniques and focuses more on understanding concepts. Computer Algebra Systems such as Mathematica, Maple, 
Derive etc. provide powerful dynamic working environments. However the availability of CAS in the form of handheld 
calculators such as the Casio Class Pad 300 has brought the power of visualization and exploration right into the hands of 
the student.  
This paper describes a research study conducted with 40 students of year 11 in a traditional teaching environment where the 
prescribed curriculum emphasizes on mastery of paper-pencil skills and using technology is not a general practice. Two 
exploratory lab modules in calculus, one based on understanding of limits and the other on application of derivatives to 
optimization problems, have been discussed. These modules utilize the graphic, numeric and symbolic manipulation 
capabilities of the Class Pad 300 to facilitate conceptual understanding.  
The study revealed that CAS provided opportunities for resequencing concepts and skills thus making it possible to teach 
concepts and applications before manipulative skills. The easy graphing capability of the Class Pad lead to a ‘geometric’ 
approach, which allowed the students to visualize and explore concepts. The study also showed that CAS led to the 
constructivist approach where the learning environment was transformed from the traditional teacher-centered classroom to 
a student-centered laboratory where the students discovered mathematical ideas for themselves. 
 
 
1. Introduction 
 
     The past two decades have witnessed extensive research related to the use of Computer Algebra 
Systems (CAS) in mathematics instruction ([1],[3] – [7]). The primary concern of mathematics 
educators has been to study the relevance of paper-pencil skills in an environment equipped with CAS 
and reforming the curriculum so as to make appropriate use of this technology [10]. The mid-1980s 
witnessed the Calculus Reform Movement when researchers began to focus on the implications of 
CAS in the calculus classroom. They claimed that CAS could improve conceptual understanding, 
enable students to explore more complicated problems, reduce the burden of tedious calculations, 
improve exercise and test questions and overcome limitations imposed by poor algebraic skills [11]. 
Their graphic, numeric and symbolic manipulation capabilities allow students to visualize and explore 
concepts, make and test hypotheses and discover mathematics truths for themselves [2]. With CAS 
now available in handheld form through devices such as the Casio Class Pad 300, the power of 
visualization and exploration has been brought to the palm of the hand. These devices allow students to 
explore mathematical concepts graphically, numerically, symbolically and geometrically [9]. This 
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paper describes a research study in which 40 students of year 11 underwent a CAS enabled calculus 
course, which integrated the Class Pad 300. 
 
 
2. Educational Setting and Background Knowledge of Students 
 
     The research study described in this paper was conducted at the Mathematics Laboratory & 
Technology Centre based at the senior secondary school where the author is a practicing teacher. The 
school prescribes the CBSE (Central Board of Secondary Education) curriculum, which is the central 
board of education in India. In the classroom Mathematics is taught in the traditional manner using 
chalk and board and using technology is not a general practice. The Mathematics Laboratory & 
Technology Centre was set up with the primary objective of supplementing classroom teaching with 
innovative teaching methods and technologies. Under the leadership of the author the Centre conducts 
various activities, projects and supplementary courses for students from year 6 to year 12 as well as 
professional development programs for teachers of schools across the country. In most of these courses 
technology plays a vital role. The Centre is equipped with computer algebra systems such as 
Mathematica, dynamic geometry software such as Geometer’s Sketchpad and graphics calculators 
(Casio CFX 9850 GB plus). It has recently acquired the Class Pad 300 along with the Class Pad 
Manager software.  

This paper describes two lab modules, which were a part of an introductory calculus course 
conducted by the Centre. The course was designed to develop conceptual understanding in calculus 
and the vehicle for exploration was selected as the Class Pad 300. 40 students of year 11 opted for this 
course (this was in addition to their regular classroom teaching). Though these students had been 
taught some calculus in the traditional manner they were familiar with the Casio CFX 9850 GB plus 
graphics calculator from a pre-calculus course in their previous year. The objective of the lab modules 
described here, was to enable the students to visualize, explore and experiment with the concepts using 
the Class Pad thus discovering mathematical facts for themselves. Worksheets were specially designed 
to guide them in their exploration. Each module was conducted in the lab where students worked in 
pairs. Since only 10 Class Pad sets were available, each pair of students was either given a handset or 
was allowed access to the Class Pad manager software through a computer. They were instructed to 
sketch graphs, write observations and perform their calculations on the worksheets. These worksheets 
along with interview sessions with students provided the data on which this research study has been 
based.  
 
 
3. Lab Module 1: Exploring the Limit of a Function 
     In the prescribed curriculum the emphasis is laid on developing manipulative skills rather than on 
the conceptual understanding of the limit of a function. Students are expected to gain mastery of 
applying the appropriate result or method (such as substitution, factorization, rationalization and the 
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a function. The 40 students who were a part of this research study had acquired some of these 
manipulative skills in their regular classes. The worksheet for this module was designed so as to enable 
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them to graphically explore and visualize the concept of the limit of a function before perfecting their 
paper-pencil skills.  
Aim of Lab Module 

• To develop an intuitive understanding of the limit of a function. 
• To evaluate the limit of a function graphically, numerically and algebraically using the CAS 

features of the Class Pad and finally verifying the result by hand. 
• Understanding the conditions under which the limit of a function exists. 

Method and Teaching Sequence 
The worksheet given to the students required them to evaluate the following limits and sketch the 
graphs in the space provided. 
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The following instructions were given to guide the students in their exploration. 
Step 1: Enter each function in the Main Application of the Menu. 
Step 2: Tap the Graph icon to get the graph screen, select and drag the function to the graph window. 
Incase the graph is not visible, tap the View window icon and adjust the range on the x and y axes. The 
range along the x-axis may be chosen as a small interval around the point at which the limit is to be 
evaluated. 
Step 3: Use the Trace option to trace a cursor along the graph and observe the value that y approaches 
as x approaches the required point. 
Step 4: Tap the Table Input icon and specify the Start, End and Step values to generate a table of 
values of the function. Generate various tables each time reducing the step size and taking note of the 
value approached by the function (that is y-value) as x comes closer to the given point from either side. 
Step 5: Evaluate the limit of the function by using Class Pad’s built-in limit function (lim) from the 
Action-Calculation menu. (The syntax is lim(function,variable,value). 
Step 6: Verify your answers manually in problems (ii), (iv) and (vii).  
The solution of problem (i) was demonstrated by the author using the Class Pad Manager software 
interface on the whiteboard.       
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     (i)           (ii)   (iii)        (iv) 

Figure 1:   Screen shots of the Class Pad 300 for visualizing that 
2

2

4lim
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x
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−
−

= 4. The graphical output 

(i) shows a gap while the tabular representations (ii) and (iii) display ‘Error’ at x = 2 indicating that the 
function is not defined at x = 2. Tracing the cursor along the graph and the tables indicate that the 
function approaches 4 from either side as x approaches 2 and the built-in lim function (iv) confirms 
that the limit is 4.  
 
Students’ Explorations  
The following screen shots throw light on how students developed the concept of limit by solving the 
problems numerically and graphically. 
 

         
      (i)            (ii)      (iii)            (iv) 
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   (v)            (vi)                  (vii)            (viii) 

                                                        
(ix) (x) 
     

Figure 2: Screen shots of Class Pad 300 (as used by the students) to evaluate the limits given in the 
worksheet. 
 
The graphical output for (ii) (Fig 2(i)) indicates that the limit is around 2.23. The exact answer 9/4 is 
obtained by using the lim function (Fig 2(ii)). Students were asked to evaluate this manually by 
eliminating the common factor (x – 2) from the numerator and denominator. For (iii) and (iv) the 

graphical as well as tabular outputs (Fig 2(iii),(iv),(v)) indicate that functions the sin x
x

 and 2

1 cos x
x

−  

are not defined at x = 0 but approach 1 and ½ respectively as x approaches 0 from either side. When 
asked to evaluate (iv) manually, students approached the problem in two ways. In the first method they 
rationalized the numerator by multiplying and dividing the expression by (1 + cosx). Thus 
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they directly replaced (1 – cosx) by 22sin
2
x . The manual calculation was

2
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/ 4 4 4 2x
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= × = × × = . The graph for (v) (Fig 2(vi)) show two branches of a hyperbola. 

The students concluded that the limit of this function does not exist at x = 2, since the function values 
approach +∝ and as x approaches 2 from the right, and -∝ as x approaches 2 from the left. Here the left 

hand and right hand limits are not equal. The plot of 1sin
x

 (Fig 2(viii)) and table of values (Fig 2 (vii)) 

indicate quick oscillations near the origin between –1 and 1, which remain even after ‘zooming in’ 
around the origin. Students observed that oscillations continue to exist no matter how close one gets to 
the origin. This helped to highlight another situation in which the limit does not exist. The graph and 
table for problem (vii) (Fig 2(ix)) clearly indicate that the limit of the function is 1. When asked to 
work this out manually, students rationalized the numerator before evaluating the limit. Problem (viii) 
was given to highlight the fact that a function may approach a fixed value as x →∞  i.e as x becomes 
very large. The x-axis range was chosen as 0 to 40 and the function value converges to 0, which is the 
limit.  
The graphical outputs and tabular representations helped to emphasize the fact that the lim

x a→
f(x), is not 

the value of the function at x = a, but the value f(x) approaches, as x approaches a through values less 
than a and greater than a. The concepts of left hand limit and the right hand limit of a function and the 
idea that the limit of a function at a point exists only when the left hand and right hand limits are equal 
were reinforced using the above examples. The problems helped to emphasize that the limit of a 
function may exist at a point even if the function is not defined at that point and also to highlight 
situations when the limit does not exist.  
Students recorded their graphical observations and manual calculations on their worksheets.  Based on 
these worksheets it may be concluded that this module led to a physical or graphical understanding of 
limits, which is difficult to achieve in a traditional chalk-board class. The graphical, numeric and CAS 
features of the Class Pad provided the tools for exploration and the ‘concepts before skills’ approach 
ensured that the students grasped the concept before trying out the problems by hand. Since the 
students were made to solve the problems manually after evaluating the limits graphically and 
numerically there was no compromise on ‘by-hand’ skills. 
 
 
4. Lab Module 2: Application to Optimization Problems 
Optimization problems form an important part of the traditional calculus course. In the typical 
problems the student is expected to formulate the problem by defining the function f(x) which is to be 
maximized or minimized, identify its domain, and use the second derivative test to find the value of x 
which makes the function as large or as small as possible, whichever is appropriate. The student is 
expected to solve the entire problem manually and is tested on his ability to apply the method to obtain 
the answer. Before going through this lab module the students had undergone similar modules to 
understand the concept of the derivative and finding extrema of functions using the first and second 
derivative tests.   
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Aim of Lab Module 
• To formulate the optimization problem by defining the function (and its domain) to be 

optimized. 
• To use Class Pad’s CAS features for applying the second derivative test and finding the 

maximum or minimum value of the function. 
• To obtain a graphical or geometrical understanding of the problem (which is completely 

missing in the traditional curriculum). 
 
Method and Teaching Sequence  
Students were given five problems in a worksheet (only two of which will be discussed here) and were 
instructed to explore them in the following manner. 
Step 1: Read the problem carefully, define the function f(x) to be maximized or minimized and identify 
its domain. Enter this function in the Main Application of the Class Pad Menu. 
Step 2:  Use the diff function to find f’(x). The syntax is diff(function,variable). 
Step 3:  Use the solve function to solve the equation f’(x) = 0 to find the critical points or ‘candidates’ 
for maxima or minima. We shall refer to these as x0. 
Step 4: Use diff function to find f ’’(x) and substitute the x0 values obtained in step 3. If f ’’(x0) <0 then 
x0 is a point of maxima.  If f ’’(x0) >0 then x0 is a point of minima.  
Step 5: Use the fMax or fMin functions to find the maximum or minimum values of f(x). The syntax is 
fMax(function, variable, variable range). 
Step 6: Tap the Graph icon, drag f(x) on to the graph screen and use the View window option to graph 
f(x). On the same window graph f’(x), identify the critical points of f(x) and the corresponding 
function values and verify the answer obtained in step 5. 
Step 7: After obtaining the solution using Class Pad, solve the problem manually and convince 
yourself of the answer.  
Students were instructed to write their solutions, observations and sketch the graphs on their 
worksheets. They worked in pairs while exploring the problem on Class Pad and were interviewed as 
they worked. An analysis of their explorations was done based on their responses as well as the 
observations recorded by them on the worksheets. 
 
Optimization Problem 1: A rectangular sheet of paper has dimensions 15 cm by 8 cm. Square pieces 
are to be cut from all four corners and the remaining sheet to be folded so as to form an open box. 
What should be the length of the square to be cut out so that the volume of the box is maximum? 
 
Students’ Explorations 
32 students were able to define the volume of the box (without any assistance) as V(x) = x(15 – 2x)(8 – 
2x) where x is the length of the squares cut from the corners. For the remaining students a figure had to 
be drawn before they could write the expression. About 12 to 14 students needed help in understanding 
that the domain of the function is (0,4). Following the steps given above all students were able to 
obtain the critical points as 5/3 and 6 (Fig 3(i)) but only 34 students figured that x = 6 was 
unacceptable since it is not within the domain of V(x). All students confirmed the 5/3 is a point of 

maxima (since V’’(5/3) = -52 <0) and that the maximum volume of the box is 2450
27

= 90.74 cm3 (this 

was obtained using the approx function (Fig 3(ii))). Almost all students faced a problem while 
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selecting the appropriate View window for graphing V(x). After a few trials (keeping in mind that 
ymax must exceed 90.74) V(x) was plotted (Fig 3(iii)). Most students concluded that V(x) is a cubic 
function and hence V’(x), a quadratic, must be represented by a parabola. They adjusted the x-range 
(Fig 3(iv)),used Analysis-> G-Solve->fMax to confirm that the maximum volume is 90.74 cm3 (Fig 
3(v)). After plotting V(x) and V’(x) on the same graph they were able to visualize that the critical 
points (5/3 and 6) are the roots of V’(x) i.e the x-values where V’(x) cuts the x-axis and that  
corresponding to x = 5/3 (the only acceptable point) V(x) has the maximum value 90.7. 
 

                                  
                (i)          (ii)                       (iii) 
 

                                               
                                         (iv)             (v) 
 
Figure 3: Screen shots of Class Pad 300 (as used by the students) to explore optimization problem 1. 
 
Optimization Problem 2: A wire of length 28 meters is cut into two pieces. One is bent into a square 
and the other into a circle. How long should the pieces be so that the combined area of the square and 
circle is minimum? 
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Students’ Explorations 
All students approached the problem assuming that the pieces are of length x meters and (28 – x) 
meters respectively. 28 students assumed that the piece of length x cm is bent into a circle (of radius r) 
and the other into a square (of side a). The combined area of the two figures, A(x) was calculated as 

2 2(28 )
4 16
x x
π

−
+ . (This was done manually as follows: 2πr = x ⇒ r = 

2
x
π

 and 4a = 28 – x ⇒ a = 

28
4

x− . Thus A(x) = πr2 + a2 = 
2 2(28 )

4 16
x x
π

−
+ ). Students figured that the domain of A(x) is [0,28] 

since x can be equal to 0. The solution obtained by them is shown in the screen shots given below (Fig 

4 (i),(ii)). They used the approx function of Class Pad to approximate symbolic solution 28
4

x π
π

=
+

to 

12.32 and then used the fMin function to find the minimum value of A(x). Class Pad returned a 

complicated expression which was simplified to 196
4π +

using the simplify function. Students tried 

various View window options to graph A(x) (Fig 4 (iii)) and its derivative (Fig 4 (iv)). They 
recognized that the A(x) is a quadratic expression and its derivative is linear (a straight line) which cuts 
the x axis at 12.32, the only critical point. Finally they concluded that the minimum area (of the square 
and circle) is 27.44 m2 and the lengths of the pieces are 12.32 meters and 15.68 meters respectively.  
 

   
    (i)             (ii)       (iii)    (iv)  
Figure 4: Screen shots of Class Pad 300 (as used by the students) to explore optimization problem 2 
assuming that the piece of length x meters is bent into a circle. 
 
Alternatively 12 students approached the problem with the assumption that the piece of length x meters 
is bent into a square (of side a) and the other into a circle (of radius r). The combined area A(x) in this 

case is 
2 2(28 )

16 4
x x

π
−

+ . The value of x which minimizes the combined area was found to be 
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112
4

x
π

=
+

or 15.68 cm (Fig 5). The graphs obtained were similar to the previous case. The students 

compared the solutions obtained by the two approaches.  
For both optimization problems, while Class Pad took over the calculations the students focused on the 
application of the problems and understanding them graphically. They related the graphs of the first 
and second derivatives to the maxima or minima of the original function and the critical points. 
Following this, they manually verified the Class Pad solutions thus focusing on the paper-pencil skills 
and techniques such as calculating the derivatives, solving the equations to find the critical points and 
evaluating the maximum or minimum value of the function. They were required to show their working 
on their worksheets. It may be pointed out here that in the traditional curriculum the emphasis is on 
applying techniques and testing ‘procedural knowledge’. Almost all the students in the research study 
had reasonably good ‘by-hand’skills.   
 

                                     
               (i)            (ii)                 (iii) 
 
Figure 5: Screen shots of Class Pad 300 (as used by the students) to explore optimization problem 2 
assuming that the piece of length x meters is bent into a square. 
  
Students Feedback/Results.  
All 40 students who were a part of the research study were to appear in the traditional examinations at 
the end of the academic session where their manipulative skills would be tested. It was therefore 
imperative to monitor the impact of the Class Pad on their paper-pencil skills and to compare their 
performance with a group of students who had been taught the same topics in a traditional manner 
without any technology intervention. A group of 35 students (whose performance level was similar to 
the Class Pad group of 40 students, that is the mean marks of both groups varied between 75% and 
85% in all tests and exams conducted in year 10) was selected and a 40 marks test was administered to 
both groups. All problems were to be solved by hand and access to Class Pad or any other software 
was not allowed. The results of the test revealed that the Class Pad group had a mean score of 31.48 
while the traditional class had a mean score of 30.2. Table 1 provides an analysis of the performance of 
both groups giving the average scores in each exercise as well as the number and nature of questions 
posed in each topic. The scores are comparable for both groups for all exercises. The Class Pad group 
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performed better than the traditional group in exercises 1, 3 and 4 whereas the traditional group 
performed better in exercise 2. A closer analysis of the answer scripts revealed that the Class Pad 
group was able to score better in exercises 3 and 4 since they were able to provide better and more 
accurate graphical interpretations.  However in exercise 2 the traditional group seemed to have better 
computational skills than the Class Pad group. From the results it appears that the Class Pad group was 
not disadvantaged in comparison with their traditional counterparts as far as computational skills are 
concerned. 
 

Exercise Topic Nature of exercise Marks 
allotted to 
exercise 

Class 
Pad 

Group 

Traditional 
Group 

1 Limits There were 4 problems and 
students were expected to 
evaluate the limits using 

substitution, factorization, 
rationalization and standard 

results. 

 
8 

(2 marks per 
problem) 

 
6.48 

 
6.1 

2 Differentiation There were 4 problems and 
students were to be tested on 

using sum, difference, 
product, quotient and chain 
rules to evaluate derivatives 

of functions 

 
12 

(3 marks per 
problem) 

 
8.52 

 
8.8 

3 Application of 
Derivatives to 

Lagranges 
Mean Value 

Theorem/ 
Rolles 

Theorem 

This exercise (consisting of 
2 parts) was based on 

verifying LMVT and Rolles 
theorem for functions on 
given intervals. Students 

were also expected to 
interpret the results 

graphically.  

8 
(4 marks for 

each part with 
1 mark 

allotted for 
graphical 

interpretation) 

 
 
 

6.28 

 
 
 
6 

4 Application of 
derivatives to 
optimization 

problems 

Two problems were posed  
(one on maximizing and the 

other on minimizing the 
objective function). The 
students were required to 
solve the entire problem 
manually by finding the 

point of maxima (or 
minima) along with the 

maximum (or minimum) 
value of the function. 

 
12 

(6 marks per 
problem with 

one mark 
allotted for 
graphical 

interpretation) 

 
 
 

10.2 

 
 
 

9.3 

Total Average Score 31.48 30.2 
Table 1: Analysis of performances of the Class Pad and Traditional groups on a calculus test. 
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5. Concluding Discussion 
This paper describes two lab modules in calculus, which were part of a research study to integrate CAS 
with traditional teaching, tried out with 40 students of year 11. Through regular classroom teaching the 
students were familiar with some basic concepts on which the labs were based and had acquired some 
paper – pencil methods. The lab modules were designed so as to enable the students to explore the 
concepts on their own before gaining mastery of the paper-pencil methods. They were given access to 
the Casio Class Pad 300 and were allowed to explore the problems in the worksheets using the graphic, 
numeric and symbolic manipulation capabilities of the device. After the exploration, they were 
required to record the solutions and verify the same by hand. The students underwent a calculus test in 
which they were not allowed access to technology and their scores were compared with a group of 
students of similar ability who were taught the same topics in a traditional manner. Assessment of 
students’ worksheets, interviews conducted at the end of the modules and analysis of test scores helped 
to corroborate the following published research findings related to the use of CAS for teaching and 
learning mathematics. 

(a) Exploration through CAS led to a deeper understanding of concepts. The Class Pad 
allowed students to explore the concepts through graphing, creating tables and trying 
alternative solution methods. Each student made his own observations and recorded them in his 
worksheet. These modules highlight ‘learning by discovery’. 

(b) Resequencing of concepts and skills. The Class Pad allowed the students to focus on concepts 
and applications before practicing the paper-pencil methods. They grasped the mathematical 
ideas before gaining mastery of the manipulative skills.  

(c) Geometric approach to learning calculus. Since the Class Pad can instantly produce accurate 
graphs of functions the problems in the modules could be approached geometrically. The 
emphasis was on developing graphical understanding of concepts by plotting graphs, varying 
the view window, using the TRACE option or playing around with an animation to actually 
visualize what is happening. 

(d) Balance between conceptual understandings and paper-pencil skills. In each lab module the 
students were made to verify the Class Pad solution by hand and spend sufficient time on 
practicing the paper-pencil techniques once the conceptual understanding was achieved. This 
was done to ensure that there was no compromise on developing the ‘procedural knowledge’ or 
‘by hand skill’ due to the use of technology. 

(e) CAS and the Scaffolding Method. Since the Class Pad could take over lengthy calculations, 
even students with poor algebraic manipulation skills were able to attempt the problems and 
grasp the concepts. After understanding the concept, they spent extra time on practicing and 
improving their ‘by hand’ techniques. Thus the Class Pad acted as a scaffold for the less able 
students. This made the subject matter easier and accessible to students of all levels of abilities.  

(f) Collaborative Learning. During the lab sessions students primarily worked in pairs and 
discussed their work. After completing the worksheets discussions between groups was also 
allowed. Students also grouped together to solve homework assignments and often corrected or 
assisted each other. In all this the role of the teacher was to facilitate meaningful discussions. 
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(g) Redefining Learning Goals.  This research study corroborates that the learning goals of 
calculus courses have to be redefined. While traditional calculus courses emphasize 
manipulative skills and routine problem solving, CAS integrated calculus courses must focus 
on conceptualization, graphical understanding, applications to non-routine problems and 
building interconnections between various forms of mathematical representations. 

(h) CAS and Constructivism. Through their graphic, numeric and algebraic manipulation 
capabilities, CAS provide students with tools to explore mathematical ideas thus lending 
themselves to the constructivist approach. They enable students to construct their own ‘mental 
models’ of mathematical concepts by allowing them to form and test conjectures, discover 
patterns and generalize important results. In the modules discussed here students were actively 
engaged in the learning process constructing their own understanding of the concepts, through 
discussions and explanations facilitated by their teacher. 

It may be added here that the traditional curriculum emphasizes on testing students’ paper-pencil skills 
often at the expense of conceptual understanding. This research study suggests that through appropriate 
integration of CAS technology a balanced approach can be adopted which allows students to focus on 
concepts without losing out on important paper-pencil skills. 
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Abstract: Cognitive load theory assumes that some learning environment impose greater demands than others, 
consequently impose a higher information processing load on limited cognitive resources in working memory.  The 
theory holds that if an instructional strategy reduces extraneous cognitive load and/or increases germane cognitive load 
during learning as compared to another instructional strategy, then it will be more efficient in promoting learning, 
provided that the total cognitive load does not exceed the total mental resources. Based on this premise, three phases of 
quasi-experimental studies were conducted to investigate the effects of integrating the graphic calculator in 
mathematics teaching and learning on Form Four Malaysian secondary school students’ performance. The findings 
from this study indicated that integrating the use of graphic calculator can reduce cognitive load and lead to better 
performance in learning of Straight Lines topic and increase 3-dimensional instructional efficiency index. Thus the 
graphic calculator strategy is instructionally more efficient than the conventional instructional strategy.  Overall, this 
study has shown promising implications for the potential of the tool in teaching mathematics at Malaysian secondary 
school level. 
 
 
1. Introduction 
      Recently, technology tools are increasingly available to enhance and promote mathematical 
understanding.  Among those, there has been a steady increase in interest in using hand-held 
technologies, in particular the graphic calculator. Generally, this tool has gained widespread 
acceptance as a powerful tool for learning mathematics. As this technology is commonplace in 
classroom, consideration of the extent to which its usage can impact students’ understanding of 
mathematical concepts within particular course content is vital.  Kastberg and Leatheam (2005) in 
reporting research studies on the use of graphic calculator up to this time, argue that the maximum 
potential for this technology has not been explored.  Those studies provide a starting point for effort 
to be better understanding how to effectively use the technology in the classroom. Thus, further 
rigorous research is needed. This study directly responds to the need for empirical evidence 
regarding the effects of integrating the use of graphic calculator in mathematics instruction at the 
Malaysian secondary school level. Apart from studying the effectiveness of integrating the use of 
graphic calculator in teaching and learning of mathematics on performance measures, this research 
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attempts to provide explanation on the benefit of graphic calculator as a tool for learning from the 
cognitive load perspectives.   
 
 
2. Cognitive Load Theory  
      More and more applications of cognitive load theory (CLT, Sweller, 1994; 1999) have begun to 
appear in the field of technology learning environment recently (van Merrienboer & Ayres, 2005; 
Mayer & Moreno, 2003, Pass et al., 2003). Research within cognitive load perspective is based on 
the structure of information and the cognitive architecture that enables learners to process that 
information. Specifically, CLT emphasizes structures that involve interactions between long term 
memory and short term memory or working memory which play a significant role in learning.  One 
major assumption of the theory is that a learner’s working memory has only limited in both 
capacity and duration. Under some conditions, these limitations will somehow impede learning.  

Cognitive load is a construct that represents the load which performing a particular task 
imposes on the cognitive system (Sweller et al., 1998). CLT researchers have identified three 
sources of cognitive load during instruction: intrinsic, extraneous and germane cognitive load (e.g. 
Cooper, 1998; Pass et al., 2003; Sweller et al., 1998).  Intrinsic cognitive load is connected with the 
nature of the material to be learned, extraneous cognitive load has its roots in poorly designed 
instructional materials, whereas germane cognitive load occurs when free working memory 
capacity is used for deeper construction and automation of schemata.  Intrinsic cognitive load 
cannot be reduced. However, both extraneous and germane cognitive load can be reduced.    

According to CLT, learning will fail if the total cognitive load exceeds the total mental 
resources in working memory.  With a given intrinsic cognitive load, a well-designed instruction 
minimizes extraneous cognitive load and optimizes germane cognitive load. This type of 
instructional design will promote learning efficiently, provided that the total cognitive load does not 
exceed the total mental resources during learning.   

Some researchers have suggested that the use of calculators can reduce cognitive load when 
students learn to solve mathematics problems (Jones, 1996, Kaput, 1992; Wheatley, 1980). Thus, in 
this study, it was hypothesized that integrating the use of graphic calculators in teaching and 
learning of mathematics can reduce cognitive load and lead to better performance in learning. 
Specifically, this method uses an instructional strategy that minimizes extraneous cognitive load 
and hence optimizes germane cognitive load. 

 
3. Purpose of the Study 
     The purpose of this study is to investigate the effects of integrating the use of graphic calculator 
in mathematics teaching and learning on students’ performance for Form Four secondary school 
students when learning Straight Lines topic. Thus, two types of instructional strategy that is the 
graphic calculator strategy and the conventional instruction strategy were compared on 
performance, mental load and instructional efficiency. Three phases of experiments were conducted 
in this study.  Experiment in Phase I was a preliminary study. It was carried out for three weeks. 
Phase II was part replication of experiment in Phase I.  In addition, the possibility that the use of 
graphic calculators can reduce cognitive load was tested in this phase. Finally, Phase III was 
conducted to investigate that the effectiveness of using graphic calculator may well depend on 
different levels of mathematics ability. Both experiments in Phases II and III were carried out for 6 
weeks. 
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4. Methodology of the Study 
 
Design  
     The quasi-experimental nonequivalent control-group posttest only design (Cook & Campbell, 
1979, Creswell, 2002) was employed. In addition, for Phase III, a 2 x 2 factorial design was 
integrated in order to investigate two main factors mainly the instructional strategy (graphic 
calculator (GS) strategy and conventional instruction (CI) strategy) and mathematics ability (low 
and average). For all phases, the groups that were selected were ensured for their initial equivalence 
(similar mathematics ability) and classes involved were randomly assigned to GC strategy and CI 
strategy groups.  
 
Population and Sample  
     The target population for this study was Form Four (11th grade level) students in National 
secondary schools in Malaysia whilst the accessible population was Form Four students from one 
selected school in Selangor and Malacca.  Each phase was carried out within one particular school 
only. A total of 40 students took part in Phase I such that there were 20 students in the GC strategy 
group and there were 19 students in the CI strategy group. A total of 65 students took part in second 
phase of the study. The GC strategy group consisted of 33 students while the CI strategy group 
consisted of 32 students. A total of 77 students took part in the third phase of the study. The 
average mathematics ability of GC strategy and CI strategy groups consisted of 17 students and 18 
students respectively, whereas, the low mathematics ability of GC strategy and CI strategy groups 
consisted of 20 students and 22 students respectively.  
 
Materials and Instruments 
     The instructional materials for Phase I consisted of six sets of lesson plan, whilst for Phases II 
and III consisted of fifteen sets of lesson plan of teaching and learning of Straight Lines topic. The 
main feature of the acquisition phase for the GC strategy group was that students used “balanced 
approach” in learning of Straight Lines topic.  Waits and Demana (2000) illustrated that the 
“balanced approach” is an appropriate use of paper-and-pencil and calculator techniques on regular 
basis (p.6). Specifically, the TI 83 Plus Graphing Calculator was used in this study. The CI strategy 
group was also guided by the same instructional format with conventional whole-class instruction 
without incorporating the use of graphic calculator.   

There were two instruments used in this study namely the Straight Lines Achievement Test 
(SLAT) and the Paas (1992) Mental Effort Rating Scale (PMER). The SLAT had three variations 
because these instruments were modified based on the results of preceding phases.  For Phase I, the 
SLAT comprised of seven questions based on the Straight Lines topic covered in the experiment. 
The total test score for the SLAT was 40. The reliability index using Cronbach’s alpha coefficient 
was .57. This index was not an acceptable level based on Nunnally (1978) cut-off point of .70.  
However, according to Ary, Jacobs and Razavieh (1996), a lower reliability coefficient (in the 
range of .50 to .60) might be acceptable if the measurement results are to be used in making 
decisions about a group. Thus, the reliability of SLAT for this phase was reasonably acceptable. 
For Phase II, the SLAT comprised of 12 questions and the total test score was 60. The computed 
index of reliability, α, for the SLAT was determined to be .68. Whereas, for Phase III, the SLAT 
comprised of 14 questions, the total test score was 75 and the reliability index was .82.   

The PMER was used to measure cognitive load by recording the perceived mental effort 
expended in solving a problem in experiments of Phases II and III. It was a 9-point symmetrical 
Likert scale measurement on which subject rates their mental effort used in performing a particular 

 

Proceedings of the Twelfth Asian Technology Conference in Mathematics ISSN 1940-2279 (CD) ISSN 1940-4204 (Online) 

Contributed Papers-Applications of Calculators-page 17 Copyright © Mathematics and Technology, LLC 



learning task. It was introduced by Paas (1992) and Paas and Van Merrienboer (1994).  The 
numerical values and labels assigned to the categories ranged from very, very low mental effort (1) 
to very, very high mental effort (9). For each question in SLAT of Phases II and III, the PMER was 
printed at the end of the test paper. After each problem, students were required to indicate the 
amount of mental effort invested for that particular question by responding to the nine-point 
symmetrical scale. The computed indices of reliability for PMER in both phases were .87 and .91 
respectively.   
 
5. Results 
      The exploratory data analysis was conducted for all the data collected in all phases. The total 
number of students taking part in Phase I was as follows: GC strategy group consisted of 21 
students, whilst CI strategy group consists of 19 students.  For Phase II, the GC strategy group 
consisted of 33 students, whilst the CI strategy group consisted of 32 students. For Phase III, the 
outliers were taken out. Thus the total number of students taking part in this phase was as follows: 
group 1 designated of students with average mathematics ability undergoing CI strategy consisted 
of 15 students; group 2 designated of students with average mathematics ability undergoing GC 
strategy consisted of 16 students, group 3 designated of students with low mathematics ability 
undergoing CI strategy consisted of 19 students, and group 4 designated of students with low 
mathematics ability undergoing GC strategy consisted of 20 students. 

Students’ performance was measured by the overall test performance, number of problems 
solved and transfer problems performance. There were two kinds of subjective ratings of mental 
effort taken during the experiments in Phases II and III. Firstly, the subjective ratings of mental 
effort were taken during learning in evaluation phase for each lesson.  Secondly, it was taken 
during test phase. The mental effort per problem was obtained by dividing the perceived mental 
effort by the total number of problems attempted for each evaluation phase during learning and that 
of the test phase.  

Further, the 3-dimensional (3-D) instructional condition efficiency indices were calculated 
using Tuovinen and Paas (2004) procedure and were taken into the analyses as dependent variables. 
The three dimensions namely the learning effort, test effort and test performance was taken into 
account when calculating these indices. . In the computational approach, the three sets of data 
(learning effort, test effort and test performance) were converted to standardized z scores.  Then, 
the 3-D efficiency index was computed using the formula, 3/)( TL EEPE −−= , where P is z score 
for performance,  is z score for learning effort and  is z score for the test effort (Tuovinen & 
Paas, 2004). The greatest instructional condition efficiency would be occurred when the 
performance score was the greatest and the effort scores were the least. On the other hand, the 
worst instructional efficiency condition would occur when the performance score was the least and 
the effort scores were the greatest.  

LE TE

For Phases I and II, comparative analyses using independent samples t-tests were used to 
explained differences exist in means of dependent variables between GC strategy and CI strategy 
groups.  Further, the planned comparisons were conducted in order to ascertain that the means of 
dependent variables for GC strategy group are significantly higher from those of CI instruction 
strategy groups.  In addition, all data for Phase II were analyzed using a two-way analysis of 
variance (2-way ANOVA) and followed by planned comparison tests.  

 
Phase I 
Effect of GC Strategy and CI Strategy on Performance 
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The means, standard deviations of the variables under analysis and the results of the independent 
samples t-test are provided in Table 1. As can be seen from Table 1, the mean overall test 
performance of GC strategy group was 16.81 (SD=4.76) and mean overall test performance for CI 
strategy group was 12.53(SD=4.99).  Independent samples t-test results showed that there was a 
significant difference in mean test performance between GC strategy group and the CI strategy 
group, t(38)=2.78, p<.05. The magnitude of the differences in the means was large based on Cohen 
(1988) with eta squared =.17. Further, planned comparison test showed that mean overall test 
performance of GC strategy group was significantly higher from those of CI strategy group, F(1, 
38)= 7.71, p<.05. This finding indicated that the GC strategy group had performed better for test 
phase than the CI strategy group. 

An independent t-test analysis on mean number of problems solved also revealed a 
significant difference between GC strategy group (M=2.19, SD=1.12) and CI strategy group 
(M=1.53. SD=.84), t(38)=2.10, p<.05. The magnitude of the differences in the means was moderate 
based on Cohen (1988) with eta squared =.10. Planned comparison test showed that mean number 
of problems solved of GC strategy group was significantly higher from those of CI strategy group, 
F(1, 38)=4.40, p<.05. This finding suggested that the GC strategy group had solved more problems 
than that of CI strategy group. 

For transfer problems performance, the results of independent t-test showed that there was 
no significant difference in means between the GC strategy group and CI strategy group, 
t(38)=1.92, p>.05. The effect size was 09(moderate) using eta squared value based on Cohen 
(1988). Planned comparison tests showed that means of GC strategy group was not significantly 
higher from those of CI strategy group. This finding suggested that GC strategy group performed as 
well as the CI strategy group on transfer problems during test phase. 

 
Table 1. Independent samples t-test for overall test performance in Phase I 

Performance  Group N M SD SEM t df p 
Test performance Experimental 

 
Control 

21 
 

19 

16.81 
 

12.53 

4.76 
 

4.99 

1.04 
 

1.15 

 
2.78 

 
38 

 
.008 

No. of problems 
solved 

Experimental 
 
Control 

21 
 

19 

2.19 
 

1.53 

1.12 
 

.84 

.25 
 

.19 

 
2.10 

 
38 

 
.043 

Transfer problems 
performance 

Experimental 
 
Control 

21 
 

19 

7.14 
 

4.32 

5.00 
 

4.22 

1.09 
 

.97 

 
1.92 

 
38 

 
.062 

 
Phase II 
Effect of GC Strategy and CI Strategy on Performance 
The means, standard deviations of the variables under analysis and the results of the independent 
samples t-test are provided in Table 2. As can be seen from Table 2, mean overall test performance 
of the GC strategy group was 24.21 (SD=9.69) and mean overall test performance of CI strategy 
group was 17.75 (SD=10.54).  Independent samples t-test results showed that there was a 
significant difference in mean overall test performance between GC strategy group and the CI 
strategy group, t(63)=2.57, p<.05. The magnitude of the differences in the means was moderate 
based on Cohen (1988) using eta squared =.64. Planned comparison test showed that the mean test 
performance of GC strategy group was significantly higher from those of CI strategy group, F(1, 
63)= 6.60, p<.05. This suggested that the GC strategy group had performed better on overall test 
performance than the CI strategy group. 
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For number of problems solved, the results of the independent t-test showed that there was 
no significant difference in means between the GC strategy group (M=2.73, SD=1.96) and the CI 
strategy group (M=2.22, SD=1.85), t(63)=1.08, p>.05. The effect size was .02 using eta squared 
value which was small based on Cohen (1988). Planned comparison test showed that mean number 
of problems solved for test phase of GC strategy group was not significantly higher from those of 
CI strategy group, F(1, 63)= 1.17, p>.05. This finding suggested that both groups had solved more 
or less the same number of problems during test phase. 

Further, there was a significant difference in mean transfer problems performance between 
the GC strategy group (M=15.09, SD=5.33) and the CI strategy group (M=8.41, SD=5.87); 
t(63)=4.81, p<.05.  The effect size was .27 using eta squared value which was large based on Cohen 
(1988).  Planned comparison tests showed that means of GC strategy group was significantly higher 
from those of CI strategy group, F(1, 63)=23.14, p<.05.  This suggested that the GC strategy group 
performed better on transfer problems performance as compared to CI strategy group. 

 
Table 2. Independent samples t-test for performance  

Performance  Group N M SD SEM t df p 
Test performance Experimental 

 
Control 

33 
 

32 

24.21 
 

17.75 

9.69 
 

10.54 

1.69 
 

1.86 

 
2.57 

 
63 

 
.012 

No. of problems 
solved 

Experimental 
 
Control 

33 
 

32 

2.73 
 

2.22 

1.96 
 

1.85 

.34 
 

.33 

 
1.08 

 
63 

 
.285 

Transfer problems 
solved 

Experimental 
 
Control 

33 
 

32 

15.09 
 

8.41 

5.33 
 

5.87 

.93 
 

1.04 

 
.30 

 
63 

 
.000 

 
Effect of GC Strategy and CI Strategy on Mental Effort  
Table 3 provides the means, standard deviations and analyses of independent samples t-test on 
mean mental effort per problem during learning and test phase. As can be seen in Table 4, the GC 
strategy group (M = 2.93, SD=.78) had lower mean mental effort per problem during learning 
phase than the CI strategy group (M = 4.13, SD=.91).  The result of an independent t-test showed 
there was a significant difference in the mean mental effort per problem, (t(63)=−5.72, p<.05) 
between the GC strategy and CI strategy group. The effect size was .34 using eta squared value 
which was large based on Cohen (1988).  Planned comparison showed that the mean mental effort 
for CI strategy group was significantly higher from those of CI strategy group, F(1, 63)=32.72, 
p<.05.  

In addition, it was also found that the GC strategy group (M=5.41, SD=1.45) had lower 
mean mental effort per problem for test phase than the CI strategy group (M=6.44, SD=1.27).  The 
results of an independent t-test showed that there was a significant difference in the mean mental 
effort per problem, (t(63)=-3.03, p<.05 between the GC strategy and CI strategy groups.  The effect 
size was .14 using eta squared value which was large based on Cohen (1988). Planned comparison 
tests showed that the mean mental effort per problem invested during test phase for CI strategy 
group was significantly higher from that of GC strategy group, F(1, 63)=9.18 , p<.05.   

 
Table 3. Independent samples t-test for mental effort  

Variables Group N M SD SEM t df p 
Mental effort 
(Learning phase) 

Experimental 
 
Control 

33 
 

32 

2.93 
 

4.13 

.78 
 

.91 

.14 
 

.16 

 
-5.72 

 
63 

 
.000 

Mental effort Experimental 33 5.41 1.45 .25    
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(Test phase)  
Control 

 
32 

 
6.44 

 
1.27 

 
.22 

-3.03 63 .004 

 
Effect of GC Strategy and CI Strategy on Instructional Efficiency  
Table 4 shows the independent samples t-test results for evaluating the hypotheses that the 
experimental and control groups differ significantly on measures of 3-D instructional condition 
efficiency index for phase II.  The 3D instructional efficiency indices as calculated for the 
experimental and control groups of experiment in this phase were 0.70 and −0.73 respectively.  The 
results of an independent samples t-test showed that there was a significant difference in mean 3-D 
instructional condition efficiency index (t(63)=4.46, p<.05) between the GC strategy group and that 
of CI strategy group.  The effect size was .34 using eta squared value which was large based on 
Cohen (1988).  The planned comparison test on mean 3-D instructional condition efficiency index 
showed that the mean 3-D instructional condition efficiency index for GC strategy group was 
significantly higher from that of CI strategy group, F(1, 63)=19.89, p<.05. This suggested that 
learning by integrating the use of graphic calculator was more efficient than using CI strategy.  
 

Table 4. Independent samples t-test for 3-D instructional condition efficiency index 
Variables Group N M SD SEM t df p 

3-D instructional efficiency Experimental 
 
Control 

33 
 

32 

.70 
 

.73 

1.31 
 

1.28 

.23 
 

.23 

 
4.46 

 
63 

 
.000 

 
Phase III 
Effect of GC Strategy and CI Strategy on Performance 
For this phase, students’ performance was measured by overall test performance only. The means 
and standard deviations for overall test performance as a function of the level of mathematics 
ability and type of instructional strategy are provided in Table 5. The ANOVA performed on the 
mean overall test performance showed a significant main effect of level of mathematics ability 
(F(1, 66)=65.23, p<.05) with large effect size (partial eta squared=.50) based on Cohen (1988).  
Similarly, the main effect of type of instructional strategy also yielded a significant differences 
((F(1, 66)=23.82, p<.05) with large effect size (partial eta squared=.27). However, the interaction 
effect between mathematics ability and instructional strategy did not reach statistical significant 
(F(1,66)=.87, p>.05, partial eta squared=.01).  About 58% of variance in test performance was 
predictable from both the independent variables and the interaction.  

 
Table 5. Means and standard deviations for overall test performance as a function of 

mathematics ability level and instructional strategy type  
Mathematic ability Instructional 

strategy 
N M SD 

Average CI 
GC 

Total 

15 
16 
31 

24.20 
30.38 
27.39 

8.74 
7.74 
8.69 

Low CI 
GC 

Total 

19 
20 
39 

10.11 
19.20 
14.77 

4.03 
5.26 
6.54 

Total CI 
GC 

Total 

34 
36 
70 

16.32 
24.17 
20.36 

9.58 
8.51 
9.81 

 

 

Proceedings of the Twelfth Asian Technology Conference in Mathematics ISSN 1940-2279 (CD) ISSN 1940-4204 (Online) 

Contributed Papers-Applications of Calculators-page 21 Copyright © Mathematics and Technology, LLC 



Planned comparisons were further conducted to ascertain that the mean of GC strategy group were 
significantly higher from that of CI strategy group. As can be seen from Table 6, the GC strategy 
group (M=23.97, SD=9.58) had higher mean test performance than that of the CI strategy group 
(M=16.32, SD=9.58). The planned comparison showed that the mean test performance for GC 
strategy was significantly higher from that of CI strategy group, F(1,68)=13.18, p<.05.  The results 
indicated that the GC strategy is significantly better than the CI strategy.  
 
 
Effect of GC Strategy and CI Strategy on Mental Effort  
As in Phase II, the subjective ratings of mental effort were also taken during learning in evaluation 
phase for each lesson and during test phase for this phase. The means, standard deviations for 
mental effort invested during learning phase as a function of the level of mathematics ability and 
type of instructional strategy are provided in Table 6. The ANOVA performed on mean amount of 
mental effort invested during learning phase showed that the main effect of level of mathematics 
ability (F(1,66)=2.52, p>.05, partial eta squared=.04), and the interaction of mathematics ability 
level and instructional strategy type (F(1,66)<1, P>.05, partial eta squared< .01) were not 
significant.  However, the main effect of type of instructional strategy (F(1,66)=4.46, p<.05) was 
significant with small effect size (partial eta squared=.05).  About 10.1% of variance in mean 
amount of mental effort invested was predictable from both the independent variables and the 
interaction. The results of planned comparison showed that the mental effort invested during 
learning phase for CI strategy was not significantly higher than that of GC strategy 
(F(1,55.67)=4.08, p>.05). This suggested that the GC strategy and the CI strategy group had more 
or less the same amount of mental effort invested during learning phase. 

 
Table 6. Means and standard deviations for mean amount of mental effort during learning as 

a function of mathematics ability level and instructional strategy type  
Mathematic ability Instructional 

strategy 
N M SD 

Average CI 
GC 

Total 

15 
16 
31 

4.71 
4.06 
4.37 

.86 

.77 

.87 
Low CI 

GC 
Total 

19 
20 
39 

4.88 
4.59 
4.74 

1.31 
.59 

1.01 
Total CI 

GC 
Total 

34 
36 
70 

4.81 
4.36 
4.58 

1.12 
.72 
.96 

 
The means and standard deviations for mental effort invested during test phase as a function of the 
level of mathematics ability and type of instructional strategy, respectively, are provided in Table 7.  
The ANOVA performed on mean amount of mental effort invested during test phase showed a 
significant main effect of level of mathematics ability (F(1,66)=15.25, p<.05, partial eta 
squared=.19).  The main effect of type of instructional strategy was also significant (F(1,66)=41.66, 
p<.05, partial eta squared=.39). In addition, there was also a significant interaction between 
mathematic ability levels and instructional strategy type (F(1,66)=5.68, p<.05, partial eta 
squared=.08).  About 47.8% of variance in mean amount of mental effort invested was predictable 
from both the independent variables and the interaction.   

Figure 1 depicts the interaction between mathematic ability levels and instructional strategy 
type. It is observed that as mathematics ability increased, the amount of mental effort invested 
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during test phase of the GC strategy decreased.  For low mathematics ability, this strategy was less 
beneficial, but, for average mathematics ability group, it led to decrease about 2.16 points (6.69 – 
4.53) which is doubled mean amount of mental effort than the low mathematics ability group which 
reported decreased in mean amount of mental effort of about 7.06 – 6.06= 1.00 points. 

Further planned comparison results showed that the mental effort invested during test phase 
for CI strategy group was significantly higher than that of GC strategy group, F(1,68)=30.25, p<.05 
such that students in GC strategy had invested less mental effort during test phase as compared to 
that students in CI strategy group. This finding suggested that the GC strategy had invested less 
mental effort during test phase as compared to the CI strategy.  

 
Table 7. Means and standard deviations for mental load during test as a function of 

mathematics ability level and instructional strategy type  
Mathematic ability Instructional 

strategy 
N M SD 

Average CI 
GC 

Total 

15 
16 
31 

6.69 
4.53 
5.57 

.90 

.75 
1.36 

Low CI 
GC 

Total 

19 
20 
39 

7.06 
6.06 
6.55 

1.06 
1.21 
1.23 

Total CI 
GC 

Total 

34 
36 
70 

6.89 
5.38 
6.12 

1.00 
1.28 
1.37 

 

 
Figure 1. Interaction between levels of mathematics ability and types of 

Estimated Marginal Means

Levels of mathematics ability
Low mathematics abilityAverage mathematics ability

7.50 

7.00 

6.50 

6.00 

5.50 

5.00 

4.50 

Graphic alculator  c
strategy 
Conventional strategy Types of instructional

instruction Strategy 

                   instructional strategy on mental effort during test phase 
 
Effect of GC Strategy and CI Strategy on 3-D Instructional Efficiency Index 

The means and standard deviations for 3-D instructional condition efficiency indices as a function 
of the level of mathematics ability and type of instructional strategy, respectively, are provided in 
Table 8. The ANOVA performed on the 3-D instructional condition efficiency indices revealed a 
significant effect of mathematics ability level (F(1,66)=31.59, p<.05, partial eta squared=.32). The 
main effect of instructional strategy type was also significant (F(1, 66)=33.40, p<.05, partial eta 
squared=.34).  However, the interaction between mathematics ability level and instructional 
strategy type were not significant (F(1,66)=1.24, p>.05, partial eta squared=.02).  About 49.9% of 
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variance in mean 3-D instructional condition efficiency index was predictable from both the 
independent variables and the interaction. 

The planned comparison test on mean 3-D instructional condition efficiency index showed 
that the mean 3-D instructional condition efficiency index for GC strategy group was significantly 
higher from that of CI strategy group, F(1,66)=22.37, p<.05.  This finding suggested that GC 
strategy was more efficient than CI strategy.  
 

Table 8. Mean and standard deviation for 3-D instructional condition efficiency indices as a 
function of mathematics ability level and instructional strategy type  

Mathematic 
ability 

Instructional 
strategy 

N M SD 

Average CI 
GC 

Total 

15 
16 
31 

−.10 
1.57 
.76 

1.11 
.94 

1.32 
Low CI 

GC 
Total 

19 
20 
39 

−1.19 
−.06 
−.61 

1.15 
.80 

1.13 
Total CI 

GC 
Total 

34 
36 
70 

−.70 
.67 
.00 

1.24 
1.18 
1.39 

 
6. Discussion 
      Past studies on effects of the use of graphic calculators offers different results.  Generally the 
results have favored the use of this technology in mathematics classroom (for example, Acelajado, 
2004; Adams, 1997; Connors & Snook, 2001; Graham & Thomas, 2000; Hong et al., 2000; Horton 
et al., 2004; Quesada & Maxwell, 1994; Ruthven, 1990; Smith & Shotberger, 1997).  Those studies 
reported that use of graphic calculators improved students’ mathematics performance. 

The findings from this study suggest that integrating the use of graphic calculator can 
reduce cognitive load and lead to better performance in learning, thus increase instructional 
efficiency when Form Four students learn Straight Lines topic. In addition, the findings form the 
second and third phases provide empirical evidence to support the contention by Jones (1996), 
Kaput (1992) and Wheatley (1980) that the use of calculators can reduce cognitive load and hence 
facilitate learning.  

The findings provide a possible explanation from the cognitive load theory perspectives 
why GC strategy is more efficient as compared to CI strategy in learning of Straight Lines topic.  
The GC strategy was found to have beneficial effects such that this strategy can increase germane 
cognitive load whereby the total amount of cognitive load stays within the limits due to low 
intrinsic cognitive load or due to low extraneous cognitive load.  The use of the graphic calculator 
freed students’ mental resources from the tedious computation, algebraic manipulation and 
graphing skills and hence enabled them to redirect their attention from irrelevant cognitive 
processes to relevant germane processes of schema construction.  This was evident from the 
significantly lower levels of mental effort reported which theoretically would indicate a lower 
cognitive load and the significantly higher performance achieved by the students from the GC 
strategy group in Phases II and III.   

It is pertinent to note that the argument only holds under certain circumstances namely the 
sample of students participated and the particular content area learnt in this study.  Changing the 
composition of sample to include higher achievers can lead to a decrease of intrinsic load for this 
Straight Lines topic.  Thus, the findings are only true for that particular sample of students and also 
apply to the content area of Straight Lines topic for Form Four Malaysian Mathematics syllabu. 
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It is also pertinent to note that the results of Phase I showed the difference were not 
significant in several instances important performance variables particularly the transfer problems 
performance.  The findings indicate that the interventions of very brief duration (about three weeks) 
was not enough to show that the GC strategy is an effective instructional strategy for obtaining 
schema acquisition.  Dunham (2000) noted that a few studies that produced negative results due to 
treatment of very brief duration such that the learning of graphic calculator may have interfered 
with learning of content (for example, Giamati, 1991; Upshaw, 1994).  However, for Phases II and 
III, the treatment was conducted for about six weeks and the findings were in favor for GC strategy. 
More importantly, the GC strategy group performed better on transfer problems performance as 
compared to the control group that executing the CI strategy.  Such findings suggest that the GC 
strategy group have acquired effective schemas that enabled transfer to be enhanced (Gick & 
Holyoak, 1983).   

The findings of Phases II and III also suggest that the GC strategy group possibly may not 
have split attention effect with the use of worksheet (for graphic calculator instructions) and the 
graphic calculator screen.  The results showed that if the split attention effect exists, its negative 
consequences are far outweighed by the reduction in cognitive load.  In both phases, students in GC 
strategy group were found to be sufficiently proficient enough in graphic calculator use because 
besides having the pre-experiment training of introducing the graphic calculator and learning how 
to use the graphic calculator, they had longer duration of intervention.  Thus, this explanation 
confirms the results for phase I such that the difference were not significant in the transfer problems 
performance could be due to any advantage of using graphic calculator was negated by the split 
attention effect.   

Hence, it is pertinent to note that if students who had hardly knew how to use the graphic 
calculator had been selected, the results might have been different.  The negative consequences of 
the split attention effect might have outweighed the positive effects of cognitive load reduction.  On 
the other hand, the results on performance might have been further magnified if students very 
proficient with the use of graphic calculator had been selected in this phase.  

Another important finding in this study namely Phase III was that both factors mathematics 
ability and instructional strategy separately influence test performance, mental effort invested 
during learning and instructional efficiency. However, there was a significant interaction between 
levels of mathematics ability and types of instructional strategy for amount of mental effort 
invested during test phase.  It was found that as mathematics ability increased, the effectiveness of 
GC strategy increased. The average mathematics ability group was greatly beneficial from the GC 
strategy as it led to doubled decrease mean amount of mental effort than that of low mathematics 
ability group.  However, it is pertinent to note that even though there was no significant interaction 
between mathematics ability and instructional strategy for test performance, practically the average 
ability group of GC strategy had performed better on test performance.    
 
7. Conclusion 
     The findings from this study reaffirm Sweller’s (1994, 1999) contention that the limited capacity 
of working memory is very important consideration when planning instructions.  More efficient and 
effective instructional designs can be developed if the limited capacity of working memory is taken 
into consideration. In this study, it was found that graphic calculator strategy is instructionally more 
efficient and thus is superior to conventional instruction strategy. This study shows promising 
implications for the potential of the tool in teaching mathematics at Malaysian secondary school 
level.  
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Abstract: The use of scientific calculators will be first allowed in Singapore Primary School Leaving Examination 
(PSLE) for all primary level mathematics subjects from the year 2009 onwards.  Following the revised mathematics 
syllabus and curriculum in 2007, not only is the use of calculators is included in the national examination, all Primary 5 
and 6 mathematics teachers will be expected to integrate the use calculator into their mathematics lessons from 2008 
onwards. As a result, primary school mathematics teachers are required to be proficient in using the calculator and 
adept at facilitating pupils’ usage of the calculator so as to meet the new assessment requirements.  Evidence from 
literature review and research has showed that calculator is an effective tool for enhancement of mathematical concepts, 
development of mental arithmetic skills, pattern recognition, mathematical investigation, solving real-life problems and 
improving problem-solving ability. Yet, many teachers and parents continue to believe that they can bring more 
impairment than good in the learning of mathematics, therefore their use for instruction should never be encouraged in 
the primary schools.  The purpose of this paper is to review what research says about outcome of calculator use in the 
learning of primary mathematics.  This paper also describes six appropriate calculator activities that can be integrated 
in the teaching and learning of mathematics at the primary level. 

 
 

1. Introduction 
 

With the launch of the electronic calculator for more than 40 years, there has been increased 
coverage on the use of handheld technology in enhancing teaching and learning of mathematics 
(Pomerantz, 1997).  In Singapore the use of scientific calculators in national examinations was first 
allowed in early 1980s for all mathematical subjects offered at the secondary level.  The use of 
calculators will be introduced in the Singapore primary mathematics curriculum in Primary 5 
(Grade 5) from year 2008 onwards.  With the introduction of calculators, Primary 6 pupils (12 
years old) will be allowed to use calculator in the Primary School Leaving Examination (PSLE) for 
the first time in 2009 to solve mathematical problem in one of the examination papers (Ministry of 
Education, 2007). The Primary School Leaving Examination (PSLE) is a national examination 
conducted in Singapore annually.  The examination covers topics from whole numbers, fractions, 
decimals, measurement, data analysis, geometry, speed, ratio, percentage and algebra (for syllabus 
details, see the Singapore Ministry of Education web site, 
http://www.moe.gov.sg/cpdd/syllabuses.htm).  Clearly, there is an advantage to primary school 
pupils in having a scientific calculator when attempting problems involving whole numbers, 
fractions and decimals, as it automates the long and tedious computations when solving real-life 
word problems which do not have nice numbers.  The impact of the decision to integrate the use of 
calculators in the primary revised mathematics curriculum has been significant: for schools, it 
means restructuring curricular programmes and refining modes of assessment so that they could 
incorporate the use of calculators; for teachers, it means acquiring new skills in using the 
calculators as well as improving classroom pedagogy to include instructions on calculator use and 
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to harness the power of calculators in teaching; and for pupils, it means acquiring the skills in using 
a scientific calculator to solve mathematical problems.  In fact, calculators, like any other 
technology, cannot substitute basic understanding and intuitions in mathematics.  This idea was 
also reported in one of the Singapore’s Ministry of Education press release statement on the 
introduction of calculators in Primary 5 - 6 Mathematics: 

The introduction of calculators at Primary 5 and Primary 6 aims to enhance the teaching 
and learning of mathematics at the primary level in two ways. First, calculators facilitate 
the use of more exploratory approaches in learning mathematical concepts, some of 
which may require repeated computations, or computations with large numbers or 
decimals. With a calculator, pupils can perform these tasks and better focus on 
discovering patterns and making generalisations without worrying about computational 
accuracy. Second, the use of calculators also enables teachers to use resources from 
everyday life, such as supermarket advertisements, to set real-life problems with real-life 
numbers that may be difficult for pupils to work with without a calculator. Pupils would 
hence be better able to see the connection between mathematics and the world around 
them. (Ministry of Education, 2007) 
Mathematical skills continue to be an important goal in the primary school; much can be done 

with a calculator to support these skills and to improve the quality of pupil’s responses.  In my 
work with both pre-service and practicing teachers in Singapore, I frequently hear the same 
concerns, particularly from upper primary mathematics school teachers, about incorporating 
calculators into the mathematics curriculum.  Moreover upper primary mathematics teachers may 
face a number of difficulties when they introduce calculators in their classrooms.  As this is the first 
time Singapore primary mathematics teachers will be using calculators in their teaching, the 
purpose of this paper is to review what research says about outcome of calculator use in the 
learning of primary mathematics.  This paper also describes six appropriate calculator activities that 
can be integrated in the teaching and learning of mathematics at the primary level. The activities 
will assist the mathematics teacher to focus less on the calculator and more directly on the 
mathematics and concepts so that pupils will see that mathematics has value.  

 
2. A Review of Literature on the Use of Calculators 
 

Teachers and parents are concerned that the use of calculator at the primary school level might 
lead to a dependence on the calculator and a reduction of mental arithmetic and basic computation 
skills.  Teachers and parents are also fretful that pupils will become so dependent upon the use of 
calculators to the point of not being able to do simple calculations in their daily lives without the 
aid of a calculator.  Their concern was that the only mathematical skill that pupils will acquire upon 
completion of their mathematics education is button-pushing.  Primary school teachers fear that the 
use of calculators may thwart pupils from learning the basic mathematics that they need later in life. 
Many teachers are more than concerned at the mere thought of implementing the use of calculators 
at all grade levels.  The author challenges this one-dimensional view of the role of calculator.  
According to Groves and Stacey (1998), they could not get any evidence that the third and fourth 
grade pupils became dependent on calculators at the expense of their mental computation ability.  
In fact, they indicated that compared to the non-users, the calculator users in their study performed 
better overall and were able to make appropriate choices of calculating devices.  Furthermore, they 
indicated that it was feasible to use calculators to assist young pupils to develop number sense and 
mental computation strategies even before they were taught the formal algorithm.  
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Smith (1997) conducted a meta-analysis that extended the results of Hembree and Dessart 
(1986) meta-analysis.  Smith analyzed twenty-four research studies conducted from 1984 through 
1995, asking questions about attitude and achievement as a result of student use of calculators.  As 
in the Hembree and Dessart study, test results of pupils using calculators were compared to those of 
students not using calculators. Smith’s study showed that the calculator had a positive effect on 
increasing conceptual knowledge. This effect was evident through all grades and statistically 
significant for pupils in third grade, seventh through tenth grades, and twelfth grade. Smith also 
found that calculator usage had a positive effect on students in both problem solving and 
computation. Smith concluded that the calculator improved mathematical computation and did not 
hinder the development of pencil-and-paper skills.   

Another issue raised was related to pupils’ mathematical problem-solving ability. Hembree and 
Dessart's meta-analysis (1986) showed that using a calculator in problem solving created a 
computational advantage and more often resulted in selection of a proper approach to a solution.  
Moreover, calculator use produced a greater positive effect size for high- and low-ability students 
than average-ability students.  Studies have shown that appropriate use of calculators enhances 
young children’s ability to learn basic facts (Suydam, 1987) and that those who use calculators 
frequently exhibit more advanced concept development and problem solving skills than those who 
do not use calculators (Hembree & Dessart, 1992). When calculators are incorporated into the 
learning process, achievement in problem solving increases, and more solution methods and 
strategies are utilized. Moreover, the calculator makes exploration of hypotheses feasible, and is 
useful in developing counting, computation, estimation and other mathematical skills (Suydam, 
1985).  In the same vein, Dick (1992) stated that calculators could lead to improved problem 
solving as they free more time for classroom lessons, provide more tools for problem solving, and 
change students' perception of problem solving as they are freed from the burden of computation to 
concentrate on formulating and analyzing the solution.  It was supported by Campbell & Stewart 
(1993) who has shown that appropriate use of calculators resulted in greater persistence in problem 
solving.  This could be explained by the fact that since calculator use allow more time for them to 
explore, pupils could solve enough problems to discover and observe patterns which are not seen 
when computations are done by tedious paper and pencil methods.  Furthermore, Waits and 
Demana (2000) also recommended that “teaching problem solving should use paper-and pencil and 
then support the results using the technology, or vise versa; and use manipulative and paper-and-
pencil techniques during the initial concept development and use calculators in extension and 
generalizing phases” (p.59).   

Teachers think that since calculators do all the work, pupils will be less motivated and 
challenged. This is not the case as Hembree and Dessart (1986) found that students who use 
calculators exhibit greater self confidence and that calculator use generates more enthusiasm about 
mathematics.  Many teachers believe that mathematics is and should be hard work, which normally 
are associated with manual computations and manipulations. Calculators eliminate much of that 
work, making them appear nothing but a “crutch” for students who are too “lazy” to perform the 
assigned mathematical tasks. The truth is calculators are simply tools to help pupils solve problems. 
They do not do the work for pupils. It is still up to the pupil to read the problem, understand what is 
asked, determine the solution, and decide whether the answer makes sense. The use of calculators 
simply allows teachers and pupils to spend more time on the non-computational parts of the 
problem-solving process (Campbell & Stewart, 1993).  

Ellington (2003) use the method of meta-analysis to combine the findings of 54 research studies 
carried out between January 1983 and March 2002 and determine the effects of calculators on 
pupils’ achievement.  Each of the studies compared the outcomes of experiments in which the 
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treatment group used calculators while a control group received equivalent method of mathematical 
instruction with no access to calculator.  Results revealed that pupils’ operational skills and 
problem-solving skills improved when calculators were an integral part of testing and instruction. 
At the other end of the spectrum, Golden (2000) found that teachers’ practices of frequently using 
calculators for mathematics instruction reduced students ability to do well on computational 
problems at the year end tests where calculators were not allowed.  In a local study, Toh (2006) 
conducted a use of calculator over two weeks.  It was found that there was no difference in basic 
skills and problem solving skills between the calculator and non-calculator groups.  In fact, the 
National Research Council’s publication, Adding it Up (2001), indicated that calculator use was 
more controversial in mathematics lessons in primary levels than the use of manipulative materials. 
They stated that “…persistent concerns have been expressed [by mathematics teachers] that an 
extensive use of calculators in mathematics instruction interferes with students’ mastery of basic 
skills and the understanding they need for more advanced mathematics (p. 254)”.  From the TIMSS 
results it is clear that mathematical competence at the grades K–6 level does not require calculators.  
Two of the highest-achieving countries at the fourth- and eighth-grade levels, Singapore and Japan, 
use calculators sparingly in primary schools.   

Although calculators have their value in the learning mathematics for the upper primary levels, 
we should not advocate using them merely because they are popular.  Instead, teachers need to 
establish thoughtful rationales for deciding how and when to use calculators in their classrooms.  
Therefore schools should strongly encourage the use of calculators in all aspects of mathematical 
instruction including the development of mathematical concepts and the acquisition of 
computational skills. Moreover, from the review above it appears that calculator is an effective tool 
for enhancement of mathematical concepts, development of mental arithmetic skills, pattern 
recognition, mathematical investigation, solving real-life problems and improving problem-solving 
ability.  
 
3. Sample Calculator Activities for Upper Primary School Pupils 
 

In the Singapore Revised Mathematics Syllabus (Ministry of Education, 2007), the 
conceptualization of the mathematics curriculum is based on a framework where active learning via 
mathematical problem solving is the main focus of teaching and learning. One of the main 
emphases of the primary level mathematics curriculum has been the acquisition and application of 
mathematical concepts and skills.  While the revised curriculum continues to emphasise this, there 
is now an even greater focus on the development of pupils’ abilities to conjecture, discover, reason 
and communicate mathematics with the aid of calculator.  Guidance for teachers must demonstrate 
how mental facility can be developed alongside calculator use.  The appropriate use of calculators 
in the classroom is the key factor.  Since calculator is an effective tool for enhancement of 
mathematical concepts, development of mental arithmetic skills, pattern recognition, mathematical 
investigation, solving real-life problems and improving problem-solving ability, it will be useful to 
provide six such appropriate calculator activities for primary mathematics teachers to integrate in 
their mathematics lessons.  The following section describes six such appropriate calculator 
activities that can be integrated in the teaching and learning of mathematics at the primary level.    
 
Enhancement of Mathematical Concepts 

In Activity 1 below, the concept of place value is reinforced.  Pupils are asked to use a 
calculator to represent a given number in different ways.  For pupils to get the sum in part (a), they 
have to identify the place value of the digit 6 in 162 541 and regroup 162 541, for example, as 152 
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541 + 10 000 or 172 541 – 10 000 and so on.  Compare this activity to the standard textbook 
problem of asking the pupils to find the value of the digit 6 in 162 541.  Activity 1 is more open-
end item and it provides opportunities for the pupils to conjecture, discover and reason.  Pupils will 
not be turned off by the tedious calculations.  Similarly for part (c), teachers could observe whether 
pupils show evidence of understanding the distributive law, for example, by expressing 768 x 9 as 9 
x (758 +10) or 7 x (778 -10). 
 
Activity 1: Broken Key on Calculator (Primary 5) 
 
You are given a calculator to do some addition and subtraction sums. However, the key ‘6’ on the 
calculator is broken. If you have to do the following sum using this calculator, how can it be done? 
(a) 162 541 + 44 458 = ___________________ 
(b) 239 765 – 18976 =  ____________________ 
(c) 768 x 9                =  ____________________ 
(d) 54 657 ÷8          =   ____________________ 

 
 
Development of Mental Arithmetic Skills 

Sometimes teachers unduly pressurize the child to remember the rules of placing decimal point 
in multiplication and division computation sums.  However, pupils may forget or confuse easily as 
they have no understanding of why these rules work and it is not meaningful to them to commit to 
memory.  Pupils should be strongly encouraged to use their understanding of the quantities and of 
the operations to elucidate through the placement of the decimal point.  Therefore, the aim of 
Activity 2 is to enhance the pupils’ estimation skills where pupils need to place decimal points in 
the products and quotients.  Pupils should be encouraged to interpret the first problem as “This is 
about 1 times of 40, so the answer is about 40.”  The last division problem is demanding to 
estimate.  It requires 15.679 to be thought of as “about 156 tenths” and then this is to be shared 
among 70 children, so each child will receive at least two tenth.   
 
Activity 2: Decimal points missing (Primary 5) 
 
John forgot to place the decimal point in the answer of each calculation.  Describe how you can use 
estimation to place the decimal point correctly. 
(a) 0.95 x 43 = 4 085 
(b) 35.4 x 17 = 6 018 
(c) 7651 x 0.0083 = 635 033 
(d) 37.986 ÷0.004 = 44 965 
(e) 15.6192 ÷69.33659 = 225266342 

 
 
Pattern Recognition 

Number sense involves the flexibility in thinking about numbers that emerges with the ability to 
relate, compose and decompose numbers (NCTM, 2000).  Pupils can use calculator as a tool to 
explore numbers in the ways that contribute to the development of this flexibility.  In the Principle 
and Standards for School Mathematics (NCTM, 2000), teachers may assume that pupils should 
know that “mathematics involves examining patterns and noting regularities’ (p.262), that 
“statements need to be supported or rejected by evidence”, and that “assertions should always have 
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reasons” (p.56).  In order for the pupils to examine patterns and note regularities in a set of 
numbers, the decimal-expansion activity involves examining repeating patterns in decimal 
expansions of fractions with prime denominators (see Activity 3).  Activity 3 involves examining 
patterns in fraction and decimal sequences and it creates opportunity for pupils to explore and 
appreciate recurring decimals.  Performing the computations for activity 3 would be tedious and 
complex and would render the activity inaccessible to the vast majority of primary 5 pupils; 
therefore, the use of calculator is necessary.  In Activity 3, pupils will observe that the digits in the 
tenth place and hundredth place of each decimal are repeated and the repeated digits are the 
products of the numerator and the number 9. 
 
Activity 3: Decimal Expansion (Primary 5) 
 
Use your calculator to express the following fractions as decimals: 

(a) =
11
1    (b) =

11
2   (c) =

11
3   (d) =

11
4   (e) =

11
5  

 

(f) =
11
6    (g) =

11
7   (h) =

11
8   (i) =

11
9   (j) =

11
10  

There is a repeating pattern. What is it? 
 
 
Mathematical Investigation 
 
Activity 4: Three-Digit Numbers (Primary 5) 
 
Peter has a trick he does with numbers.  
Here it is.  Choose a three-digit number. 
For example, 987  
Step 1:  Write down all the numbers that may be formed by changing the positions of the  
  digits, 987, 879, 789, 978, 798, 897. 
Step 2:  Add them: 987 + 879 + 789 + 978 + 798 + 897 = 5328 
Step 3  Find the sum of the digits in the original number: 9 + 8 + 7 = 24  

Step 4:  Divide the total by the sum of the original digits: 
24

5328  = 222 

Repeat steps 1, 2, 3 and 4 using other three-digit numbers. 
Peter says that every time he does this trick the final answer is always 222.  Do you agree with 
him? 
Investigate Peter’s trick.  How do you think it works? Write down any observations and results 
 
 

With the use of calculators, teachers in investigative classrooms no longer spend a great deal of 
time transmitting information via talking or reading and waiting for pupils to complete their long 
calculations by paper and pencil.  Instead, the investigative problems if given on a regular basis 
would instill in pupils that understanding and explanation are critical aspects of mathematics.  In 
Activity 4, when pupils investigate Peter’s trick, they will usually begin with some specific 
examples or special cases (specialisation) before they make an attempt to generalise.  Along the 
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way, the pupils may arrive at certain conjectures which may be false.  For example, Peter’s trick 
will not work for three-digit numbers which are repeated. After working through a number of 
different three-digit numbers, pupils may begin to notice certain features in their solutions.  They 
may articulate these common features and make conjectures to try and explain for them.  Therefore, 
it appears that mathematical investigation would engage the pupils in mathematical thinking: 
specialisation, generalizing, conjecturing and verifying (Manson et al, 1982).  Pupils may not 
succeed in conjecturing, verifying or generalisation but as long as they examine specific examples 
or specific cases (specialisation) using calculators with the intention of formulating and justifying 
conjectures so as to generalise, then pupils are doing mathematical investigation.  This task also 
familiarises with the pupils the usage of operational keys in the calculators.  In addition, pupils of 

ider range of abilities can work on the same task (see Activity 4) using calculators.   

Sol

ll as avoid messy calculations.  Pupils will experience the benefit 
f calculator as an everyday tool. 

ctivity 5: Rate and Percentage (Primary 6)

w
 

ving Real-Life Problems 
The use of calculators allows realistic data to be used as problem contexts, problems whose 

solutions are within the conceptual grasp of pupils but whose computational demands are not.  The 
use of realistic data is motivational and helps pupils to see connections between school 
mathematics and the mathematics used in the world.  Activity 5 is a mathematical task that includes 
real-life data taken from authentic situations.  It also provides an opportunity for pupils to use 
realistic numbers and experience using large numbers and decimals in authentic situations.  The 
rate of exchange, transaction and sale mentioned in the trip from US to Singapore are real-life 
situations.  By and large, primary school teachers would not give such problems to their pupils as 
they are worried that the computations will involve products and quotients with too many decimal 
places.  Using calculator in this Activity 5 will reduce the impacts of poor computation skills or 
anxiety about computations as we
o
 
A  

 in United State, would like to visit Singapore for one week during the “Great 

ught S$3500 from his bank.  Calculate the total 

tel in Orchard Road.  On the internet, he found a hotel that offered a 

t of $1300 he would have to add a service charge of 10% and 

rvices Tax (GST) of 7% on the total, that is the 

 due to service charge, CESS and GST as a percentage of the 

(c) 
cluded the 7% GST.  Calculate, correct to the nearest ten cents, the GST paid for 

e camera. 
 

 
Peter who is living
Singapore Sale”.   
(a) Before coming to Singapore, he bought some Singapore dollars.  The rate of exchange between 

US dollars (US$) and Singapore dollars (S$) was US$1 = S$1.52.  He also had to pay the bank 
1.5% commission for the money.  He bo
amount, in US dollars, he paid to the bank. 

(b) Peter planned to stay at a ho
week’s stay for $1300+++. 
This meant that to a basic cos
CESS of 1% of the basic cost. 
In addition, he would have to pay a Good and Se
sum of the basic cost, service charge and CESS. 
(i) Calculate the amount Peter would have to pay for hotel accommodation. 
(ii) Express the increase in cost

basic cost of the hotel stay. 
While in Singapore, he bought a digital camera for $725. 
This price in
th
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Improving Problem-Solving Ability 
 
Activity 6: Square Numbers (Primary 5 and 6) 
 
Mary uses a piggy coin box to save money.  She deposits 1 cent on the first day, 3 cents on the third 
day, 5 cents on the fifth day, 7 cents on the seventh day, 9 cents on the ninth day and so on.   
(a) How much money will Mary have saved at the end of the 89th day? 
(b) How much money will Mary have saved at the end of the 365th day? 
(c) How long does Mary need to save at least $400?  

 
 

In Singapore the primary purpose of teaching mathematics is to enable pupils to solve problems 
and it is therefore crucial that pupils learn to use calculator at each stage of the problem solving 
process in order to fully harness its capabilities.  Having access to a calculator permits pupils to 
study various cases of a problem situation in a way that is both swift and precise.  It also provides a 
means for pupils to identify patterns and relationships between variables, information from which 
they may generate possible solution methods and strategies to solve the problem.  In Activity 6, the 
calculator also enables pupils to check and correct any computation errors with considerable ease.  
Activity 6 allows the pupils to use calculator to compute the total amount saved.  Precious time that 
has been formerly spent on tedious paper-and-pencil calculations can now be passed on to the 
development of problem-solving strategies and thinking skills.  The problem-solving strategies use 
in this problem could be “tabulation”, “simplify the problem” and “look for patterns”.   

These six activities exemplify how calculators assist upper primary school pupils to explore 
various types of mathematical tasks.  This is only possible when the mathematical tasks that 
teachers use in their classrooms go beyond computations and rote algorithms.  The six activities are 
just first step towards making the integration of calculators in the classroom a meaningful one 
where emphasis is on the process (reasoning and thinking) rather than the product (final answer).   
 
4. Conclusions 
 

Calculators can reduce the time spent in performing tedious calculations and illustrating concepts.  
However, the use of calculators at the primary level should be restricted and controlled.  There is a 
need to strike a balance between basic numeracy skills, conceptual understanding and problem 
solving.  It is heartening to note that only one of the PSLE examination papers in Singapore is 
allowed to use calculator in year 2009.  This was also reported in one of the Singapore’s newspaper, 
Straits Times, about the use of calculators for the year 2009 PSLE mathematics paper:   

The value of basic numeracy skills like mental calculation and estimation will continue to be 
emphasized, and pupils will be tested on these in Paper 1 of the new exam. (Liaw, 2007, p.H12). 
The changes that school leaders, curriculum specialists, teachers and pupils need to manage for 

successful integration of calculators into the primary mathematics curriculum clearly bring a 
number of challenges along with them. Ultimately, the decision to use calculators in the 
mathematics lessons is up to the teacher.  It is hoped that teachers will bear in mind the appropriate 
use of calculators by relating it to their pedagogical goals and their pupils’ abilities.  Finally, 
calculator is indeed an effective tool for enhancement of mathematical concept by enabling the 
pupils to perform calculations with speed and accuracy, so that concepts rather than computations 
become the focus of the pupils’ attention.  Calculators certainly have their value in the mathematics 
classroom.   
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Abstract: A key variable in the use of calculators in the learning of mathematics is the teacher. In turn there are many 
factors that influence whether an individual teacher uses the calculator, and if they do then how they use it. This study 
reports on a ten-year longitudinal survey data into the use of calculators in the upper secondary school. It presents the 
pattern of calculator use, some possible reasons for this pattern, and obstacles to increased use. In addition the 
relationship between calculators and national assessment and equity are examined. Results show that many teachers see 
benefits in using calculators in mathematics teaching although a sizeable minority are opposed to their use. Further, 
there is a continuing need for professional development that specifically addresses how to integrate calculators into 
mathematics teaching in a manner that focuses on the mathematics. 
 

1. Background 

In recent years research on calculator use in the learning of school mathematics has tended to 
move from an emphasis on student learning to the influence of the teacher (see e.g., [1]), 
recognising their key role in the use of calculators. In turn, there are many factors that impinge on a 
teacher’s use of calculators, as with any technology. Among these, primary influences are teacher 
affective variables (such as beliefs and attitudes), their thinking about, and perceptions of, the 
nature of mathematical knowledge and how it should be learned, and their mathematical and 
pedagogical content knowledge. Other influences that need to be taken into account are social 
relations, institutional standards, tools, and tasks used (see [2] and [3]), attitude to, and beliefs about 
the technology, as well as teacher confidence and ability to use it to teach mathematics.  

There has been less emphasis on research into the decision process that teachers engage in when 
deciding whether to use calculators, and if so, how and when to use them in learning. These 
decisions may be dependent on a number of factors. One of these, described in [4] is the concept of 
teachers’ pedagogical technology knowledge (PTK). This has been presented as a useful way to 
think about what teachers need to know in order to teach well with technology. PTK includes not 
simply being a proficient user of the technology, but more importantly, understanding the principles 
and techniques required to teach mathematics through the technology. This necessitates a change of 
mindset on the part of teachers, a shift of focus to a broader perspective of the implications of the 
technology for the learning of the mathematics. Developing PTK requires attending to the teacher’s 
perspective on mathematics and technology, the relationship between the two, their use of 
technology and their personal instrumentation of it (see [5]). Developing PTK involves the teacher 
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in the transformation of the technological tool into an instrument and differentiation of qualitatively 
diverse ways of employing technological tools in teaching mathematics (such as direct procedural 
calculation, computational check), or building conceptual knowledge of mathematics (see [6]). 
Teachers also need to consider the kind of tasks that they set students when using technology in 
order to assist students to develop simultaneously the calculator and by-hand techniques and theory 
(see [3]) needed to make progress in mathematics. Hong and Thomas’s (see [7]) model of the 
influences on PTK suggests that teacher confidence in using technology is a key driver of the 
growth of PTK. 

Orchestrating and directing all of the influences mentioned above in such a way that good 
classroom learning eventuates can be very challenging. Following investigation of the didactic 
contract of a teacher using a graphic calculator (GC) during function and limit concept lessons, 
delos Santos and Thomas (see [8]) concluded that the teacher has to be open to new approaches, be 
willing to work around constraints, be open to personal learning, and be able to reflect “on the 
tension created between valuing a formal, primarily algebraic approach to mathematics and an 
investigative style of teaching” with the GC (see [8], p. 357). Orchestrating the integration of 
technology in teaching involves many aspects. One described in [9] (p. 329) is the need for 
resequencing as teachers have “to integrate graphic calculators… and to organise, when it is 
possible, backward and forward motions between calculators, theoretical results and calculus by 
hand.” Another part of this challenge involves the influence of the teacher’s practice on their 
students. For example, Kendal and Stacey (see [10]) have shown that, in an introductory calculus 
course using calculators, the teachers’ privileging of certain approaches differentially affected their 
students’ learning.  

It was against this background of integration of calculators in teaching that the current research 
project took place. It sought to ascertain current practice in the use of calculators in the upper 
secondary mathematics classroom, along with teacher and other factors that might be influencing it, 
especially the role of external assessment.  
 
2. Method 

Longitudinal studies, where at least two sets of data are collected from the same population over 
an extended time span, are relatively rare in mathematics education research. This ten-year 
longitudinal study, with a population of all secondary mathematics teachers in New Zealand, began 
in 1995, when a questionnaire on calculator and computer use was mailed to every secondary 
school in New Zealand. Replies were received from 90 of the 336 schools (26.8%), a reasonable 
response rate for a postal survey, and from 339 teachers in the schools. Some of the results of this 
survey were published at the time (see [11]) and were used to form a baseline comparison. This 
original survey was followed by a second in 2005 in order to gain longitudinal data on how the 
situation might have changed in schools over this period. Since 1995 teaching has become an even 
more stressful and demanding profession in many ways, particularly in terms of demands on time, 
and so teachers are more reluctant than ever to spend their valuable time filling in forms or research 
questionnaires. However, we had learned lessons from 1995 and stamped, addressed envelopes 
were enclosed for all the schools. Also the posted questionnaire was followed up several weeks 
later with a faxed copy. Using this approach we achieved a very good 57.4% response, from 193 of 
the 336 secondary schools in the country. We also received completed questionnaires from a total 
of 465 teachers in these 336 schools, as well as the school information. While the questionnaires 
sent out in the two years were not identical, due to changes in emphasis, they did have a number of 
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questions in common. On both occasions they used both closed and open questions to provide 
valuable data on calculator issues such as: the number of calculators in each school; the level of 
access to the calculators; the pattern of use in mathematics teaching; and teachers' perceived 
obstacles to calculator use (Figure 2.1 has a selection of questions from the second survey). This 
data enables us to come to some conclusions about the changing nature of calculator use in the 
learning of mathematics in New Zealand secondary schools. In addition to the survey a group of 32 
volunteer teachers, who volunteered via their survey response, were interviewed about their views 
on technology, and some of their lessons using technology were observed. 
 

Q8 
 

Approximately how many of each of these calculator 
types does your mathematics department own? 

Casio                         
 

Texas Instruments          
 

Sharp                          
 

Other _____________ 

______ 
 

______ 
 

______ 
 

______ 

Q9 
 

Approximately what % of your school's senior 
mathematics students own their own calculators? 

 

Year 12  
 

Year 13 

 

____% 
 

____% 
Q15 Would you like to use graphic calculators more often in 

your mathematics lessons?  
Yes 
 

No 
1 

 

2 
 
Q16 

 
If you answered yes to question 15, what do you see as 
obstacles to your use of them? Please rank in order any 
of these which apply (ie 1 for biggest obstacle, 2 for the 
next, etc.). 
 
Other _______________________________________ 

 

Lack of confidence 
 

Lack of PD 
 

Calculator availability  
 

School policy 
 

Government policy 
 

Other_______________ 

___ 
 

___ 
 

___ 
 

___ 
 

___ 
 

___ 

Q18 With which years do you regularly use graphic calculators as an integral part of mathematics lessons. 
 

 Year 12  Year 13 Calculus  Year 13 Statistics & Modelling    None  
Q19 Do your students use calculators in their mathematics lessons only when directed by you?  

 

  Yes   No  Sometimes  Depends on ________________________  
Q20 What kinds of calculators do your students use in their mathematics lessons ? 

 

 Scientific    Graphic    Computer Algebra System (CAS)   None of these  
Q22 Please give the main advantage or benefit you have found, or feel to be true, of using technology 

in mathematics lessons. 

Figure 2.1 Sample questions from the 2005 survey (Some formatting changed) 

3. Results and Discussion 

The longitudinal study used the baseline data on calculator use in schools gathered by Thomas 
in 1995 (see [11]) in order to make comparisons with the current position and look for trends. In 
1995 there was an average of 22.6 calculators (52% Casio) owned by mathematics departments and 
96% of Year 12 (age 17 years) and 97% of Year 13 (age 18 years) mathematics students owned 
their own calculators. In 2005 the average number of calculators owned by a mathematics 
department was 45.7 (of which 68.6% were Casio, 14.4% Texas Instruments, and 15.4% Sharp). In 
Year 12, 86.4% and Year 13, 87.9% owned their own calculator, which interestingly represented a 
drop on the 1995 figures. It was noteworthy that in 2005 the calculator types owned were: scientific 
76.1%, graphic calculator (GC) 27.1% and CAS 0.2%. The low CAS use is no doubt a reflection of 
the fact that they were not allowed in external assessment at the time of the survey. 
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From the survey for all secondary school teachers and heads of departments (HOD’s), 75.5% of 
respondents who teach year 12 classes said that they sometimes used GC’s in their lessons. 
However when they were asked as to whether they regularly used them, this number dropped to just 
under half (49.4%). Among teachers of year 13 calculus, 91.8% sometimes use GC’s, while 75.4% 
regularly use them. Among teachers of year 13 statistics, 79.4% sometimes use GC, while 66.7% 
regularly use them. During 1995 mathematics lessons 75.8% of Year 12 and 62.5% of Year 13 
regularly used calculators as an integral part of the lessons with 69.8% using them at least once a 
week, 14.2% at least once a month, and 9.2% at least once a term. These figures represent a drop in 
regular use of calculators in years 12 and 13, especially in year 13 calculus lessons. This is 
surprising since this course contains a lot of graphical work on functions that would appear to lend 
itself to GC work. In 1995 6.2% of Year 12 and 5.0% of Year 13 used the calculator only when 
directed by the teacher compared with a total of 10.2% in 2005. Thus the majority of teachers 
surveyed said that students were not using calculators in their lessons only when directed by them, 
indicating most students use calculators when they decided to, without the direction of a teacher. 
The question of whether it is better for students to own their own technology or for the school to 
provide it was specifically addressed in the questionnaire. 66.0% of the teachers agreed that student 
ownership was the best situation, with only 14.8% disagreeing. The two clear benefits from 
students having their own technology are improved access and lowering of the pressure on already 
over-committed department and school budgets. The questionnaire revealed that only 10.3% of 
mathematics departments have a technology budget, and the average size of these is NZ$2762.50 
per year. 

There has been quite a lot said, often in the media by parents and others, about the possible 
negative effects of calculator use in the mathematics classroom and we wanted to know what the 
opinion of the teachers was on this subject. The responses to the question of whether calculators 
‘may be’ (1995) or ‘are often’ (2005) detrimental to students’ mathematical understanding are 
given in Table 3.1. The summary shows that in 1995 24.8% of teachers agreed that calculators may 
be detrimental, and in 2005 26.6% thought that they often are. In the same period the number 
disagreeing dropped from 60.2% to 47.1% (χ2=13.7, p<0.001). It seems that what has happened in 
the intervening years has done nothing to alleviate the perception of a significant minority of 
teachers that calculators may be more damaging than useful to student understanding. In fact, on the 
basis of this question, there is some evidence that the situation has changed so that fewer teachers 
are convinced that calculators are never detrimental.  

Table 3.1 Teachers’ Views on Whether Calculators May be Detrimental to Understanding 
 1995 Response % (N=339) 2005 % Response % (N=464) 

Strongly agree 4.7 5.0 
Agree 20.1 21.6 

Neutral 14.2 18.8 
Disagree 35.1 33.1 

Strongly disagree 25.1 14.0 
No response 0.9 7.5 

However, when the teachers were asked whether they agreed with the statement that 
‘calculators’ (1995) or ‘technology’ (2005) are/is of little benefit in mathematics teaching, we see 
from Table 3.2 that there was a large majority disagreeing; 87.3% in 1995 and 75.6% in 2005, 
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although this too has fallen. Since the calculator is the technology most often used in classrooms, 
one possible explanation for why many teachers see the calculator as of value but why some also 
think that it can be detrimental is that it depends on the way in which it is used in teaching. This 
would agree with the argument that whether the calculator is beneficial or harmful to learning 
depends on how it is used. Hong, Thomas and Kiernan (see [12]) found that weaker students can 
become dependant on the calculator to the point where there mathematics is weaker when they 
don’t have access to one, and similarly [13] reports that some students who were not motivated by 
technology nevertheless became dependent on it. 

Table 3.2 Teachers’ Views on Whether Calculators are of Little Benefit in Teaching 
 1995 Response % (N=339) 2005 Response % (N=464) 

Strongly agree 3.2 2.4 
Agree 3.8 5.6 

Neutral 4.7 9.7 
Disagree 34.2 37.7 

Strongly disagree 53.1 37.9 
No response 1.0 6.7 

The teachers were also asked whether they would like to use a calculator (1995) or graphic 
calculator (2005) more often, and 19% (1995) and 56.7% (2005) respectively said yes, a large 
increase over the ten years. Those who answered yes were asked to rank a number of obstacles, or 
add their own. Table 3.3 shows the results of these responses. It is clear that the major obstacle is 
still a lack of available calculators, but there has also been an increase in the need for professional 
development and greater teacher confidence. Given that 86% or more of students own their own 
calculator this is surprising. It may be that the lack of GC’s is what the teachers are talking about 
since only 27.1% own these. 

Table 3.3 A Summary of Obstacles to Using the Calculator More in 1995 and 2005 

% of 1995 Teachers (N=64) % of 2005 Teachers (N=257)  
Obstacles 

First mentioned Mentioned First mentioned Mentioned 
Calculator availability 76.6 81.3 52.5 71.6 

Lack of PD 4.6 12.5 19.1 48.2 
Lack of confidence  4.7 10.9 13.6 42.4 
Government policy 1.6 9.4 1.9 6.2 

School policy 3.1 10.9 0 5.1 

In 2005 these obstacles were also examined along gender lines to see if there were any 
differences (see Table 3.4). The results show that while females appeared a little less confident than 
males, this was not significant (χ2=2.27, n.s.), and there were no other gender differences. 

Table 3.4 A Summary by Gender of 2005 Obstacles to Using the Calculator More 
First Mentioned (%) Mentioned (%)  

Obstacles Male Female Male Female 
Calculator availability 30.2 31.0 42.2 40.5 

Lack of PD 12.1 10.0 29.7 26.2 
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Lack of confidence 6.9 8.6 21.6 28.1 
Government policy 1.7 0.5 9.1 3.8 

School policy 0.0 0.0 7.3 2.9 

The subject of sufficient resources was not raised here but was asked in a separate question, 
namely whether they agreed with the statement that a major obstacle to teachers using ‘calculators 
or computers’ (1995) or ‘technology’ (2005) is a ‘lack of good ideas which work in the classroom’ 
(1995) or ‘classroom resources’ (2005). While these questions are not precisely parallel they do 
show that the 41.0% agreeing in 1995 had increased significantly (χ2=76.5, p<0.0001) to 71.1% in 
2005, with a corresponding drop in those who disagreed from 32.2% to just 11.0%. Clearly the ten 
years have seen an even greater need for classroom resources with good ideas for teachers to use 
when teaching with technology. This is a surprising result given the large increase in calculator use 
around the world and the consequent increase in available resources, and may be, in spite of the 
internet, the result of poor communication of ideas. Whatever the reason it is something that 
educators need to be aware of and try to address. 

Two of the open questions on the teacher questionnaire (Figure 2.1, Q’s 22, 23) asked what the 
teachers perceived as the primary advantages and disadvantages of technology use, in order to try 
and get an idea of the motivation behind its use. There was a wide variety of responses to Q22 
about the advantages of technology use and a summary of the number of occurrences of particular 
points mentioned is given in Table 3.5. Among these, improved efficiency of calculation (quicker 
calculations) was regularly mentioned, as was the benefit of visual explanation. Some teachers felt 
that students gained confidence through the use of technology, as they were able to check their 
solutions, spend less time on trivial manipulation, and eliminate careless errors, with calculators 
widely believed to provide ‘efficient and accurate calculations and predictions’. Motivation was 
seen as another advantage with a response that technology, in the form of graphics calculators or 
computers ‘can hook students’ interest'. However, according to [4] these are the kinds of advantages 
seen by teachers who are new to technology use, and who have not made great progress in its 
implementation, or in personal instrumentation of the tools (see [5]). Those who have better PTK 
tend to perceive the mathematical benefits more. However, in this survey opinion was split about 
whether the use of technology aids understanding of mathematical concepts, and as Table 3.5 
shows, understanding was only mentioned 37 times. One teacher had apparently moved to this 
point, saying that technology “allows [the] class to concentrate on [the] application of Maths 
techniques etc, rather than calculations, graph drawing, etc”, while another responded that 
“traditional skills and techniques are being lost”. It was also mentioned that technology use can 
prepare students for how the real world uses mathematics.  

Table 3.5 Distribution of Types of Advantages Mentioned for Technology Use  
Advantage Frequency mentioned % (N=257) 

More efficient, quicker 149 32.0 
Visualisation/Visual display 42 9.0 
Student motivation/interest 39 8.4 
Aids understanding 37 8.0 
Improves confidence 14 3.0 
Fewer errors in calculation 7 1.5 
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In the follow-up interviews with 32 teachers we asked why they used technology, and their 
answers were wide-ranging. It should be remembered that these were teachers who had used the 
technology and were confident enough to allow observation of their lessons by researchers. It was 
noticeable here that these teachers make more mention of ideas such as ‘clarifies the concept’, ‘see 
the concept is really helpful’, ‘Technology is really important for multiple representations’, 
‘understanding the concepts better’, and ‘Allows students to investigate’. It appears that their 
increased confidence with the technology has enabled them to reach a level where they can think 
about the mathematics more.   

In Q23 of the survey all the teachers were asked about the main disadvantages of technology 
use and Table 3.6 summarises these perceived disadvantages. Interestingly, although, as we saw 
above, some said that the use of technology aided understanding, others said that it did the opposite. 
A common concern was that teachers thought that students are not gaining a full understanding of 
topics, and were instead relying on their calculators to tell them the answer. Also mentioned was 
how students are more likely to accept answers without considering how reasonable they are. One 
teacher said that graphical calculators “encourage kids to take short cuts, especially in algebra. Real 
algebra skills are lacking as a result” and 31 teachers mentioned that students often become very 
dependent on the calculator. This impedance of understanding was closely linked to a dependence 
on technology by many respondents. Some said they felt that the benefits of technology are small 
and often exaggerated, and that the technology should only used to support the primary content 
being taught. Some teachers also thought that technology is sometimes not appropriate, depending 
on what is being taught, and that teachers should not force the subject to fit the technology. Some 
believed that students take advantage of lessons including technology, saying, for example, that it is 
“seen as an easy period by students”. The depth of feeling some have on this topic can be seen in 
the comment of one teacher who said that “NCEA [the assessment regime—see below] encourages 
[us] to teach students to get answers only (working is not marked) to questions they do not 
understand by learning which buttons to press, on a piece of technology that nobody outside a 
classroom uses, and which will be out of date within 3 years”.  

Table 3.6 Distribution of Types of Disadvantages Mentioned for Technology Use (N=257) 
Disadvantage Frequency Mentioned (%) 

Equipment – availability/quality/functionality/cost 93 20.0 
Impedes learning/understanding 78 16.8 
Dependence on calculator 58 12.5 
Lack of confidence/knowledge–teachers or students 33 7.1 
Time constraints 24 5.2 
Distraction 11 2.4 

Several teachers complained that an excessive amount of time is wasted when technology fails, 
and that sometimes not much learning takes place when students are distracted with some of the 
other things that technology can do. Varying standards of competence also cause difficulties in the 
classroom, with some students being highly skilled, while others are not. In summary, in spite of 
some comments above, based on the survey, we can infer that the teachers generally believe that 
there are benefits in using calculators in mathematics teaching.  
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3.1 Issues of assessment and equity 

Since 1995 a new national assessment system has been introduced in New Zealand, called the 
National Certificate of Educational Achievement (NCEA). While a few schools opt for the 
International Cambridge examinations or the International Baccalaureate for their final year 
students, the vast majority of students sit NCEA internal assessments and external examinations at 
ages 16 (Level 1), 17 (Level 2) and 18 (Level 3). Each level of NCEA is divided into a number of 
standards, and clear guidance is given in the notes accompanying all of these that the use of 
appropriate technology is expected. Heads of departments were asked (section A of the 
questionnaire) what their departments do to implement technology in NCEA levels 2 and 3 
mathematics teaching. The majority of responses focused on the kinds of technologies they use, 
with 46.9% identifying graphic calculator use in NCEA. It was clear from the survey responses that 
while teachers support the use of technology in many of the NCEA achievement standards, they do 
not believe that all of these should be supported with technology. One teacher wrote that:  

We are getting a mixed message from the NCEA examiners. The standard says ‘appropriate technology’ 
should be used but the Merit and Excellence questions are often designed to require algebraic manipulation, so 
we generally teach algebraic techniques for solving equations, knowing that weak girls will depend more on 
their calculators than strong ones. 

One reason for the ambivalence is that some teachers are not aware that technology is promoted 
for all standards. For example, many of the teachers (44.7%, mean agreement score 2.71 out of 5) 
disagreed when asked if technology use is expected in all NCEA standards, with only 26.3% 
agreeing or strongly agreeing. When asked whether "NCEA has too much emphasis on 
technology”, only 11.7 % either agreed or strongly agreed, although those who disagreed or 
strongly disagreed did not reach a majority (44.2%), with 36.9% giving a ‘neutral’ response (mean 
agreement score 2.59 out of 5). One teacher mentioned that “NCEA encourages [us] to teach 
students to get answers only (working is not marked) to questions they do not understand.” When 
asked the reverse question of whether they believe that “NCEA has too little emphasis on 
technology”, 43.3% either disagreed or strongly disagreed while a small number (6.2%) agreed 
(mean agreement score 2.52 out of 5). Hence the survey seems to indicate that the teachers believe 
that the NCEA assessment regime has the right level of emphasis on technology. This agreed with 
the list of achievement standards where technology was used, with the greatest use clearly in 
statistics and modelling.  

When teachers were asked how NCEA had affected their teaching with technology, there were 
mostly positive responses about the change: “…it has been a positive thing… we’ve been able to 
write our own standards and activities using the basis of what we want to do…doing (NCEA) has 
increased our use of technology in terms of teaching… not that boring monotonous low skill stuff.”; 
“NCEA has been really positive for technology in mathematics because…it says, students will use 
appropriate technology … if they’re gonna do NCEA, they must use appropriate technology, and 
school’s been really supportive and provided the money.”; and “The beauty of NCEA is that you 
can now teach things properly. We use it [technology] a lot. It has increased our workload a lot, but 
it is far more valuable in terms of long term gain for students.” 

A recent innovation in New Zealand is the possible introduction of computer algebra system 
calculators (CAS) in schools. There has been a lot of international research in recent years on the 
perceived benefits of using these calculators in the mathematics classroom (see e.g., [3], [10], [14], 
and [15]). From our survey we knew that only 1.8% of the teachers used CAS with their classes, but 
we wanted to know whether teachers are in favour of their use in examinations, since this raises the 
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problem of how to set questions that are both equitable and still test the required knowledge. Some 
research on this has been conducted (see [12]) and showed that, while it is possible to set 
examination questions that are equitable, there are considerations in terms of the possible 
disadvantages to weaker students of using CAS calculators. The responses to the question whether 
‘All types of calculators should be allowed in examinations’ showed that while 21.7% are in favour 
of this move, there is a sizeable majority of 60.5% who disagree. Currently GC’s are allowed in the 
examinations. Since the New Zealand Ministry of Education is moving towards allowing CAS in 
examinations from 2011/12 it seems that there is work to do to provide the professional 
development that will convince many teachers of the value of this. 

In the 32 teacher interviews, most said that they use GC’s for internal assessment, and that their 
students also use GC’s for external examinations. One of the questions in the interviews with the 32 
teachers using technology asked: ‘Are there any equity or cultural issues you can see with the use of 
technology?’ It was clear from the responses that there was just one issue that the teachers could 
see, namely the inequity arising from the fact that some students could not afford their own 
calculators, and schools were often not able to purchase them either, and this was seen as crucial 
during examinations. Typical responses were: “There are certainly equity issues among students 
that come from poorer homes where they can’t afford them. I think that is probably going to be 
very, very difficult for schools in the lower decile areas.”; “A lot of our students will come from 
even low decile areas… when you are asking for another $75,…for a graphic calculator, it’s just 
nah, it’s not gonna happen.”; “…to be fair, I think the exam has to be designed in a way in which 
they can still test the manual understanding so that the students can only really rely on the graphics 
calculator to a certain extent”; and “I worry about the results indicating that that kid knows more in 
that assessment than a kid without a graphic calculator. When in fact the other kid may know more 
about maths and have a better understanding but they've run out of time and they've never had a 
chance to show what they know”. To remedy this problem, two of the teachers said that they loan 
the school’s calculators to the students during examination periods. One teacher said that, in order 
for the students to be able to use calculators in externals, the school buys in bulk and sells them to 
the students at a price cheaper than the retail price. However, another teacher said that they stopped 
loaning their calculators for the reason that some of the calculators were not returned to the school.  

 

4. Conclusion 
In summary this study has shown that the number of calculators in schools increased during the 

period 1995 to 2005, but only 27% are GC’s. Teachers claim that more are needed, even though 
around 86% of students have a calculator and regular use by teachers has fallen. The evidence is 
that teachers are generally still in favour of the use of calculators in the learning of mathematics, 
and see that there are benefits to doing so. However, a significant minority of teachers (27%) think 
that using calculators can be detrimental to student understanding of mathematics, depending on 
how they are used. Their fear is that students will become dependent on them and lose their by-hand 
skills. In spite of this a majority (56.7%) of teachers would like to use calculators more often in 
their teaching, and prefer the students to have their own, although there are equity issues over cost 
associated with this for schools in poorer areas. The major obstacles to such increased use are 
availability of calculators, relevant professional development, suitable classroom resources and 
teacher confidence. The lack of resources has increased over ten years and this study has shown a 
continuing need for high-quality classroom-based resources and the corresponding professional 
development to make good use of them. This professional development should specifically address 
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the integration of technology into mathematics teaching in a manner that develops teachers’ PTK by 
focussing on the mathematics more than the technology. Another concern with regard to increased 
use of calculators is that HOD’s were concerned about teachers’ knowledge of the technology, their 
confidence in using it for teaching, and the possibility of teacher resistance to its use in teaching. 

Generally the teachers in the study were happy with the level of emphasis on calculators in the 
national assessment system (NCEA) and were positive about it. However, it should be noted that 
while the NCEA says that technology use is expected, this is not enforced in any way and neither 
are questions requiring calculators set in examinations. When it comes to moving beyond the status 
quo, whereby GC’s are allowed in examinations, 60.5% of teachers were opposed to the use of all 
calculators in examinations, presumably referring to those with a CAS facility. The issue of equity 
of access to calculators (probably GC’s) was of special concern with regard to examinations due to 
the relatively high cost and hence affordability. 
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