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FORWARD

The First Asian Technology Conference in Mathematics (ATCM 95) is the
first conference of this nature to be held in Asia. The Conference is organised by
the Association of Mathematics Educators of Singapore, in conjunction with the
Nanyang Technological University, National Institute of Education of Singapore
and the Radford University of the USA. :

In view of the success of conferences organised by ICTCM, the founders of
the ICTCM, Bert Waits and Frank Demana, encouraged Wei-Chi Yang to organise
such conference in Asia. Through some consultation and discussion with Tian-Hoo
Chong, Peng-Yee Lee of the Nanyang Technological University, National Institute
of Education, Singapore and Stephen Brown of TCI Software Research, the ATCM
95 ‘was finally agreed to be first held in Singapore. The Conference Theme for the
First Conference is Innovative Use of Technology for Teaching and Research in
Mathematics.

There is always a quest for improvement in teaching mathematics at various
levels, ranging from the primary to the tertiary. Enthusiasts have looked into new
approaches of teaching and conducting research. Technology is one area which has
great potential as technology knowledge seems to advance at greater pace than most
of us expected.

The First ATCM will provide mathematics educators, computer specialists,
technologist, researchers, policy makers and teachers with the opportunity to share
and discuss the latest developments in their areas of specialisation. The Conference -
provides an avenue for the possibility of collaborating research among the
participants. ' ' :

There seems to be some major emphases in the current development and
research in the area of technology in Mathematics. This is reflected on the papers
submitted for presentation in this Conference. One would see ATCM to grow in
three major areas: ‘ .

(a) Pedagogy: Educators with pedagogical emphasis shall further develop the
potential of technology in teaching and learning of mathematics and evaluate the
impact on which it helps learner to acquire mathematical knowledge and solve
problems.

(b) Computer Algebra: Researchers shall look further to investigate how to create
more user-friendly software and develop algorithm efficient programs.

(c) Computational Mathematics: With the support of technology, mathematicians
shall be able to make innovative conjectures and discover new theorems.

(iv)



We look forward to this conference as a special occasion to exchange and
consolidate ideas and practices in mathematics education with the use of
technology. We hope that ATCM will go on year after year, and each year we may
attract more enthusiasts and provide participants with new ideas through
presentations, workshops or exhibitions.

Finally we would like to thank all the people and institutions that have
provided us with excellent support to make this conference a success. In particular,
special thank is given to the Director of National Institute of Education who
sponsors us by allowing us to use the Bukit Timah Campus as the Conference
venue. Special thanks are also given to the followings who have given us the
financial support: the British Council, the Lee Foundation, Association of
Mathematics Educators, Waterloo Maple Software, Wolfram Research, and
TCI Software. We would also like to thank all exhibitors for their consents to use
their technologies in the Conference. We sincerely appreciate colleagues who
served on ATCM 95 organising committee, international programme committee,
and as plenary speakers, workshop conductors and paper presenters.

Ho-Kheong Fong Wei-Chi Yang
Chair, ATCM 95 - Chair, ATCM 95
‘Organising Committee International Programme Committee

December 1995
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SEMI-AUTOMATED THEOREM PROVING

THE IMPACT OF COMPUTERS ON
RESEARCH IN PURE MATHEMATICS

Marston Conder

Department of Mathematics, The University of Auckland
Private Bag 92019, Auckland, NEW ZEALAND

e-mail: conder@mat.auckland.ac.nz

1 Introduction

There is no doubt that the use of computers in recent years has revolutionised
many branches of science, not the least of these being mathematics. Even in
pure mathematics, where often quite subtle and sophisticated arguments are
required for the solution of problems, computers have become an invaluable,
almost indispensible tool. '

In this paper I will describe in more detail some aspects of the impact of
computing on research in pure mathematics, and in particular on the use of
specialist software to solve mathematical problems.

I will briefly discuss computer-based proofs with reference to two famous
examples: the 4-colour theorem, and the non-existence of a projective plane
of order 10, and will also mention a few of the major developments within
mathematics that have resulted from the influence of computing. Finally
I will outline some of the ways in which I have used computer software in
my own research, with the aim of illustrating the potential of experimental
approaches to questions in pure mathematics.



To begin with, however, it is appropriate to make some general comments.
First, it may be said that computers were originally developed to perform
calculations which were essentially pure mathematics, and hence it is natural
that they continte to be used in this area. On the other hand, their use will
always be limited, for by Turing’s 1936 answer to Hilbert’s 3rd problem,
there can be no universal machine to decide the truth or falsity of every
mathematical statement. :

Since the design of computers for cracking secret cyphers in World War
11, major areas and directions of pure mathematics have altered considerably.
The renaissance of number theory (through cryptography) is a notable ex-
ample, and others include matrix algebra (resulting from extensive research
on the solution of linear and differential equations) and combinatorics. More
generally, we have witnessed a gradual discretization of pure mathematics,
although not necessarily at the expense of continuous mathematics.

Computer-based proofs have become common, if not always popular, and
 much effort is being poured into the areas of constructive mathematics, algo-
rithms, special-purpose mathematical software, and experimental pure math-
ematics. Some of these will be dealt with in the following two sections.

2 Computer proofs

In recent years a number of long-standing questions and conjectures in pure
mathematics have been settled: the Four Colour Theorem, Mordell’s con-
jecture, the Bieberbach conjecture, and of course Fermat’s Last Theorem.
Of these perhaps the proof of the Four Colour Theorem has been the most
controversial, in that the use of a computer was necessary to complete it.
Here are some observations about this and another example of interest:

Example 2.1: The Four Colour Theorem

The Four Colour Theorem (or 4CT for short) states that only 4-colours are
required to colour the regions of any plane map in such a way that every two
neighbouring regions have different colours. This was conjectured by Guthrie
in 1852, and had a long history of fallacious “proofs” (and attempted proofs),
until it was settled with the help of a computer in 1976.



Appel and Haken’s proof [AH] came in two parts: Part I being a classi-
fication of unavoidable configurations, and Part II verifying the reducibility
of each configuration (to show there is no minimal counterexample). Part
I involved enumeration by hand of some 1400 cases, while Part II used a
computer to verify reducibility in each case.

Ironically Part II caused the most controversy, with many eminent and
highly-respected mathematicians raising the possibility of computer errors,
yet Part I was much more prone to human error — and some say Part I has
never been independently verified! '

Nevertheless the 4CT is now believed to be true, and in 1994 a simpler
proof was constructed by Robertson, Sanders, Seymour and Thomas [RS],
replacing Part I of Appel and Haken’s proof by a machine-readable and
verifiable list of 633 cases.

Example 2.2: There is no projective plane of order 10

A finite projective plane of order n is an incidence structure made up of
n®* +n+ 1 points and n? + n + 1 lines, such that any two points lie together
on exactly one line and any two lines intersect in exactly one point. Such
a plane is known to exist whenever n is a prime-power, however there is no
known plane of non prime-power order n.

- It was proved by Tarry in 1900 that there is no projective plane of order
6, but it then took until 1989 to show there is no projective plane of order
10. .This was achieved by Lam, Thiel and Swiercz [LT], using a computer
search for 19-point configurations (corresponding to codewords of length 19
in the associated binary code).

Their search required over 2000 hours of computing time, with the obvious
implication of hardware errors. In fact they admit the detection and correc-
tion of such errors, but included checks in their programming so that even
with one error per 1000 hours, the probability of their proof being incorrect
would be at most 1 in 500, 000.

Example 2.1 indicates a change in the interpretation of “proof”, where
we may accept a result as being very probably true. In a similar vein, a
general desire to understand how and why some theorems are true — rather
than proving by contradiction that they cannot be false — has stimulated



the growing field of constructive mathematics.

Along with this is a growth industry in automated reasoning (artificial
intelligence), but also there has been a fundamental change of emphasis in
methodology. Probabilistic and experimental techniques (using random num-
ber generation) are now common, and have even appeared in some aspects
of pure mathematics.

Also with the advent of computers the need has been recognised for
polynomial-time algorithms for solving problems. For a simple instance of
this, note that when solving large systems of linear equations, the method of
Gaussian elimination is far more efficient than Cramer’s rule!

In turn new areas of mathematical research have been spawned, so much
so that now one of the burning questions in mathematics concerns the re-
lationship between problems which are polynomial-time solvable (P), and
a class of those which are polynomial-time verifiable but not known to be
polynomial-time solvable (NP): is P = NP?

3 Experimental mathematics & software

It is clear that mathematics has benefitted a great deal from the use and
influence of computers. Apart from practical considerations and the wealth
of new methods available, there is now a much greater understanding of many
avenues of research.

Of course, computers are unlikely to ever match the ingenuity and cre-
ativity of the human mind, and quite rightly, “computer proofs” may always
be viewed with some skepticism, but that should not detract from their po-
tential to contribute in many significant ways. In particular, there are many
situations in which a positive computational approach can yield new results
or throw light on old problems.

Computers can be used for simulation (of systems and processes), combi-
natorial searches, construction and analysis of simple examples, formulation
and testing of conjectures, and classification of small cases, for example. In
such ways they can often provide answers that can subsequently be checked
by hand, or provide a picture that points the way to a theoretical proof, as



will be illustrated in the next Section.

This form of experimental approach is becoming more common (and suc-
cessful) in a large number of areas, especially number theory, discrete alge-
bra, combinatorics, numerical computation, finite geometry, low-dimensional
topology, and even statistical mechanics.

Many software packages are available, including special purpose packages
Magma (for discrete algebra and number theory), GAP (groups, algorithms,
programming), KANT and Pari (number theory), as well as more general
purpose mathematical packages such as Maple, Mathematica, and MatLab.
Such packages are now widely used in teaching and research, with consider-
able success, in many parts of the world.

4 Some recent examples & successes

In this section I will describe three examples of ways in which I have used
computer methods in my own research, to illustrate some of the potential of
the approaches suggested in Section 3.

Example 4.1: hexagon-free subgraphs of hypercubes

For every positive integer n, the hypercube @, is an incidence structure
generalising the cube to n dimensions. Its vertices are all possible n-tuples
of 0’s and 1’s (of which there are 2"), and any two such n-tuples are joined
by an edge whenever they differ in exactly one co-ordinate.

Some years ago Paul Erdos raised the following question (which is relevant
to the study of fault tolerance properties of parallel-processing architectures):
Can the edges of the n-cube @, always be coloured using t different colours
in such a way that there is no hexagon whose edges all have the same colour?
By a “hexagon” is meant a circuit of length 6, such as the one with ver-
tices (0,0,0), (0,0,1), (0,1,1), (0,1,0), (1,1,0), (1,0,0), and the question
entails finding some ¢ (independent of n) for which a t-colouring exists.

When I first learnt about this question, I experimented with a few possi-
bilities for suitable colourings, with the help of the GAP package in testing
them for small values of n. Eventually I stumbled on the following idea:



‘Consider a typical edge of @, from the vertex x = (21,...,%;,...,2y)
to the vertex y = (z1,...,%,...,%,), where Z; =1 —z,. If x has L 1’s to
the left of z; and R 1’s to the right of z;, then let us colour the edge x — y

blue if L—R = 0mod 3
{ green if L—R = 1mod 3
red if L—R =2mod 3.

With this colouring, computation in small cases revealed no monochromatic
hexagons, and then it was a relatively simple matter to prove (by hand) that
for all n there are no monochromatic quadrangles or hexagons; see [C3].

Example 4.2: highly symmetric networks

A combinatorial graph (or network) I is said to be symmetric if any two
ordered edges are equivalent under some symmetry of I, and more generally,
s-arc-transitive if any two ordered paths of length s are equivalent under some
symmetry of I'.  For example, the underlying graph of the 3-dimensional
cube is 2-arc-transitive (but not 3-arc-transitive). More highly symmetric
examples include the 3-arc-transitive Petersen graph (on 10 vertices) and
Tutte’s 5-arc-transitive 8-cage (on 30 vertices).

Several years ago Tutte proved that every symmetric finite cubic (triva-
lent) graph is at best 5-arc-transitive. Furthermore, Tutte’s analysis shows
that the symmetry group of any 5-arc-transitive finite cubic graph has to
be a homomorphic image of a particular abstract group Gs, which may be
presented in terms of generators and relations as follows:

Gs =(h,a,p,q,7.5 | h* = a® = p* = [p,q] = [p, s] = pgrsrs = a"'pag =
a~'ras = h™'php = h=qhr = h"lrhpgr = hshs = 1).

Conversely, any non-degenerate finite image of G5 is the symmetry group of
some 5-arc-transitive cubic graph.

Now computer methods exist for finding small images of finitely-presented
groups such as G5 (through their low index subgroups). Using such methods,
Peter Lorimer and I were able to find several interesting examples of sym-
metric cubic graphs, providing answers to some long-standing ques’éions; see
[CL]. Subsequent identification of some of the common features of these ex-.
amples was the key to the construction of an infinite family of 5-arc-transitive
cubic graphs, dispelling any idea that such graphs are rare; see [C1].



Example 4:3: an unexpected isomorphism

Earlier attempts to find and analyse examples of symmetric graphs often
involved the imposition of additional assumptions such as the presence of
circuits whose vertices are permuted in cycles. In particular, associated with
certain 4-arc-transitive graphs containing a circuit of length 12 was the group

4*(a’®) = (h,a,p,q,7 | B* = a® = p* = [p,q] = pgrgr = a”'pap =
a~lqar = b~ phq = h™'qhpq = hrhr = (ha)*? = 1).
This group became the subject of attention for some time following several
attempts to prove it is infinite.

Again computer methods revealed some aspects of its structure, and in
particular I noticed a normal subgroup of index 336 with remarkable proper-
ties. Using this subgroup I was able to construct an 8 x 8 matrix representa-
tion of 4*(a'?), and further computation showed that modulo small primes
p = 2,3 and 5, these 8x8 matrices generate a group of order 2p*(p*—1)(p+1),
which happens to be twice the order of the 3 x 3 matrix group SL(3, p).

In turn this observation led to the following theorem, which can be proved
by hand (but which was discovered as a result of computer experimentation):
The group 47 (a'?) is isomorphic to SL(3,7Z).C,, the group of all 3 x 3 integer
matrices of determinant 1 estended by its inverse-transpose automorphism.
For the details, see [C2]. Incidentally, the reason underlying this unexpected

igomorphism has been shown by Peter Neumann to have a connection with
finite projective planes; but that is another story!
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INFORMATION TECHNOLOGY - THE VIRTUAL REALITY OF
THE SCHOOL MATHEMATICS CLASSROOM

David C. Johnson
King's College, University of London
Cornwall House Annex, Waterloo Rd.
London SE1 8WA, ENGLAND
e-mail: djohnson@bay.cc.kcl.ac.uk

Abstract

Where are we today? Achievements and research over the past 30 years would
suggest significant progress has been made - virtual reality. However, what is
the reality of school mathematics classrooms in the UK and US? The reccntly
completed ImpacT research in the UK and the US component of the
International IEA Computers in Education Study indicate both countries have a
long way to go before the potential is realised on any large scale basis. These
works also provide some insights in regard to setting realistic medium and long
term goals - and providing support for the key participants in this endeavour,
teachers and pupils. However, there are no easy or quick solutions; changes in
education take time and are highly dependent on people, priorities and
resources.

Personal Reflections on the Virtual Reality, 1965-1995

I propose to begin this paper by sharing some personal reflections. The themes for these are
based on my experiences in computing in school mathematics as a classroom teacher, teacher
educator and researcher, 20 years in the US and 18 in the UK. The decade of my initial work
was the 1960's, and this was the period of the first small scale, but relatively intensive use of
computers in school mathematics classrooms. I note here that changes in mathematics
education have a tradition of being influenced by culture and context as well as the available
technology - one needs only to look at early National Council of Teachers of Mathematics
(NCTM) Yearbooks for documentation of this (see, for example, the Third Yearbook, 1928,
Selected Topics in the Teaching of Mathematics, with chapters on 'functional thinking,
dynamic symmetry, introductory calculus as a high school subject, etc). However, the virtual
reality of the changes is often well ahead of the real world of classrooms. Changes on any
large scale take time. A

In the narrative which follows I will also attempt to give some feel for the pace of research and
development on/in the role and use of computers in school mathematics. I will highlight some
selected events and publications and apologise if I have omitted an event you may feel was
even more important than those used here. I can only say my choices are intended to be
illustrative and not definitive.

The 60's and 'early’ 70's

It was in 1962 that I took my first computer science courses - these were primarily numerical
analysis and the focus was on programming in machine code. What was this experience like
(see Figure 1)?

Figure 1. 1962 - omputer Science - Two terms
Context: Octal coding, punch tape, UNIVAC 1103 (valves or vacuum tubes)

Most significant task: Write an octal program to produce decimal output 1-20
Focus: Overcoming constraints in instructing the machine to complete a task



For me this was an interesting experience and my examination marks were high - however
never once was I able to get a program to run successfully (fortunately I had a partner who
loved to 'live in the computer room'’ and debug a program or wait while some machine problem
was sorted out). If anyone had asked me at this time about the possibility of using the
computer to study school mathematics I'm afraid I would have thought the person crazy. On
the other hand, it was only a year later, 1963/64, that I was using computer programming with
pupils aged 12-18 as part of the mathematics curriculum in the University of Minnesota High
School (UMHS), the University laboratory school.

We had 'discovered FORTRAN and were transporting programs for card punching and
running on the University computer (now up-graded to a more reliable and up-to-date IBM).
‘This was a bit of a nightmare however as the error rate was high, between 60-70% - not the
least due to inaccuracies in the preparation of format statements. As an aside here, let me note
that another teacher and I elected to help the pupils with these, and what happened? Yes, the
error rate went to 80-90%.  Ah well, we soon had help from a new development - a set of
materials developed by Robert Smith at CDC, 'Card FORTRAN without Keypunch'. It was
also the case that we also now had some school machines, the Bitran 6 (a six binary digit
machine, with one for sign, what kind of numbers could we work with?), and the CDC Bendix
G-15 (one of the last of the valve machines developed, designed to sell for $60K, taken over
and sold to schools at $15K, with annual maintenance at about the same amount). But the
Texas Instruments developments with the transistor meant that changes in hardware were
becoming dramatic and fast - at least they felt fast then, but this was just the 'tip of the iceberg'
yet to come in the next 30 years. I could reminisce more on these early experiences, but time
and space just do not permit. Suffice it to say, we were ready to welcome the next
development as school computing still suffered from a focus on getting the machine to execute
a particular task, with a successful debugged program the goal, rather than the use of the
program to explorc big ideas in school mathematics.

In the Spring of 1964 we were fortunate enough to establish contact and link with Dartmouth
University in New Hampshire. We now had access their GE time-share computer with the
computer language BASIC. Time-share meant we could access the Dartmouth computer from
the classroom or school laboratory in Minnesota. The language BASIC was developed by
John Kemeny, mathematician, and Tom Kurtz, computer scientist, for use by students in the
University - the goal being easy access and use by those other than computer scientists. While
the early versions of the language eventually came in for considerable criticism, for those of us
attempting to implement ideas of algorithmics (the design and analysis of algorithms) as a way
of describing mathematical ideas this was an almost unbelievable move forward. The focus in
school mathematics computing was no longer one of merely programming the machine to
complete an often trivial task, but rather now offered a new way to view mathematical ideas as
dynamic procedures - e.g., 'primeness’ is a procedure for testing whether or not a number is
prime, not merely a definition, and a circle as movement - moye a little turn a little - not justa
'locus of points'. This is not to say we made substantial progress in re-thinking mathematics
as much of the work in the late 60's was still focused on supporting the 'traditional’
curriculum.

The years 1964 on through the early 70's were exciting ones for me. I was the director of the
Computer Assisted Mathematics Program (CAMP), a R&D project which produced
supplementary references for supporting the teaching and learning of secondary school
mathematics - five books (Hatfield & Johnson, 1968, Walther & Johnson, 1969, LaFrenz &
Johnson, 1969, Kieren & Johnson, 1969, and Katzman & Johnson, 1970) and computing
activities for inclusion in a sixth (a full course text, Wisner, 1973). The CAMP project
represented the first major attempt to integrate computing into the teaching and learning of a
substantial portion of the whole of the secondary school mathematics curriculum. It was also
during this time that I had the opportunity to work with colleagues on a major NCTM

Committee - the Computer-Oriented Mathemahcs Comrmtteel This Comrmttee produced three
influential publications for the NCTM - 111 f r M
(1967), In n an Algorithmic Lan ua ,and a chapter, "The role of
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electronic computers and calculators' for the NCTM Yearbook on Instructional Aids in
Mathematics (1973).

The CAMP research produced results which along with R&D activities elsewhere in the US
and UK demonstrated the exciting potential of computing in school mathematics (and of
course, there were the beginnings of exciting work in other subjects, most notably simulations
in school science and social studies or history and geography). Of note here was the fact that
developments in school mathematics at that time were generally of two types - the machine as a
tutor or 'drill master' (e.g., see Suppes, Jerman and Brian, 1968) and pupil's controlling or

“using the machine through programming. Both areas had strong support, but my personal
interest was in the latter and this was also the position espoused by a number of individuals and
publications (see Figure 2).

Richard Andree in Oklahoma, a book (1967) focusing on exploring
mathematical/computing ideas through programming
Bill Domn & Gary Bitter at Denver, Colorado (1970, 1972). research and publications
supporting and extending mathematical ideas through programming
Wally Feurzig and Seymour Papert (1969, 1971) Logo programming and 'turtle
geometry' with primary and secondary school pupils ,
School Mathematics Project (SMP) in the UK (1971) - a booklet for secondary school
 teachers providing examples from mathematics for computer exploration
Larry Hatfield & Tom Kieren (1972) - research results from the CAMP project on
computer-assisted problem solving through programming (see also previous CAMP
_ publications) , ‘ ~
Thomas Foster (1972) and Ed Andersen (1977) doctoral theses on problem solving
and programming in secondary schools (I supervised their work)
Tom Dwyer (1974 and 1975) reports on project SOLO, pupil's developing projects
- through in-depth investigations and programming
The IFIP 1977 working conference in Varna, Bulgaria (Johnson & Tinsley, 1978), on
. the implications of computing for secondary school mathematics - contributions from
-individuals representing 17 different countries.
David Johnson & Robert Harding (1979) - problem solving research results at
..Cambridge University, high ability students exploring mathematical ideas (based on
the developments of the CATAM project, 1976)

There was some conflict in this period as schools needed to take decisions on how best to make
use of this limited resource - a common situation was that if a computer was available, this was
often only one computer (terminal) in a department. The 'drill and practice' role for raising
standards on conventional tests vs. programming for extending the power of pupils for
investigating mathematical ideas, much of which was considered new, and by some a 'fad’
which would soon 'go away'.

Arguments and debate - computing, curriculum, pedagogy and teachers

There were strong arguments even in the group of mathematicians and mathematics educators
supporting the inclusion of computing/programming in the school (mathematics) curriculum.
These ranged from

« the role of machine code - yes there were those who felt this should be the first
introduction to computing, even with the availability of languages such as BASIC and
Logo; through to

« the role of flow charts;

+ defining fundamental concepts, in particular should these include those associated
with the hardware; and of course

« the programming language itself - FORTRAN and/or ALGOL as these were those
used in the real world of business, or BASIC or Logo (and advocates for each of
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these debating amongst themselves) or another similar educational derivatives, in
terms of the fact that these were developed for use by pupils/students; and finally,

« the inclusion of algorithmics, the design and analysis of algorithms, as a strand in the
school mathematics curriculum. :

The debate in regard to the last two points was, and is still, fascinating and could easily provide
the basis for a full paper. Those interested in the current debate might wish to consider the
-position espoused in a more recent paper (Johnson, 1992).

Other concemns relative to curriculum, pedagogy and teachers included

« the value of programming for its own sake as distinct from the role in exploration and
problem-solving, the latter difficult to support with limited resources;

« the allocation of the resource to skill learning through D&P in a time of 'back to
basics';

« the role of computer literacy and awareness courses - to enable the school to provide
all pupils with some, often minimal, exposure to the power and potential of the
technology in a period of limited resources; and

« the demands on teachers to take on board both the new technology and approaches
and the need for time to reflect on these developments.

The last of these was a particularly serious problem then, the reality of school mathematics
classrooms in the 60's and 70's, and, as will be shown later in this paper, remains a major
concern even now, 25 years later.

I might digress here and also add two quotations from this period:

"...in the lifetime of today's student the use of computers will become as much a part of
everyday life as the telephone or automobile."

"In five years time student access to computers in school will be as common and natural
as access to, and use of, pencil and paper.”

The first of these was made by John Kemeny in the early 60's, and he was clearly correct in
his view of the world of business, industry and leisure. I made the second in an interview for
a magazine article published in 1968 and hasten to note that this was also the view of many of
my colleagues. Of course we all know this is still far from the truth, even today after the
accelerated time-line for developments which were to come in the 80's and early 90's.

The 80's and early 90's

A period of exponential growth in developments in hardware, software and exciting ideas. We
see the availability of 'user friendly' hardware and software. The advent of the micro in the
70's has progressed to include enhanced capabilities - memory, graphics, colour, speed, etc. -
which enabled the development of powerful utilities for school mathematics, both generic and
domain specific tools, for example:

« spreadsheets, including graphics and other representations
» graphics packages

« data base packages, including data analysis facilities
 modelling utilities

« symbolic manipulators

 geometric supposers

Logo became available on a micro - so the 80's became a decade of movement - but how far
have we moved with Logo? And we now have graphics calculators, palmtop (wallet size) and
laptop computers which provide pupils with power, portability and personal technology.
And these have been expanded to include peripheral devices, an exciting 'add on' to the
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graphics calculator is that of 'data loggers' and the availability of a computer interface for the
calculator. Collecting and analysing real data becomes a (virtual?) reality.

The late 80's and early 90's also brought CD ROM, 'telematics’ (including, for example,

Internet and WorldWide Web), and 'hypermedia’, as demonstrated with the fascinating work

of APCOT (Apple Classrooms of Tomorrow) which provides an illustration of what might be

achieved in an Information Technology (IT) rich environment. We certainly do have some
.indications of the virtual reality and I hasten to add, this is reality in some classrooms, but in
“how many, or how common is this phenomena?

Before leaving this period, let me share a few personal experiences - see Figure 3. Thisisa
very limited and selected listing of some chronological events I found to be helpful in
formulating ideas, e.g., people and documents which confirmed and/or aided in extending my
own thinking; a number of which I also had a participating role (these are denoted with an *).

Figure 3. Some selected chronological events in the 80's and 90's

Papert's Mindstorms (1980) - a look at what might be! )

NCTM report on the Maryland Computing and Mathematics conference in 1982* (Fey,
1982) and the 1984 Yearbook (Hansen & Zweng) - some wide ranging discussions
on the future potential.

The Pendley Manor Conference in the UK* (1983, journal publication, DES/MEP,
1985) - a forward looking position paper, particularly the discussion of algorithmics
(of course this reflects my bias and I was a participant).

What is called the 'Fletcher brown booklet' (1983) - carrying on from Pendley Manor.

MicroMath published by the Association of Teachers of Mathematics (ATM) - the first
issue in 1985 (more on this later). -

The development of mathematics teacher in-service packs by the UK Micro-electronics
in Education project (MEP) - the Secondary In-service Pack (Waddingham &
Wigley, 1985)* and the Logo Primary Pack (Straker, 1985), both widely distributed
and guidance provided which covered a range of potential activities.

While I have had many doctorai students conduct research in the area of school
mathematics and computing/programming - one of particular note here is the work
with Logo conducted by Richard Noss (1985)*, which provided further
confirmation of the potential. :

The group involved in the Pendley Manor conference and the MEP packs carried on to
produce the booklet Will Mathematics Count? (CET, 1987)* a look at where we
were and what needed to be done.

Another fascinating Logo book by Sylvia Weir, Cultivating Minds (1987).

An exciting IFIP conference and publication, Informatics and the teaching of
mathematics (Johnson & Lovis, 1987)* - a look at computing and school
mathematics ten years on (building on the 1977 conference - publication in 1978, see
Figure 2), with consideration give to a range of computer uses.

The NCTM 1991 Yearbook, Discrete mathematics across the curriculum K-12 (Kenney -
& Hirsch, 1991) - note the particularly important (in my opinion) discussion of the
role of algorithmics.

UNESCO report The influence of computers and informatics on mathematics and its
teaching (Cornu & Ralston, 1992)* - an update on the conference and conference
report with the same name held in Strasbourg in 1985.

The publication of Learning Mathematics and Logo (Hoyles & Noss, 1992).

A chapter, 'Technology and mathematics education’ (Kaput, 1992) in the major
research reference edited by Douglas Grouws, Handbook of Research on the
Teaching and Teamning of Mathematics. '

The book by Schwartz, Yerushalmy & Wilson, The Geometric Supposer: Whatisita
case of? (1993). , ‘

The new Nuffield Advanced Mathematics*, Hugh Neill, Director and General Editor -
was the project Grant-holder and Faculty associate - the books were published in
1994 and 1995. Possibly the first full two-year A-level course which fully
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integrated the graphics programmable calculator and other computer software utilities
into the teaching and learning activities, i.e., one must use the technology to do the
course, and in which algorithmics and modelling also each plays a central role.

A return to MicroMath - one feature of the journal has been that of special issues in
which a substantial portion of the publication has been devoted to a particular theme
or potential contribution of a particular type of software, e.g.,

Data bases/Handling data (1989, 1991, 1994)

Numerator - and modelling (1990)

-Spreadsheets (1990)

Graphics calculator (1991, 1995)

Cabri Geometre (1992)

Teaching Algebra, with all the tools (1993)

Teaching and Learning Geometry - Cabri, Geometry Inventor, Geometer's
Sketchpad (1995)

Government data collection, reported in the press, indicates that pupil-computer ratios
for primary and secondary schools are 18:1 and 10:1 in 1995, having changed from
107:1 and 60:1 a decade ago (1985). -

STOP! WHAT DOES THIS ALL MEAN?
WHAT IS THE REALITY OF THE CLASSROOM?

Classroom Reality - Findin gs from Recent Research
Background

The developments indicated earlier are expanded on in the popular press - claims are made that
"notebook computers are producing positive results”, "(a technology conference has) clearly
demonstrated how quickly IT has become part of the fabric of most schools”, and that there is a
"dramatic growth of CD ROM in education".” Schools in the UK and US have had substantial
inputs from governmental sources to facilitate the acquisition of hardware and software and the -
provision of in-service support. Concern has therefore been expressed that it would seem
important to confirm and assess the situation in schools.

One approach to such an assessment is to conduct large scale surveys of availability of
resources, €.g., numbers of machines and pupil/machine ratios, and aspects of access and use
in school subjects, often presented as percentages of total computer use distributed across, for
example, maths, science, native language, etc.. In the UK such work has been carried out on a
regular basis by the Department of Education, DES, now the Department for Education, DfE.
At the international level we have the multi-national IEA Computers in Education Study
(Pelgrum & Plomp, 1991), and, of particular relevance to this paper, Anderson’s (1993) report

~_ on the US component of this work. Anderson reports on a large scale survey (over 69,000

pupils, aged 10, 13, and 16, in 2,500 schools) conducted in 1992 (as a follow-up to a similar
study conducted in 1989). The report provides information on, for example, the numbers
(percentages) of teachers in ‘computer-using schools’ who use computers in class ‘on at least
several occasions during the year’; percentages reported for these schools were typically

. around 50%. The schools also had a pupil/computer ratio of about 7:1, and note is made of the
fact that since 1989, U.S. schools have increased their inventory of computer units by as much
as 50%. In making international comparisons, Anderson states that "in ... peripherals and
networks, the US has at the very least comparable and often larger inventories than the other
countries (in the IEA survey)" (p. 27)

The US study also placed emphasis in the research upon using computers in learning different
subjects such as science, geography, languages, etc.. “In the U.S., about half of school
computer time is spent on learning about computers and the other half on learning other
subjects with the help of computers” (p. xvii). But what does this ‘learning other subjects’
really mean? Some aspects of this question are discussed by Lundmark in the chapter 'pupils
‘opportunity to learn with computers’, but the evidence reported is primarily that of ‘counts’ of
responses to items in the survey questionnaires (as opposed to, say, actual observations of
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classes and pupil assessments). An important consideration in the discussion is the fact that
pupils were counted as a 'substantial user' of IT, if they used software six or more times in the
school year, i.e. six or more times in a period of 150 school days. In her conclusions,
Lundmark notes that

"The question of how far computer instruction has been integrated across the school
subjects curriculum is noteworthy. A little more than one-fourth of all US students say
they used computers in none of the traditional subjects (included in the survey) and a
little more than one-fourth say they used computers in only one of those ... subjects
during the year. ... it seems that the use of computers as instructional tools has not
advanced very far across the curriculum.” (p. 70)

A further source of evidence for discussing learners and IT in school subjects, are the
numerous studies conducted in different educational contexts, for example, multimedia learning
environments or aspects of group work in classrooms, or studies which focus on the effects of
IT on pupils' learning within a specific conceptual domain in a curriculum area. Niemiec and
Walburg (1992) report on results from over 250 studies on the effects of IT on pupils' learning
of particular skills and concepts, with the overall results generally supportive of the experience.

Evidence can also be found in books, monographs and conference proceedings, which
summarise and synthesise the research and theoretical perspective supporting classroom
activity linked to a particular type of use (e.g., simulations) or the role of powerful generic
software tools. :

While such reports add important information to our understanding of the potential, what can
we say about the impact of IT on teachers and pupils activities and achievements across
subjects and over time in the world of 'typical’ schools? Has the acquisition of resources been
'cost effective’ in terms of pupils achievements, or are the results found in the literature only
possible in restricted and highly supported contexts? The UK Department for Education (DfE)
attempted to address this question through a large scale longitudinal investigation - the ImpacT
study. ,

The IzhpacT research (England and Wales)

The ImpacT study, "An evaluation of the impact of Information Technology on children’s
achievements in primary and secondary schools” (Watson, 1993), was carried out by a team of
researchers in the Centre for Educational Studies, King’s College London. The focus of the
work was on pupils’ learning and classroom activity involving IT in four school subject areas -
mathematics, science, geography, and English - at three age levels - 8-10, 12-14, and 14-16,
designated here in terms of the initial year, i.e., year 4 (Y4), Year 8 (Y8) and year 10 (Y 10).
Each age cohort, with some exceptions, was followed for two years. A

The work was designed to extend our understanding from earlier research to include
longitudinal effects within school subjects, cross-subject considerations of general aspects of
classroom use of IT, and the provision and use of hardware and software resources. These
were integrated to address a range of issues encompassing learning, pedagogy, and school
organisation. The ImpacT results from the main component parts were linked to enable the
research team to address three main questions:

« Pupils’ Learning: did IT make a contribution?

« Pedagogy and Practice: what can we say about the planning and practice of teaching to
incorporate IT?

« Schools’ Organisation: what were the demands of IT on the schools?

My intent here is to focus on an aspect of the first question: the impact of IT on mathematics

learning, although findings from the second question will be used in the discussion relative to
how we might move forward. Details on the research design and methodology are given in
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Johnson, Cox, and Watson (1994) and some selected outcomes are reported in Johnson
(1995a). Full details on all aspects of the work are given in the main report (Watson, 1993).

The study included data collected from over 2300 pupils from 87 classes in 19 LEAs,
distributed throughout England and Wales. The classes were chosen as matched pairs, all
classes being nominated for their good teaching and curriculum delivery, but one of each pair
made regular use of IT (HiIT), while the other (LoIT) did not. Three kinds of data were
collected: -

« An assessment of pupils’ achievement of specific learning tasks and skills, through
two administrations of specially designed subject-focused assessments to the
matched pairs of classes. The assessments were administered as posttests twice
during the study, once during the first year and again near the end of the second year
(the mathematics tests are designated as MR1 and MR2 in the discussion which
follows). Additionally, some of the pairs, and some of the HiIT classes were the
focus of eight topic-specific mini-studies, and all pupils took a final test for IT
concepts and skills. Soon after the classes had been chosen, all pupils also took a
general reasoning test; to be used as a pretest in the research and to provide a check
on how well matched the two classes in each pair were (this is designated as AHI,
primary, and AH2, secondary).

« Five in-depth longitudinal case studies in HilT classes focused on classroom
processes and pupil interactions. Classrooms were observed, pupils and teachers
were interviewed and documentary evidence was gathered to illuminate classroom
realities. Qualitative analysis was based on those themes and issues that emerged
from the data across the five studies.

« IT resourcing and use was monitored throughout by the regular returns of
questionnaires and data sheets from the teachers and pupils in each class.
Hardware and software provision, pupils’ IT use in ImpacT subjects and across all
subjects, and pupils’ extra-mural use of IT were analysed descriptively by classes,
age-cohorts and subjects. ’

In the case of mathematics the ‘assessment of achievement’ and ‘IT resourcing and use’ data
were from matched pairs of classes in each of the three age groups — six, eight, and eight,
representing three or four matched pairs in each group, Y4, Y8 and Y10 respectively. In
addition a comparative HiIT-LoIT mini-study was conducted — this involved the role of Logo
programming in the study of angles (see Johnson, 1995a, for a report on this study). As
indicated above, the case studies were treated as a whole with the focus on general themes
across the five studies (one of which was a secondary school mathematics classroom).

Selected results - pupils' learning. Within the limitations of the study, the answer to the first
research question was yes, IT did make a contribution to the learning of
mathematics, but the contribution was not consistent across age bands or
classes within an age band. Group data for each age cohort are given in Table 1. When
the results were adjusted for the differences in ability of the classes the Y4 and Y10 HilT
classes scored significantly better (p<0.05) on both administrations of the mathematics
assessments.
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Table 1 - Lo- and HilT Group Performance: AH1, MR1 and MR2,

4 AH1 MR1
Group nd mean sd mean sd
HilT 70 24.41 8.21 8.20 3.29
LoIT 93 26.33 7.69 ~7.51 3.45
MR2
HilT- 59 24.61 8.57 10.39 4.00
LoIT - 69 26.35 7.85 9.26 4.00
8 AH2 MR1
Group n mean sd mean sd
HilT 90 63.18 13.40 18.46 6.20
TolT 95 58.85 | 1247 | 1687 | 5.20
' MR2 '
HilT 62 64.10° 12.89 23.10 6.09
LoIT 60 57.98 13.14 21.50 5.98
Y10 AH2 MR1
Group - n mean sd mean sd
HilT 86 62.12 11.48 19.33 4.59
LoIT 69 58.39 9.40 15.45 3.52
- MR2
HilT 68 63.28 11.63 21.75 4.56
LolIT 42 58.79 8.91 19.55 4.11
a Pupils with both AH pretest and a corresponding MR1 or MR2 posttest score .

While the results on the mathematics reasoning assessment for the Y8 cohort indicated no
significant differences, the ‘Angles’ mini-study conducted with two classes in this age-group
did yield highly significant differences on both an immediate ‘angles’ posttest and a retention
test given 8 months later (Johnson, 1995b). The results provide strong support for the
inclusion of Logo turtle geometry programming, both during the study of angles and angle
relationships and as an on-going activity in school mathematics at this level.

However the generally better performance of the Hil T groups mask considerable variation
between the groups, and the main proportion of the increase in scores came from a small
number of the HiIT classes. Access and use in these classes suggested there may
well be some minimum threshold of IT use for any detectable impact on
mathematics attainment. This was particularly noticeable in the Y8 Hi- and LoIT matched
pair involved in the angles mini-study (this HilT class also out-performed all other classes in
the cohort on MR2, but this performance was offset by the lower performance of the other
HiIT classes in the cohort).

Table 2 below provides an indication of frequency of access of pupils in each of the ImpacT
mathematics classes. For the ImpacT sample across all four subjects and age groups, very few
class median scores for IT use in subject for any one term, on a scale of 0-4, were 3 or higher,
where 3 represented pupil use of the computer in the main subject at a frequency on average of
once each week, and 2, for example, represented use between three and five times per term.
Returns from 70 classes were included in the analysis, and of these, nine attained a median
score of 3 or above for at least one term - these comprised seven from mathematics and two
from English. From these data it would appear that the notion of frequent use of IT
in ImpacT classes throughout the country during the period of the research
was still far from being achieved. [And the issue here is are we really coming close to
what might be required?] ‘
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Table 2 - Median Scores? for Class IT Use in Mathematics; Y4, Y8 and Y10

LoIT HilIT

Class Number| 2 4 6 1 3D 5 7
Y4 [Max. 3 0 0 3 2 | 2
Min. 0 0 0 0 1 0

Y8 Max. 0 0 0 3 3 3 1
Min. 0 0 0 0 1 3 1

10 | Max. 0 0 0 3 2 3 1
Min. 0 0O f O 0 0 1 1

a The IT use entry is on a scale of 0-4 with 3 being once per week on average.
Maximum and minimum are for school terms with the highest and lowest median
values.

b There were six classes included in the analyses for Y4.

Information was also collected on the software used in subject. Further information on the
mathematics cohort can be found in Cox (1993). A main observation here is that in general the
software used was of an 'investigatory' nature, including programming in Logo. One
conclusion from these data, when taken with the other information, was that the IT activity in
certain classes made a significant contribution to the pupils’ achievements. Further, as indicated
previously, the results suggested that there may well be some minimal threshold of access,
both frequency and over time and type of classroom activity for such a contribution to become
apparent within the assessment schemes now utilised in classrooms, or even nationally.

The main focus of the case study research was on classroom processes. The case study aspect
of the research must be qualified in terms of the approach and method in that while the data
collection was rigorous and detailed, the analyses were designed to provide exemplification
rather than generalisations. Selected observations from the case study classes suggested some
important considerations for pupil use of IT which tended to support and extend results from
the other assessments, for example:

« computers were found to be good motivators which heightened pupils' interest and
enjoyment and were also seen to have a positive effect upon the status of the subject;

« computers aided concentration by focusing pupils' attention on the work in hand and
as a result some pupils and teachers believed that the standard of work produced was
of a higher quality than it would have been otherwise;

« opportunities to work in an open-ended way enabled pupils to become involved in
more complex and challenging learning situations beyond that typically experienced.

Further, some of the failures to detect any contributions through the use of IT may be attributed
to some of the problems encountered by pupils in the case study classes:

« difficulties in using a particular software package;
« inability to work effectively in a collaborative environment.

Selected results - pedagogy and practice. The answer to the question regarding the planning
and practice of teachers mainly involved a consideration of classroom management and
organisation and teaching styles along with aspects of hardware and software availability and
use. The results from the case studies and other aspects of the field study
indicated quite clearly that any contribution was dependent upon a range of

. factors, the most important being that of the role of the teacher.

Teachers' responsibilities were found to demand careful attention to
organisation and management, in particular the effective use of collaborative
or group work. Further, effective use of IT represented substantial demands in
terms of knowledge and understanding of, and familiarisation with, a variety
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of software in order to integrate the activity, in philosophical and pedagogical
terms, with a larger scheme of work.

The use of more general purpose software, e.g. spreadsheets, databases, and programming,
placed additional demands on the teacher, beyond that of becoming familiar with the use of the
more complex software, to include more reflection on the nature of the subject and the potential
role of such software in enhancing processes and understanding. '

Discussion

The ImpacT research has provided evidence of a significant contributions of IT to pupils’
learning of mathematics. However, the issues and problems regarding changes in the
educational system are complex and multi-faceted. Enhancing educational opportunity through
IT is no different, in that any strategy must take into account a range of needs and issues and
the fact that achieving the goals will take time. The research showed that in spite of a number of
commendable efforts and a sustained national strategy to support the implementation of IT in
education, people at all levels still need more help in formulating clear policies and strategies;
this should go beyond focusing on particular aspects of issues and problems and provide a
comprehensive and long term view to take full advantage of the potential impact of IT on pupils
learning. The reality is still a long way behind the virtual reality.

footnote

1. The membership of the NCTM Computer-oriented Mathematics Committee for the 1967
and 1968 publications included the following people: Robert L. Albrecht, William F.
Atchison, Sylvia Charp David C. Johnson, Bruce E. Meserve, John O. Parker, Dina Gladys
S. Thomas (for the 1967 and 1968 publications). The membership for the Yearbook chapter
was changed with Walter Koetke replacing Sylvia Charp.
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TEACHING MATHEMATICS THROUGH
SYMBOLIC COMPUTATION !

Zaven A. Karian
Department of Mathematics and Computer Science
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Granville, Ohio 43023
Karian@Denison.edu

Symbolic computing systems or computer algebra systems are sophisticated mathemat-
ical software packages that combine numeric, graphic and symbolic computation in a
unified working environment. Such systems have been available for almost 30 years;
however, their use in mathematics instruction has been a relatively recent phenomenon.
By today’s standards, early versions of symbolic computing systems were quite expensive
and rather awkward to use. As recently as a decade ago, a dedicated single-user symbolic
computing system (hardware and software) cost about $17540,000; today far more sophis-
ticated versions can be obtained for less than $§US2,000. The general availability of this
type of software has begun to revolutionize both the teaching as well as the the practice
of mathematics. Witness the rich diversity of publications related to symbolic computa-
tion by professional organizations (see [2], [3], and [5] for relevant publications from the
Mathematical Association of America). Commercial publishers have also become active
by releasing general and specialized texts (e.g., [1] and [4]) on symbolic computation.

The purpose of this presentation is to introduce you to the symbolic computing system
Maple and to show, through examples taken mostly from introductory undergraduate
mathematics, the variety of pedagogic uses that can be made of Maple. Of course, the
use of symbolic computation is not limited to introductory courses. At our institution we
use Maple as we teach calculus, linear algebra, differential equations, numerical analysis,

and probability and statistics.

1. Basic Features of Symbolic Computing Systems

I was advised by the organizers of the conference not to assume that the participants
would be familiar with Maple or with any symbolic computing system. Accordingly,
[ will start by describing the most elementary features of Maple. To begin with, and
to no one’s surprise, Maple has basic arithmetic capabilities. To understand the Maple
interaction shown in Figure 1, you need to know that

e the “>” symbol indicates input to Maple (i.e., what the user enters) and portions
not marked with “>” are responses to the preceding input.

ISupported by grants from the Fund for the Improvement of PostSecondary Education (FIPSE grant
P116B30079) and the W. M. Keck Foundation.
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e ifactor stands for integer factorization; isprime inquires whether the given ar-

gument is prime; consistent with standard mathematical notation, 3! !!

is the

factorial of the factorial of 3 factorial; nextprime gives the first prime following
the argument; Pi represents 7; and evalf converts an expression to floating-point
form—in particular, evalf(Pi,500) gives the first 500 digits of 7.

Figure 2 shows how algebraic expressions may be manipulated symbolically. In this

interaction “:="

is used to attach names to expressions.

Thus, on the first line the

expression 1 + 1/n + 1/m is given the name a and henceforth, a will represent this

expression.
> 3%5+12; >a =1+ 1/n + 1/m;
27 a:=1+1/n+1/m
> ifactor (12345678900987654321) ; >b =1+ 1/n - 1/m;
(3)2(11)(57920960187043)(2153) =1+1/n—1/m
> a/b;

> isprime(12345678900987654321);
false
> isprime(57920960187043);
7 true
> 3ty
260121894356579510020490322708104361

000000000000000000000000000000000000
> nextprime(10%%10);
) 10000000019
> nextprime 20!; ‘
2432902008176640029
> Pi;

> evalf(Pi);

3.141592654
> evalf(Pi,500);
3.1415926535897932384626433832795028

495673518857527248912279381830119491

Figure 1. Some Numeric Features

(14+n"t4+m™ ) (1+n1 - m_l)_l
> simplify(a/b);

nm-+m-+n
nm-+m-—mn
> c:=sin(x)**2+sin(x)**3*cos(x)
+sin(x)*cos(x)**3-sin(x)*cos(x);
sin(z)? + sin(z)? cos(z)
+ sin(z) cos(z)? — sin(z) cos(z)
> d := sin(x)*cos(x);
sin(z) cos(z)
> simplify(c/d);
sin(z)
cos(z)
> q = X¥x2 + X + 1;
2+ z+1
> solve(q=0, x);

1 1 1 1
_ _1’ o ____I W
2+2 \/5, 573 V3

> subs(x=1, q);

Figure 2. Some Symbolic Features
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Symbolic manipulations, such as differentiation and indefinite integration, are also
possible-in Maple. The first part of the Maple interaction given in Figure 3 differentiates
a polynomial. This is followed by a set of commands that plot a trigonometric expression
and its derivative. The output associated with the plot command is shown in Figure 4.

> f = (Gxx**2 + 20kx - 8)*x*x5;
(522 + 2z — 8)°
> g = diff(f, x);

g :=5(5z? + 2z — 8)*(10z + 2)

> a := sin(x)**2 + cos(x);
sin(z)? + cos(z)

> b := diff(a, x);

b := 2sin(z) cos(z) — sin(x)

> plot({a, b}, x=-2%Pi..2%Pi);

Figure 3. Some Graphics Features Figure 4. Plot Output

2. Symbolic Computation in Mathematics Instruction

It should be clear, even from the very brief introduction given in the preceding section,
‘that symbolic computing systems put a great deal of power at our disposal. Our task
is to use this enormous power to address some of the more challenging problems in
mathematics education. Can we help students think about a problem in several ways—
analytically, algebraically, geometrically? Can we encourage them to experiment and
discover results even if they cannot yet prove or disprove what they may discover? Can
we get our students to become less passive and explore ideas on their own?

'2.1. Animation

Simple Animations. Animation can be used to understand, among other things, the
effect that a parameter has on an equation. One could ask a mathematically unsophis-
ticated student to make some observations regarding the value of the parameter a and
the shape of the graph of f(z) = az®. With Maple available to the student, observa-
tions of the influence of a on the graph of f(z) becomes a simple matter. with(plots);
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loads the plotting routines (more on this in Section 3) and animate(a*x**2, x=-2..2,
a=-1..1); produces animated graphs (moving pictures) of f(z) for values of a vary-
ing between —1 and 1. Similar observations can be made about other functions such
as sin(a + ) or sin(az). In.all cases, after students have observed the impact of the
parameter, they should be expected to give justifications for their observations.

Tangent Lines. For a more interesting example, suppose we have a differentiable func-
tion f(z) and we consider the manner in which secant lines connecting (a, f(a)) and
(z, f(z)) approach the tangent line to f(z) at (a, f(a)) as = approaches a. The user-
written procedure TangLine (more on user-written procedures in Section 3) can be used
to observe the convergence of the secant lines to the tangent line as z approaches a. For
fx) =22° — 92 + 122 + 2 and a = 3, for example, the animation would be achieved by
first entering f(z) as an expression and then using TangLine(f, 3, -1..5);.

Taylor Polynomials. For a final example of the use of animation, we consider the
approximation of a function f(z) by its Taylor polynomials. To study the way Taylor
polynomials of f(x) approach f(z), a sequence of Taylor polynomials could be animated
over the graph of f(x). Suppose f(z) = sin(z) and we want Taylor polynomials based
at @ = 7/2. The Maple interaction given in Figure 5 will produce the graph of f(z) with
an animation of Taylor polynomials of degree 0, 2, 4, ...,22. The choice of f(z), a, or
the degrees of the polynomials can easily be adjusted for other situations.

Notice the use of “:” instead of “;7 in Figure 5. When /“:” is used at the end of a
statement, all computations are done but the output associated with the computations are
suppressed. The command TS := taylor(sin(x), x= Pi/2, n): returns a truncated
taylor series (with remainder term). When TP := convert(TS, polynom): is applied
to this result, the remainder is discarded and a Taylor polynomial of degree n — 1 is
produced. In the loop structure of Figure 5, as k assumes values 1,2, ...,12, P.1,
P.2, ..., P.12 become data structures representing the graphs of sin(x) and a Taylor
polynomial approximating sin(z). Eventually, display plots in sequence (i.e., animates)
all of the accumulated graphs. Four of these polynomials (of degree 0, 6, 12, and 18) are
shown in Figure 6.

> with(plots):

> for k from 1 to 12 do

> TS := taylor(sin(x), x=Pi/2, 2¥k-1):

> TP := convert (TS, polynom):

> P.k := plot({sin(x), TP}, x=-3%Pi..4*Pi, -1.5..1.5):
> od:

> display([seq(P.k, k=1..12)], insequence=true);

Figure 5. Taylor Polynomials for sin(z)
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Figure 6. Frames from the Animation of the Taylor Polynomia,ls’

' 2.2. Discovering Mathematics

We know from experience that students learn better if they take an active part in devel-
oping the ideas that they are studying. Unfortunately, this is generally quite difficult to
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do in undergraduate mathematics. Most students are not ready to “discover” theorenis
or even offer conjectures. However, encouragement and guidance from the instructor and
availability of Maple can change that.

Markov Matrices. Suppose, before studying the properties of Markov matrices in
class, we ask students to explore some aspects of these matrices. We could, for instance,
give them a specific 3 x 3 or 4 x 4 Markov matrix, M, and ask them to make some
conjectures about the powers of M. Are the powers of M themselves Markov? Can
anything be said about lim, ., M"? If X is a probability vector, what can be said about
MX, M*X, M3X, ... and lim, ., M™X? For

0.5 0.25 0.375
M=1 0375 025 0.25
0.125 0.25 0.375

and X = (0.3, 0.3, 0.4)7, the Maple commands given in Figure 7 can get this investiga-
tion going.

The linear algebra package of ‘Maple is loaded first (the with(linalg): command)
and then portions of this package such as matrix and multiply are used. The multiply
command computes the product of the matrices that are given as its argument. The
entries of a matrix are specified with the matrix command; the first argument is the
number of rows, the second is the number of columns, and the numbers inside the brackets
are the entries of the matrix, listed in rows.

- A Matrix and the Adjoint of its Adjoint. For a more challenging exercise one could
ask students to investigate the relationship between adj(adj(A)) and A, where A is an
n x n matrix of real numbers (for a fuller discussion, see the paper by Auer and Muller
in [2]). A natural starting point is to look at specific 2 x 2 matrices. This quickly leads
to the conjecture adj(adj{A)).= A which is true for n = 2 but not true in general.

The next step would be to consider the general 2 X 2 case (shown at the beginning
of Figure 8—lines 2 and 3). This also leads to adj(adj(A))= A. Going on to 3 x 3
matrices, the student discovers that the expressions in adj(adj(A)) (i.e., output of line
5 of Figure 8) have become considerably more complicated. Although Maple helps with
the calculations, to most students the results exhibited by Maple will seem intractable.
Some students may need a bit of help here—perhaps they can be encouraged to look at
det(A) or to factor the entries of adj(adj(A)). With this type of a hint, they are likely
to conclude that for n = 3,

adj(adj(A)) = det(A)A.

Again, this conjecture is valid for a specific n but is not true in general.

The expressions representing entries in adj(adj(A)) get even more complicated for
n = 4. But factoring and looking at det(A), leads to adj(adj(A))=det(A)*A. The
general result, not at all simple to observe, is

adj(adj(A)) = (det(A))"2A.
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> with(linalg): > with(linalg):
> M:=matrix(3,3,[.5,.5,.375,.375, > A := matrix(2,2,[a,b,c,d]);
.25,.25,.125,.25,.37511); > B := adj(adj(A));
> M2 := multiply(M, M); > A = o
> MB 1= multiply (M, M2); matrix(3,3,[a,b,c,d,e,f,g,h,il);
> M4 := multiply(M2, M2); > B := adj(adj(a));
, : > for i from 1 to 3 do
> X := matrix(4,1,[0.3,0.3,0.4]); > for j from 1 to 3 do -
> X1 := multiply(M, X); > factor(B[i, jl);
> X2 := multiply(M2, X); > od
> X3 := multiply(M3, X); > od
Figure 7. Markov Matrices -Figure 8. A and adj(adj(A))

2.3. Open-Ended Explorations

Our ambition for our students is to develop them into independent mathematical thinkers.
Unfortunately, most of our students do not share this vision and as is the case with most
lofty objectives, we fail more often than we succeed. Nevertheless, this is a noble and
worthy goal. One of the steps in making students independent is to introduce them to
interesting (not necessarily difficult) problems and ask them to investigate the problem.
This is very different from what we typically do when we teach mathematics: direct them
to specific known results by posing detailed questions. Here is the type of problem I am
thinking of.

Circular Coordinates. For a given point (i,y) in 2-dimensional Euclidean space,
consider the two circles centered at (z,0) and (0,y) with respective radii |z| and |y|.
These circles intersect at (0,0) and at (u,v) (in degenerate cases (u,v) will be (0,0)).
The coordinates u and v are called the circular coordinates of the original point (see [6]
for a more detailed discussion). Without providing them with a list of questions, we can
ask our students to study, individually or in a small group, the mapping (z,y) — (u,v).
Initially, most of them will be at a loss—their intuition will be limited and they will not
know what questions to ask. They will discover that asking interesting questions is as
important as as answering questions asked by someone else.

After some initial difficulties most undergraduate mathematics students, with the
help of the graphics features of Maple, should be able to pose some questions: What
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sets are invariant under this mapping? What do the images of some simple objects such
as straight lines look like? (Figure 9 shows the images of parallel straight lines and.
Figure 10 shows the images of straight lines with a common intercept.) How might the
images of straight lines be characterized? Can the idea of this mapping be generalized

to 3-dimensional space, perhaps to n-dimensional space?

10'{
@
-10 -5 Odo 10
—5'-
-104
Figure 10. Images of Lines
Figure 9. Images of Parallel Lines with Common Intercept

3. So}ne Advanced Features

The examples of the preceding section should have given you some sense of the general
capabilities of symbolic computing systems. Actually, most symbolic manipulators in use
today can be used in connection with a broad spectrum of mathematical and scientific
problems. Maple, for example, has packages that deal with special areas of mathematics
(we used the plotting package in Section 2.1 and the linear algebra package in Section
2.2—Figures 8 and 9). The packages listed in Figure 11 should give you an idea of the
more special features of Maple. .

Most modern symbolic compﬁting systems also have fully developed programming
languages embedded within them and all commands that are used during an interaction
follow the syntax rules of that language. It is possible, therefore, to extend the capabilities
of the software by adding to it user-written procedures that are of special interest. This
was done in connection with the animation of the tangent lines in Section 2.1. A listing of
the TangLine procedure is given in Figure 12 for these who are curious about the Maple
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programming language structure. The language, with its Pascal-like syntax, is built on
the Maple platform and it derives its strength from the presence of the existing Maple
procedures. '

numapprox combinat DEtools difforms Gauss
GaussInt geom3d geometry grobner group
liesymm linalg logic networks np
numtheory orthopoly padic plots powseries
projgeom simplex stats student totorder
Figure 11. Maple Packages
Tangline := proc(expr:algebraic, a:numeric, R:range)

local var, Expr, x, DE, slope, line, b, A, B, Line:
‘with(plots, animate):

var := op(select(type, indets(expr), name)):
if nops([var]) = 0 or nops([var]) > 1 then )
ERROR(‘The first argument must have exactly one variable in it‘¢) fi:

Expr := subs(var=x, expr):
DE := diff(Expr, x):

A:= subs(x=a, Expr):

slope :=.subs(x=a, DE):
line := A + slopex(x-a):

B:=subs(x=b, Expr):
Line := A + (B-A)*(x-a)/(b=a):

animate({Expr, line, Line}, x=R, b=a..rhs(R)):

end:

Figure 12. Maple Procedure for TangLine
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Introduction

The title "Better Teaching and Learning in Elementary Mathematics" is the focus
point of the equalization of excellent human education. Equalization of excellent human
education will contribute to the peaceful and equal co-existence and co-prosperity of all
peoples in the global community. Addressing this issue is generally recognized as one of
the most difficult problems facing many nations, including affluent societies. I have been
pursuing this task since 1955 at the requests and with the support of a number of national
and international, governmental and non-governmental agencies and organizations. This
paper aims to present a comprehensive approach to this task based on research and
development which have been conducted by the author and his colleagues for the last 40
years. [OHI, pp.9-35]

This approach has been pursuing improvement of the quality of teaching and learning,
the efficiency and productivity of management in education and industries related to
educational resources and services, and the creativity of research and development related
to human education. The core of this approach is an automation system of job
performances in generating and processing data to be carried out mainly by high level
professionals engaging in education. We call it Data Generating Processing and System
(DGPS). DGPS is an integrated system structurally related to all fields which can facilitate
human education including technology. [OH2, pp.107-110]

This paper will be focused on the teaching and learning of elementary mathematics,
based on the actual experience in Korean elementary schools, with sample illustrations.
Later at the workshop, the processes of teaching and learning, and generating and
processing data will be demonstrated.

I. The Basic Concepts related to the Illustrations

The basic concepts which are directly related to the illustrations are 'teaching and
learning', 'learning characteristics of learner’, 'contents of learning' and 'goals of education'.
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I.1 Steps in Teaching and Learning

In elementary school mathematics education, the teaching is the role of teachers.
They help learners learn. This role is performed by guidance, provision of means, and
supervision. Learning is the activities of the learner. He is the 'subject' of learning
activities, and not an 'object' of teaching activities. In such learning, the first step of
learning is to learn by learner as teacher teaches. This is learning in teaching-learning
process, namely 'learning in teaching-learning' ('L in T-L). The second step of learning is to
stabilize learning based on the 'L in T-L', namely 'stabilizing learning' ('S-L"). The third step
of learning is mastering stabilized learning, namely 'mastering learning' (‘M-L'"). The fourth
step of learning is to apply what a learner has learned to the elective areas of
learning, (higher level) namely ‘elective learning' ('E-L'). In the 'L in T-L', the direct
teacher's role, as a whole, is essential. But in S-L, M-L and E-L stages, the individual
learner learns independently with the means properly provided. DGPS supports learner's
independent learning in S-L, M-L, E-L, through the system including technology, with the
indirect guidance and supervision of teacher. [OH3, pp.40-45]

I.2 Learning Characteristics of Learner

In school education where learners learn according to curriculum, the learning
characteristics of a learner are defined as follows: [OH4, pp.227-241]

LCH=F(S.D.R))

LCH : Learning Characteristics of Learner
F : Functions of learning of learner
Functions are classified into three, performance function(p)
facilitation function (f) and creation function (c).
S : Starting point of learning by a learner
D - Ability of learning by a learner in terms of difficulty level
R : Time spent in learning of learner

L3 Sequenced Contents of Learning

Contents of learning are sequenced by school levels, grades, terms (two terms per
year in Korea), units and learning themes. In case of elementary school mathematics,
contents of learning are sequenced, for instance, 6th grade, first term, 4th unit, 5th
learning theme. This is coded as 610405. Learning themes are further classified into three
sub-learning themes, namely common learning (CL), previous learning (PL) and elective
learning (EL) themes. Common learning themes are those contained in the text book
which are generally classified into four levels. The first level is coded as C-3. The second
level, C-2; the third level, C-1; the fourth level, CT. The previous learning themes are sub-
learning themes preceding the next learning theme according to the sequences of learning
themes. They are coded as P-1, P-2, P-3, P-4 etc.. The elective learning themes are those
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which provide learning tasks for application of common learning themes sequenced in
terms of difficulty level. They are coded as E-1, E-2, E-3, E-4 etc.. [OHS5]

1.4 The Goals of Human Education

The goals of human education are classified into three. The first goals are ideal aims
which clarify 'education for what and why'. They serve as the basic direction of
education, basic criteria for determining overall scope and classifying it into areas of
educational activities. They further serve as basic principles to be applied to the processes
of educational activities. They are defined in the related laws, regulations and curriculum.
The second goals are content objectives which clarify 'what to educate'. Based on the
ideal aims, they serve as criteria for determining scopes and classifying them into detailed
areas of learning contents such as elementary mathematics. They further serve as criteria
for sequencing detailed areas of teaching and learning such. as grade-term-unit-theme
(610405) including the principles to be applied to the processes of teaching and learning.
They are defined and described in the curriculum and the teachers manuals and illustrated
in the textbooks. The third goals are progress targets which clarify 'how much to educate'
based the sequences within the criteria and framework of ideal aims and content
objectives.

The importance of such specifications of goals of human education is to make clear
'why', ‘'what' and 'how much' to teach and learn, so that both the teacher and the learner
can be consistently aware of them. Such awareness in the processes of teaching and
learning facilitates development of the intellectually, morally, aesthetically, religiously
sound personality of learners. In addition, it promotes human health as a whole and normal
and able life and activities of learners as members of communities in all fields at all levels.
[OHS6, pp.56-57]

IL. Illustrations of Better Learning by a Sample learner

This is to illustrate DGPS, of which technology is an integral part. DGPS supports
improving the quality of teaching and learning. Here a sample learner is illustrated in the
actual processes of teaching and learning. He has 5 weeks experience of learning with a
teacher who has one year experience of teaching supported by DGPS. The sample learner
is one of 44 learners in his class. He has learned well 6104 and descriptions will be made
stage by stage. [OH7]

IL.1 Stages in Teaching and Learning illustrated

In the first stage of regular teaching and learning, the sample learner selected E-2,
responded to 10 learning tasks, time spent per task was 26 seconds, performance index -
was 100. He selected E-2 based on the result of the previous class hour. The result of
previous regular T-L, 15 in number of learning tasks, 35 seconds in time spent per task, 93
in peiformance index. He was not satisfied with the result. He decided to make
improvement after regular T-L of previous class hour through homework. He actually
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made improvement by reducing time spent per task from 35 seconds to 26 seconds and by
raising performance index from 93 to 100.

In the second stage of regular teaching and learning in classroom, the teacher starts to
teach C-3, that is, sub-léarning theme of common learning in group relationship with
learners. The teacher teaches to help learners 'L in T-L'. The sample learner completed 'L
in T-L' of C-3 before the teacher stopped teaching 'L in T-L' He started 'S-L' and
continued to 'M-L'. He learned 7 learning tasks, spent 39 seconds per task with
performance index 86. Through similar processes, he completed the rest of the sub-
learning themes of common learning up to CT. The results were, in C-2, 7 tasks-73
seconds per task-100 performance index, in C-1, 15 tasks-24 seconds per task-80
~ performance index, and in CT, 8 tasks-32 seconds per task-63 performance index,
respectively. Since the passing standard of performance index is 80, his 'M-L' in CT was
considered not good enough.

In the third stage of regular teaching and leafning, The sample learner passed P-1,
identifying that he had no learning deficiency.

The fourth stage of the regular T-L in classroom is for individual independent elective
learning. By that time over 90% of the learners in the class learn independently, selecting
sub-leering themes suitable to him/her. While most of the learners are learning
independently, the teacher helps directly those who have not completed 'L in T-L".

The sample learner actually selected C-1 and CT in individually independent learning
to make up M-L in common learning. He made improvement, in C-1, 5 tasks-17 seconds
per task-80 performance index, reducing time spent per task from 24 to 17 seconds. In
CT, 5 tasks-29 seconds per task-100 performance index, reducing the time spent per task
from 32 seconds to 29 seconds and raising performance index from 63 to 100. With this
improvement, he continued to learn E-1. 5 tasks-39 seconds per task-80 performance
index. Thus he can master one stage beyond the text book level. And he challenged E-2,
but the time before the end of regular class hour was not sufficient for him to master E-2.

In"the fifth stage of regular T-L in classroom, the teacher is engaged in overall
analysis of T-L, the interpretation of the T-L processes, and to identify what are the things
to be further improved. Each individual learner identifies tasks for improvement,
application and creative activities to be carried out after regular school teaching and
learning activities. The sample learner decided to improve learning E-2, and he received
suitable home work materials. .

I1.2 Achievement of Goals

The sample learner has achieved the goals of education quite well, with balance and
consistency in the regular classroom teaching and learning. In the first stage, he identified
achievement of home work following 610404 as E-2. In the second stage, he passed the
standard C-3, C-2 and C-1, but he did not pass CT. On the third stage, he identified that
he had no deficiency for learning 610406. In the fourth stage, he improved CT and, in
addition, he passed E-1. In the fifth stage, he planned to study E-2 in homework with the
materials provided by the school.
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With reference to the functions of learning(F) as the first item of characteristics, he
started learning with suitable help of teacher in 'L in T-L', that is, he started learning with
performance function(p). And he learned independently S-L, M-L, E-L, that is, he
continued learning with facilitation function(f). Further he laid foundation for creative
learning by extending to E-L, namely with creation function(c). - ]

With reference to the starting point of learning(S), he had no deficiency. With
reference to the ability of learning in terms of difficulty level(D), he was ready to learn E-
2. The time spent per task of sub-themes of common learning(R) is 28.2 seconds, 8 tasks
per stage(CLN) and 96.5 of performance index(CLP) in average per stage. He learned
concepts of learning themes from C-3 to E-1 in the process of M-L, so he could write
those learning tasks in written form, He had learned altogether 75 learning tasks in 33.25
minutes independently using the system during the regular class hour of 40 minutes. All
through the learning process, he made no error in the utilization of system(US) and made
no error in the selections of suitable learning tasks(SUL).

I1.3 Learning Characteristics of the Learner in Code

These lengthy descriptions of 610405 are expressed below in a simple form using code.
LCH-24=Fc(S-0, D-2.00, R-28, CLN-8, CLP-96.5, CF-el) US-100, SUL-100

Such descriptions are produced usually in unit bases per class for improving school
teaching and learning, and a copy of the unit 6104 is presented in table 1 and 2. In the
copy, several more items are added. The first item is ID which is identification code
designated to learners. In order to protect privacy of the learners, the number system and
code systems are designed in such a way that the specific learner may not be exposed in
the data processing processes. The second item is R which expresses time spent in learning
per task. R in the copy is expressed by index in which 1.00 is average of the class. In case
of the sample learner, R is 0.65 which expresses his time spent per task is 65% of the class
average. The third item is CF, concept formation learning. 'el', 'cl' and '0' expresses concept
formation learning of 'EL', 'CL' and no concept formation learning. The fourth item is
percentile which is added in cases of 1Q, S, ED, R. CLN and CLP. The fifth item is a
correlation chart which includes correlation between 1Q, S, ED, R and CLP.

11.4 Brief Analyses and Comments

“As indicated in the correlation chart, correlation between all the variables are high
with level of significance P < .001, ranging from .9121 to .6054. The high correlation
empirically suggests that all the learners achieved self-realization quite high. From the
normative view, the higher are the correlation the higher the level of self-realization of the
learners.
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- II1. DGPS Support to improve The Quality of Teaching and Learning

DGPS supports improving the quality of teaching and learning in school education
within the integrated system of total human education which is a sub-system of the society.
Within such context, DGPS supports improvement of the quality of teaching and learning
in mathematics through Education Service Automation Network for School Teaching-
Learning in Elementary Mathematics. We call this DGPS supported ESANET-STL-EM
system. Basic units of the system are classroom systems of schools in which file-servers
and terminals for learners are networked by Local Area Network (LAN) system. In the
present stage, the Central Support Service Center (CSSC) supports area service centers to
support school units through Wide Area Network (WAN) system. Such systems reduce °
the burden of teachers as much as possible and help teachers concentrate on performing
their professional jobs. For teachers, such a system improves teaching, on the one hand,
and improves the learning of learners in 'L in T-L', 'S-L', 'M-L' and 'E-L' on the other. In a
word, they provide means of teaching and learning, and they help both teachers and
learners to concentrate on teaching and learning. Thus automated systems support better
teaching and learning through data generating and processing.

(1) DGPS provides sufficient learning tasks of sub-learning themes suitable to each
learner. 15 tasks per sub-learning themes from the first step to fourth step, except in
the third step, each with 3 tasks per sub-learning theme. This is performed by ESA
Learning Tasks Generation (ESA-LTG) system which is an integral part of DGPS. In
addition, DGPS provides printed materials for teachers to prepare lesson plans and
teaching for 'L in T-L', and, for learners, out of regular class learning in 'S-L', 'M-L/,
'E-L'. This is performed by ESA Automated Manuscript Writing (ESA-
AUTOMAWS) system which also is an integral part of DGPS. Both systems are
supported by Data Generating Base (DGB) of DGPS. For the illustrated case of 6104,
76,768 tasks are necessary to be generated so that any learner has enough tasks which
are suitable to him/her in 7 class hours. In addition, 5,736 tasks covering all sub-
learning themes in printed materials are generated. Both systems are to generate
82,504 tasks in all. This is the primary level generating data.

(2) With the provision of the learning tasks for 6104, learners of the illustrated class
actually learned with 14,261 tasks provided by ESA-LTG system and 3,942 tasks
provided by ESA-AUTOMAWS. As soon as the learner learns with each task, the
system checks the result of the learning giving both audio and visual signals indicating
'correct' or 'no'. In case of 'no', the system provides an opportunity to find where the
error is, to correct the error, and to check whether one made the right correction or
not. This is designed to serve as a hint for recalling what a learner learned in 'L in T-
L. All through the processes, data are generated and installed as data indicating what

_ sub-themes, how many tasks per each sub-systems are learned, and how much time 1s
spent in each task classifying right responses and errors. In case 6104, the number of
cases were 14,261 in all. Those data are generated and installed as generated data.
These are the secondary generating and primary processing of data.
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(3) Those data generated, in the form of learning tasks, in the form of results of each
learner, and in the form of installed generated data, are processed at the end of regular
T-L in class in the form of summaries of results of each learner. They are usually in
the form of a summary of all five steps, to be basic hints for planning by both teacher
and learners in the following teaching and learning. These are the tertiary generating
and secondary processing of data. ' ~

(4) Those data generated and processed in the school units are collected and stored in the
DGB of CSSC through WAN. The CSSC processes collected data of learning units as
~ illustrated earlier and provides them to the schools. School teachers and
administrators use them for training provided by the CSSC to improve teaching and
administration creatively. The provision of supports through such systems are
essentially for teachers and administrators to provide the best possible means to
improve both teaching and learning. Such provisions support teachers to concentrate
on their own professional activities including teaching in 'T in T-L'. And for individual
learners to proceed through well balanced learning activities including S-I, M-L
and E-L independently with indirect guidance of their teacher with well grounded
bases. The processing of the data by CSSC is primary level generating data at CSSC
for creative job performance by all professionals related to education.

(5) DGPS supports cooperation among school teachers and administrators. It further
supports professionals in related fields of education including professionals in
educational administration, management of industries of educational resources and
services, research and development in education. DGPS supports those professionals
through processing and generating data without additional input process.

IV. Improvement of Educational Administration and Management

The role of administration and management is to  promote and facilitate job
performances of educational professionals in schools. And the role is performed by
consultation ‘or counseling, provision of personnel and material resources and supervision
of school teachers and administrators. Since school teachers and administrators are
professionals, they perform their professional jobs corresponding to the job performance
environments, including provision of means, resources and economic support. DGPS
supports educational administration and management with focus on provision of means
and conditions improving job performance environments.

Under the current situation in Korea, most of the classes in urban areas from grade 1
to 12 are organized with around 40 learners, due to population migration trends. In rural
~ and remote areas, classes are smaller, with less than 20, and some in multi-grade with 2 to
3 grades. The large classes are in advantaged areas and smaller classes are in
disadvantaged areas. Consequently there is a serious educational gap between large classes
in advantaged areas and smaller classes in disadvantaged areas. In one school with DGPS
support in a disadvantaged area, achievements of goals are at the same level as those in
urban areas. This suggests that the number of learners per teacher can be increased up to
80-100% in comparison with advanced countries. This means DGPS may improve raising
efficiency in educational management.
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V. Improving Management of Industries related to Education

According to the views of human education, education is pursuing values acceptable
universally by developing and utilizing the best possible means. In other words, improving
management of production, circulation and consumption of educational means is to
contribute to the realization of the values. Based on such views, DGPS is designed to
support reducing unit costs of educational means including S/W, H/W and services. Thus
DGPS improves educational environments with the same amount of educational expenses.

In case of S/W, through Authoring Support System, which is one of the sub-systems
of DGPS, it supports reducing expenses to one fifth in average. In case of H/W, DGPS
supports, through ESANET-STL system, reducing expenses to one third in comparison
with consuming PCs available in the market. For educational services, DGPS supports
reducing expenses at least to one tenth. In other words, DGPS directly supports raising
efficiency and productivity in educational management and indirectly ploneermg the
mdustnes related to education.

VI. Facilitation of Creativity in Research and Development

Equalization of excellent human education is very important and it should be pursued
consistently in spite of difficulties. A sense of mission and responsibility made me and my
colleagues pursue it for the last 40 years. And it inspires us with continuation of R & D
and demonstrations for coming decades.

It is imperative to improve creatively the quality of teaching by training creative
school professionals and educational administrators and managers of industries directly
related to human education. DGPS supports the improvement of the quality of teaching,
even in classes with more than 40 learners in urban areas as well as small and multi-grade
classes in disadvantaged areas. DGPS supports improving educational environments by
creative educational administration through reducing unit costs of educational resources
and services. For these creative developments in human education, DGPS - facilitates .
creativity in research, development and demonstration for all professionals engaging in
human education.

VII. Perspectives

Looking toward the coming age of cyberspace and the global village, we can assure
‘ourselves that we can equalize excellent human education. With elementary school
mathematics as a case for illustration, I have attempted to describe raising the quality of
teaching and learning, school management, management of industries related to education
and creativity of R & D in education through DGPS. Though it is limited to school
elementary mathematics, considering the fact that one hundred million children are
entering 1st level schools every year, equalizing excellent education in elementary
mathematics can be a good starting point. The author, the representative of copyright
holders, has been preparing for the dedication of royalty of DGPS supported ESANET-
STL-EM basic system. He is determined to assure that the dedicated system is utilized
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only for the equalization of excellent human education that contribute to the equal and
peaceful co-existence and co-prosperity of global community members. [OH8]
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Computer Algebra — Where we are?, Where we go?

Tateaki Sasaki

Tnstitute of Mathematics, University of Tsukuba
- Tsukuba-shi, Ibaraki 305, Japan

Abstract

We list some epoch-making events in computer algebra in 1, point out prominent
features and thema of algebraic systems in 2, prominent features and thema of algebraic
algorithms in 3, and mention where we will or should go next in 4. '

0 Brief summary of the talk

After the birth in about 1960 [Appl, Systm], computer algebra has attained astonishing
development in these 35 years. By middle 1970’s, elementary operations on polynomials and
rational functions, such as GCD and factorization [Factri], have already been made sufficiently
efficient, and remarkable advancement has been attained also for most mathematical operations
that non-mathematics course students learn, such as indefinite integral [IntDE] and infinite
series. After 1980, algorithm research went to higher mathematics, such as ideal and ring
theory [Book], and is now building a wonderful realm there. The fruit of algorithm research has
immediately been taken into computer algebra systems, and many powerful and useful general-
purpose systems have been constructed so far: REDUCE and MACSYMA representing 1970’s
- 1980’s, and Axiom, Maple and Mathematica representing late 1980’s - 1990’s [Systm]. These
systems are now used by not only researchers but also teachers and students. The application
areas of computer algebra are now ranging from mathematics and physics to most of theoretical
science and engineering and even to economics [Appl]. Summarizing the conventional computer
algebra, we may say as follows.

[Computer Algebra so far] = [Mathematics] 4 [Efficiency]
= Computerization of Mathematics

" Then, where will computer algebra go ? Undoubtedly, computerization of mathematics will
go further, which is, although satisfactory from the viewpoint of mathematics, never satisfac-
tory from the viewpoints of users. The reason is lack of practicality. For example, for algebraic

“equation, conventional computer algebra tries to find algebraic numbers as exact solutions,
which is usually quite difficult and requires much time. However, for many users, algebraic
numbers are useless; they want to know approximate values of the solutions. In applications,
getting approximate answers quickly is often much more important than getting exact answers
after many hours of computation. Practicality is a leading principle in numeric computation,
and being guided by this principle, numerical analysis has built a unique realm. Recent re-
searches of the author’s group revealed that the principle of practicality also leads computer
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algebra to a new and fruitful world which we call approzimate algebra [AppAlg]. Therefore, the
author proposes the following new way.

[Computer Algebra from now] = [Math.]+ [Effic.] + [Practicality]
= Infrastructural Technology

1 Epoch-making events in computer algeba

The following is only an incomplete and restricted list of the events. For more details, see
the selected bibliography at the end of this paper.

1959: computer manipulation of polynomials in celestial mechanics [Appl].

1961: computer program calculating freshman-level integrals (Slagle [Systm]).

1965: FORMAC (Sammet [Systm]), first general-purpose system.

1965: Grébner basis construction algorithm (Buchberger [Book]).

1966: subresultant algorithm for polynomial GCD (Collins [Book]).

1967: univariate factorization algorithm over Z, (Berlekamp [Factri]).

1969: integration algorithm of elementary functions (Risch [IntDE]).

1969: univariate factorization algorithm over Z (Zassenhaus [Factri]).

1968 — 73 : large-scale application to quantum electro-dynamics [Appl].

1972 - : REDUCE (Hearn [Systm]), world-wide distributed system.

1973 - 90 : MACSYMA (Moses, et al. [Systm]), big mathematical system.

1973: modular multivariate GCD algorithm (Moses and Yun [Book]).

1973: multivariate factorization algorithm (Wang and Rothschild [Factri]).

1974 - : CAYLEY/Magma (Cannon [Systm]), a system for group theory.

1974 — : SCRATCHPAD/Axiom (Jenks et al. [Systm]), system with abstract data-types.
1975: sylindrical decomposition algorithm (Collins [Book]).

1978: geometry-theorem proving with characteristic set (Wu [Book]).

1979 - : u-MATH/Derive (Stoutemyer and Rich [Systm]), system on micro-computer.
1980 — : Maple (Geddes et al. [Systm]), compact and portable general-purpose system.
~1975 — : application of Grobner basis to commutative algebra [Book].

~1980 — : study of automated geometry-theorem proving [Book].

~1985 — : study of parallel execution of algebraic computation [Book].

1987 — : Mathematica (Wolfram et al. [Book]), symbolic-numeric-graphic system.
1989 — : study of approximate algebra [AppAlg]. ‘

2 Features and thema of algebraic systems

Modern and general-purpose algebra system is self-containing in that it is equipped with
" very low to high level mathematical operations, pretty complicated because it contains many
data-types categorized variously, it is a long-term growing system, and is an integrated system
with facility of symbolic, numeric and graphic computations.

2.1 Self-containing system

In numeric computation, the programming language system, such as FORTRAN or C,
provides us with many numeric operations, such as evaluating elementary functions, solving
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linear and algebraic equations, computing eigen-values and eigen-vectors, calculating various
kinds of definite integrals, and so on. In algebraic computation, the programming language
system, such as Lisp or C; does not provide us with any algebraic operation, and each algebra
system must be equipped with even very low level operations, such as polynomial arithmetic,
polynomial GCD, etc. T herefore, general-purpose algebra system becomes of large-scaled. In
fact, more than 100 man-year power has been devoted to develop MACSYMA.

2.2 Many data-types categorized variously

A mathematical object is usually categorized variously. For example, polynomial, the most
common data-type in computer algebra system, may be categorized as either an element of
a ting over Z,, Z, Q, Q(a), R, or C (may be represented approximately by floating-point
numbers), an element of a field, of an integral domain or of a Euclidean domain, etc. In addition
to polynomials, we must also handle algebraic numbers, algebraic functions, rational functions,
and many other mathematical objects. Furthermore, these many data-types must be organized
hierarchically. Thus, a general-purpose computer algebra system is quite complicated.

One idea to organize many various algebraic data-types hierarchically is that the system
itself does not prepare every necessary data-type but it provides the user with a facility of
defining new data-types hierarchically. SCRATCHPAD/Axiom has been constructed on
this idea. However, providing such a facility itself is not easy. How to handle many various
data-types is still a problem in designing algebra system.

It should be commented, however, that data-types may not be categorized so finely as
mentioned above in the system for scientific and technological applications.

2.3 Long-term growing' system

In each algebra system, there is a loose hierarchy on algorithms, too; at the lowest level we
have algorithms on numbers, such as integer GCD and factorization, at the second lowest level,
we have many algorithms on polynomials, such as polynomial GCD and factorization, and so
" on. In addition, there is a hierarchy among algorithms on each mathematical operation; for
example, [Univariate factorization over Z,] < [Univariate factorization over Z] ~ [Univariate
factorization over Q(a)] < [Multivariate factorization over Z) < ---. Considering operations
in higher algebra, we can observe many levels of hierarchy.

The above-mentioned hierarchy forces us to construct corresponding procedures hierarchi-
cally. Furthermore, compared with procedures of numeric computation, procedures of algebraic
computation require much more time to program. Hence, a long-term is necessary to develop
general-purpose system, and the system will continue to grow several decades usually. In fact,
REDUCE has been growing continuously these 25 years.

2.4 Integration of symbolic, numeric, graphic computations

Drawing graphs is absolutely necessary in school mathematics. Similarly, graphics is very
useful in algebra system, too. Mathematica is the first system that is equipped with facility
of integrating symbolic, numeric and graphic computations, and it has achieved a great fame
by this facility. Today, every modern general-porpose system is equipped with this facility.

It should be commented that current symbolic-numeric integrated computation is very lim-
ited in ability. We will explain this in 4.3. '

1l



3 Features and thema of algebraic algorithms

So far, quite many algebraic algorithms of various kinds have been invented, many of them
are quite efficient. In this section, we do not explain individual algorithm separately but point
out prominent features and thema of algebraic algorithms complehensively.

3.1 Canonical forms and reductions

Many algebraic algorithms can be viewed as procedures which transform given expres-
sions into unique canonical forms. For example, the complete partial fraction representation
is a canonical form of Tational function, and rational function in sin(z) and cos(z) can be
transformed into a canonical form by the replacements sin(z) — (y — y~')/2i¢ and cos(z) —
(y +y71)/2, with y = €%, and by transforming the resulting rational function in y into a
canonical form.

Practically very important case is a set of polynomials

{Pl(a:,y,...,z), cee Pr(a:,y,...,z)} C K[z,y,...,2], K = anumber field.

In order to define a canonical form, we introduce two operators, a term order operator > and
and a term elimination operator £. For'example, we define > by the degree w.r.t. main variable

z and & by the following leading term elimination.

lem lem
. P——— P (i#]7),

wpy ey B UEY)

where  1t(P) is the leading term of P (highest degree term w.r.t. ),

and  lcm = Least-Common-Multiple of 1t(P;) and 1t(P;).

&e(Pi, Py) =

Note that the leading term in {P;, P;} is eliminated by the operation &), and we have
&i(P;, P;) < higher order element of {F;, P;}.
Therefore, the leading term elimination can be viewed as a reduction w.r.t. >.

Applying & to a set of two polynomials { P1, P,} successively, we can generate a polynomial
remainder sequence (rem denotes the remainder operation)

(Ri =Py, Ry =Py, By = csrem(Ry, Ry), -+, Re = cyrem(Ry—s, Ry-1)),
where ¢; € K(y,...,2), Ri € Klz,y,...,2] (1=3,...,k).
If Ry = rem(Ry_1, R) = 0 then Ry = cged(Py, Py), ¢ € K(y,...,2), and (Ry) is a canonical
form of the ideal (Py, P;) over K(y,...,z). Applying & to a set of 7 polynomials {P,---, P}
successively, we obtain Ritt-Wu’s characteristic set {Ri, R, --, Ry} which plays an essential
role in determining the common zeros of {P; =0, ---, P, =0} algorithmically [Book].

We can define > by a monomial order > on, Which orders every monomial in K{z,y,..., 2]
uniquely up to numeric coefficients, and define £ by the following head term elimination.
lem lem ‘ '
P, P; :—-H—__.P. ) "
ght( 2] ]) ht(H) ht(Pj) J (17/:.7)
where  ht(P) is the head term of P (highest order monomial w.r.t. > mono)s
and  lem = Least-Common-Multiple of ht(F;) and ht(P;).
In this case, if ht(P;)|ht(F;) hence lem = ht(P;) then & (P, Pj) < P; and the above operation
defines a reduction w.r.t. >mono. Applying & to every pair of elements of { Py, - -+, P} succes-
sively, we obtain a Grobner basis {Q;,Qa, -+, Q,} of the polynomial ideal (P,---, F). This
is the essence of celebrated Buchberger'’s algorithm [Book].
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3.2 Intermediate expression swell and modular method

In performing algebraic computation, we often encounter large-sized expressions during the
computation, although the initial and final expressions are small-sized or medium-sized. This
phenomenon is called intermediate expression swell. We show this phenomenon in the GCD
calculation by Euclidean algorithm.

Example 1 Calculation of GCD by pseudo-remainder sequence, where pseudo-remainder
of polynomials F and G, with deg(F) > deg(G), is defined as follows.

prem(F,G) = rem(lc(G)deg(F)“deg(G)“F, G),

here lc(P) is the leading coefficient (coefficient of the leading term) of P. Let P, and P, be
polynomials given as P, = z® +z% —3z* +423 - 522+ 42 —3 and P, = 325 —22% - 522+ 72 —13.
The pseudo-remainders, with initial polynomials Py and P,, are calculated as follows.

= 3x (—2z% +152° + 192% + = + 38),
= 243 x (—1493z® — 1705z% — 473z — 3286),

Py = prem(Py, P,)
)
) = 1417176 x (—29152z% — 20590z — 11421),
)
)

X
Ichpeciies

P, = prem

b

Py = prem(Py, Ps
P; = prem(Fs,"

= 2175722297384036782464 x (108918z — 577823),
= (a very long integer) x (1).

e

(
(
P; = prem(Ps,
(
(

6

Finally, we find that ged(P1, P») = 1 because deg(P;) = 0. How wastful computation we have
done to get this simple result ! O

The intermediate expression swell occurs so frequently, and it makes the corresponding
computation very slow. In order to perform the computation efficiently, we must suppress the
expression swell almost completely. Fortunately, there is a general technique to avoid the swell,
the so-called modular method.

We explain how the modular method improves the computation in Example 1, where the
expression swell occurs only in the numeric coefficients. The idea is very simple: we perform the
computation modulo some big prime p or primes P1, P2y -v ., Pe- L p/2 0r pipa - - Dk /2 is larger
than any |coefficient| of the final answer, and if the primes do not divide leading coefficients of
Py, P, ---, Py, which we say that the primes are lucky, then we can calculate the final answer -
correctly. For details of modular methods, see the literature [Book].

3.3 Construction of target expressions directly

There are various kinds of modular methods. Currently, most efficient algorithms for poly-
nomial GCD and factorization, multivariate as well as univariate, adopt the modular method.
Furthermore, the method is quite effective for Grébner basis construction, too. The following
Example 2 explains how multivariate factorization is performed by a modular method.

Example 2 Let F(z,y,2) = 22+ (~yz — 22+ y + 2 + 2)z + y2° — yPz — 2% —yz + 2z
Let S = (y, z) be the ideal generated by y and z. We first factorize F(z,y,z) modulo S, which

is nothing but factorization of univariate polynomial F(z,0,0) :

F(z,y,2) = F(2,0,0) =2’ + 2z = z(z +2) (mod (y,2)).
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With GO(z) = z and H®(z) = z + 2 as factors of F modulo S, the generalized Hensel |
construction allows us to calculate modular factors G®)(z,y, z) and H®)(z,y, 2) satisfying

F(x7 Y, Z) = G(k)(xv Y, Z) H(k)(x7 Y, Z) (mOd (y, Z)k+1)7 k : 1a 2; Tt
In our case, GV, HO G® H® are calculated uniquely as follows.

G (z,y,2) =z + 2, HO(z,y,2) =z +2+y,
GO z,y,2) =2+ 2z—yz, HI(z,y,2) =z +2+y— 2

We see that G® and H® are factors of F : F(z,y,2) = G®(z,y,2) H®(z,y,2). O

In order to find factors from the modular factors correctly, we need several additional steps,
but Example 2 explains the essence of a multivariate modular method.

Example 2 gives us an impression that the computation there is performed not to derive
the answer through many procedual steps but to construct the target expression directly. In
fact, G and G are parts of the answer G»). This style of computation allows us to get the
answer very quickly. We comment that Risch’s algorithm for computing indefinite integrals of
elementary functions also constructs the final answer directly.

3.4 Main fault - impracticality

Today, numeric computation is an infrastructural technology in scientific and industrial
worlds. On the other hand, algebraic computation has not attained such a position yet, although
everybody will agree that computer algebra systems are very useful and powerful tools for
theoretical researches. Why does this difference arise ? The main reason, the author thinks, is
lack of practicality in algebraic computation.

Current' computer algebra system seems to be satisfactory from the viewpoint of mathe-
matics; it gives us mathematically correct answers, although it often spends large computation
time. It is, however, never satisfactory from the viewpoint of practical applications. Consider,
for example, solving univariate algebraic equation f(z) = 0. Even if deg(f) = 100, numeric
computation gives us all the numeric roots to precision 107! within a second. On the other
hand, even if f(x) is as simple as deg(f) = 5, algebraic computation may not give any answer
or it will output algebraic numbers of large expression-size. From the viewpoint of practical
users, numeric values of roots are much more useful, even if they are approximate, than exact
roots in non-numeric expressions. :

‘ In applications, most users want to get the answers in simple, concise, and easily under-
standable forms within a moderate time. From the viewpoint of practical users, we can point
out the followings as unsatisfactory points of conventional algebraic computation.

1. No answer is obtained sometimes: solving algebraic equations, etc.

2. Very difficult to get answer sometimes: computation on special functions, etc.
3. Large computational time is rlequired usually <= exact computation.

’4. Large-sized expression is output usually < exact representation of expression.

Since these points are intrinsic properties of conventional algebraic computation, innovatory
advancement of the computational method will be necessary to improve the points.
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4 Where we go next 7

Summarizing the computer algebra so far, we may say

[Computer algebra so far] = [Constructive algebra] + [Efficiency]
= [Computerization of classical algebra).

Then, what happens next ? Apparently, computerization of algebra will continue, to a wider
range and to a higher level, i.e., to computerization of mathematics. Furthermore, computer
algebra will go outside universities and launch into new worlds, in particular, into high/middle
schools and industrial world. However, launching into new worlds will require innovatory ad-
vancement of algebraic computation, as we will explain below.

4.1 Towards “computer mathematics”

We may say that computer algebra so far is, roughly speaking, restricted to handling purely
algebraic expressions: we usually did not handle mathematical expressions composed of logical
symbols V, A, V, 3, -, etc., relational symbols >, >, #, etc., or set symbols U, N, C, C, €,
¢, etc. (Of course, in several branches of computer algebra, e.g., automated geometry-theorem
proving, some of such expressions have already been handled so far.)

Future computer algebra, or we had better say “computer mathematics”, will surely handle
logical, relational, and set-theoretic expressions. As for logical expressions, study of compu-
tational logic has been performed intensively so far, and recent study revealed that computer
. algebra and its techniques are useful for efficient, processing of logical expressions. Therefore,
research towards integration of algebraic and logical computations will begin.

4.2 When launching into high/middle schools

Today, teaching how to use computer algebra system is being included into university cur-
riculums. However, teaching mathematics in high/middle schools by using computer algebra
system is only in an early experimental stage. The existing computer algebra systems are
designed to be used by highly educated users only, and they are not suited for teaching ele-
mentary mathematics. The author thinks that algebraic system for middle-level education will
be almost completely different from current ones. Which kind of system is the best for such
education ? This is a big question for us. ' \

4.3 When Iaunching into industrial world

In 3.4, we pointed out that conventional algebraic computation lacks practicality. In in-
dustrial world, practicality is one of the most important properties of computation. Remember
that the most useful computational method in industrial world is numerical simulation, and it
is so practical that it can be applied to almost any problem in industrial world. '

Most of the conventional algebraic algorithms are for deriving exact expressions or solu-
tions which can be obtained in idealized cases only. On. the other hand, most mathematical
problems in industrial world cannot be idealized, because of complicated shapes of objects or
boundaries, various kinds of contaminations, and so on. In order that algebraic computation is
utilized widely in industrial world, the algorithms must be flexible enough to cope with these
complications, while conventional algebraic algorithms are too rigid to cope with. Furthermore,
algebraic systems must be able to handle expressions with floating-point number coefficients
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freely, because computation in industrial world is performed mostly with floating-point number
arithmetic.

~ One may think that we can make algebraic computation practical by combining it with
numeric computation. This idea is very old; it appeared in the middle of 1970’s [SymNum].
Since then, many systems have been constructed to combine numeric programming language
FORTRAN with symbolic programming language Lisp. Such systems allow us to perform only
“patchwork-like” symbolic-numeric computation, that is, the computation is purely numeric in
one stage and purely algebraic in another stage, and algebraic computation remains still not
so practical. In order to make algebraic computation truely practical, it will be necessary to

combine it with numeric computation in algorithmic level.

Combining symbolic computation with numeric one in algorithmic level is not so easy as one
thinks. The reason is as follows. Conventional symbolic algorithms rely on discrete mathematics
in which discreteness of integers and rational numbers plays an essential role, while numeric
algorithms rely on analysis for which continuity of real and complex numbers is essential. In
order to make the algebraic computation very useful industrially, the author thinks that we
must develop flexible algebraic algorithms by utilizing continuity of real and complex numbers.

4.4 A new approach - approximate algebra

In order to make the algebraic algorithms flexible, the author has proposed “approximate
algebra” recently and is developing various approximate algebraic algorithms in collaboration
with his colleagues. The algorithms developed so far can be classified into two classes.

Class 1 : ~Algorithms handling polynomials and rational functions approximately.

Class 2 : Algorithms handling power-series (infinite theoretically, but truncated practically)
with integral and/or fractional powers. '

For algorithms in Class 1, we define norm || P|| of polynomial P as follows.

|| P|] 4 maximum of the [numeric coefficient|’s of P.

As a representative of algorithms in Class 1, we explain approzimate factorization. Suppose a
multivariate polynomial F(z,y,...,z2) is decomposed as

F(z,y,...,2) = G(z,y,...,2) H(z,y,...,2) + 8F(z,y,...,2), IBFI/IIF|l =€ < 1.
Then, we say that F is factorized approximately into G and H with accuracy €.

Example 3 F(z,y) = 23 + 3.0yz? + (2.2y° — 1.7)z — 2.9y, hence ||F|| = 3.0.
Although F is absolutely irreducuble, i.e., irreducible over C, it can be decomposed as follows.

F(z,y) = (2 + 1.3yz — 1.7) x (z + 1.7y) — 0.01(y%z + y).
Therefore, F is approximately factorizable with accuracy ~ 1072, O

One may think that approximate factorization is very difficult to perform because of the
existence of “extra term” §F. However, it can be done rather easily; in fact, we can perform
approximate factorization efficiently by the generalized Hensel construction with floating-point
number arithmetic and linear algebraic operations on numeric matrix [AppAlg].
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In industrial world, we often handle polynomials determined experimentally or contami-
nated by various reasons. Conventional factorization algorithms are completely powerless for
such polynomials; they are powerless even for polynomials with floating-point number coeffi-
cients. However, approximate factorization algorithm is applicable to such polynomials without
any difficulty, telling us the norm of extra terms. It should be noted that the algorithm is useful
for not only practical but also mathematical problems. For example, we can check absolute irre-
ducibility of multivariate polynomials efficiently by using the algorithm. Furthermore, principal
idea of approximate factorization leads us to a unified method of various kinds of multivariate
polynomial factorizations [AppAlg]. '

The author thinks that “approximation” is a key to develop flexible algebraic algorithms.
This may be understood by comparing numeric with algebraic algorithms of solving univariate
algebraic equation; approximation changes the mathematical properties of solutions completely,
enabling us to calculate approximate solutions unbelievably simply. Similarly, approximation
is quite effective for solving multivariate algebraic equation. It is well-known that solutions
of bivariate algebraic equation F(z,y) = 0, w.r.t. the main variable x, can be expressed by
Puiseux series (fractional-power series) in y. Compared with conventional solutions expressed
in radicals, solutions in Puiseux series can be calculated without any mathematical difficulty.
Only one “fault” of Puiseux series solutions is that they are approximate ones because we can
calculate only truncated series and not infinite series.

Conventionally, Newton-Puiseux’s method is used to calculate the Pulseux series solutions,
which is very inefficient. Recently, the author has found in collaboration with his colleagues
an efficient algorithm of calculating Puiseux series solutions of multivariate as well as bivariate
algebraic equations. The algorithm is based on the generalized Hensel construction and is being
used to solve various algebraic problems practically [AppAlg].
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