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Abstract  
Variation is the essence of dynamic geometry environments. This talk aims at discussing two paradigms of use of 
variation in dynamic geometry environments: robust and soft constructions. Robust constructions are constructions for 
which the drag mode preserves their properties. Such constructions must be constructed by using the geometrical 
objects and relationships characterizing the construction to obtain. In such constructions variation is used as a 
verification means. In soft constructions, variation is part of the construction itself and a property becomes visible only 
when another one is satisfied. By means of several examples based on Cabri Geometry II and Cabri 3D, it will be 
shown how the soft paradigm can contribute to the learning. On the one hand, soft constructions can be part of the 
« private » side of the work of the students and help them identify dependency relationships between properties, on the 
other hand they can be used in mathematics teaching to introduce students to better understand the functioning of 
fundamental notions such as those of implication, valid property, hypothesis and conclusion  
     
1.  Variable and variation in mathematics 
The notions of variable and variation are often attached to algebra and in particular to the notion of 
function. However these notions go beyond these topics and are essential in mathematics. The 
duality variation/invariant permeates all mathematics, including geometry. A theorem like “Any 
isosceles triangle has two congruent angles” expresses a relational invariant between the sides of a 
triangle varying in the set of the isosceles triangles, even if the varying nature of the triangle is 
expressed by the subtle mark “any”. A geometric property is an invariant satisfied by a variable 
object as soon as this object varies in a set of objects satisfying some common conditions. The 
variability of geometric objects is generally invisible because the formulation of a geometric 
property is most of the time expressed as dealing with a single static object, the quantifiers being 
implicit, especially in the secondary school. This is not without causing troubles for the students 
who do not perceive the generality of theorems or properties. 
 
Dynamic geometry exteriorizes the duality invariant/variable in a tangible way by means of motion 
in the space of the plane. When a figure is constructed in order to satisfy a set of conditions, 
properties that derive from them are preserved in the dragging of an element of a figure. Those 
properties remaining invariant in the drag mode emerge from the contrast with the changing 
properties of the figure in the drag mode, as Mason & Heal  (1995, p.301) wrote: 

“Being able to move screen objects around in space (and so over time) can add significantly to the 
user’s sense of the underlying concept as an object not just in itself but a something invariant amidst 
change” 

Geometric properties are perceived in a dynamic geometry environment as invariant in the variation 
of the figure, exactly in the same way as an algebraic identity such as (x + 1)2 = x2 + 2x + 1  can 
only be perceived in the variations of x. One could say that a theorem in geometry is of same nature 
as an algebraic identity but from the converse point of view, an algebraic identity can be viewed as 
a theorem. Although dynamic geometry reveals this deep unity of mathematics as finally a science 
dealing with variable objects, the attention to variation as the essence of mathematics is not new. 



Let us quote the French geometer Monge (1792) writing in the “Leçons données à l’Ecole Normale 
de l’an III”: 

 “Il faut que l’élève se mette en état, d’une part de pouvoir écrire tous les mouvements qu’il peut 
concevoir dans l’espace, et de l’autre, de se représenter perpétuellement dans l’espace le spectacle 
mouvant dont chacune des opérations analytiques est l’écriture.”1 

 
This talk is devoted to the analysis of possible uses of variation in dynamic geometry, in particular 
for the teaching and learning of mathematics. As often mentioned, students have great difficulties 
in conceiving the concept of variable and variation in algebra. In the same way, it has been often 
claimed that students do not perceive the generality of geometric objects and of theorems. We 
consider that dynamic geometry dealing with tangible variable objects may become a tool in the 
hands of the teacher to introduce students to this deep and essential feature of mathematical objects.  
   
 
2.  Two paradigms 
 We distinguish two paradigms in the use of variation in dynamic geometry: the paradigm of the 
robust constructions and the paradigm of  the soft constructions. 
Let us give an example illustrating this distinction in Cabri-geometry. 
 
A robust construction 
Let create a circle with center O and a point A on this circle. Construct B such that AB is a diameter 
of the circle. Let create a point M on the circle and segments AM and MB. Measure angle AMB. The 
displayed measure is 90°. When dragging M on the circle, it is easy to see that this measure is 
invariant. This is an example of a robust construction showing that for any point of the circle 
(except A and B) angle AMB is a right angle (Fig.1). When B is redefined as any point on the circle, 
the measure of AMB changes. It remains invariant when M is dragged on the same arc AB (Fig.2). 
This small experiment often carried out by teachers in secondary school may be the starting point 
of the formulation of two theorems: 

- the often called theorem of Thales according to which an angle inscribed in a semi-circle is 
a right angle; 

- the theorem of the inscribed angle according to which angles in the same segment of  a 
circle are equal. 
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Fig.1 angle AMB inscribed in a semi-circle   Fig.2 angle AMB in a given segment of circle 
 
The robust construction contributes to a better identification in action of the elements of both 
theorems for several reasons: 

                                                 
1 The student must be able, on the one hand to write all motions that he/she can conceive in the space, and on the other 
hand to perpetually imagine in the space, the moving scene transcribed by each analytical operation. 



- the construction requires to take into account two conditions to get a right angle: AB must 
be a diameter and M a point on a circle; when writing proofs in paper and pencil 
environment, students often forget mentioning the condition dealing with the diameter. As 
soon as one of the conditions is not satisfied, the result is not obtained. 

- it allows contrasting the invariance of the angle and the varying nature of point M.  
- it exteriorizes the variable nature of point M and the set in which its varies.  
 

This explains why this construction is often used by teachers, another reason is the low cost in time 
of such a construction with regard to the cost of measuring angles in a paper and pencil 
environment, as stressed by Ruthven et al. (2005) interviewing teachers about how they use 
dynamic geometry in their teaching. The identification of those elements of the theorem is done in 
action in Cabri. The role of the teacher is then to ask students to build a formulation of the theorems.  
 
A soft construction 
Let us construct a circle, a point A on the circle and its opposite point B on the circle. Let create any 
point in the plane, and measure angle AMB. Suppose that M is outside the disc. The teacher asks to 
find a position of M outside the disk such that angle AMB is obtuse (Fig.3). The initial displayed 
measure of angle AMB is less than 90°. The students drag M outside the disc and cannot find such 
an angle. They are very convinced that angle AMB is acute when M is outside the disc. Then the 
teacher asks them whether it is possible to find an obtuse angle when varying M anywhere in the 
plane. The students move M inside the circle and observe that angle AMB becomes obtuse (Fig.4). 
They drag M anywhere inside the disc and observe that the angle is still obtuse. The teacher asks 
them to drag M from inside to outside back and forth and to observe the changes of the measure of 
angle AMB and asks the students to guess the measure of angle AMB when M is on the circle. 
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 Fig.3 angle AMB with M outside the disc   Fig.4 angle AMB with M inside the disc 
 
We call this construction a soft construction because M is not constructed as a point on the circle. In 
this exploration, students discover a theorem different from the one of the robust construction: a 
theorem linking the measure of angle AMB to the position of M in the plane, outside the disc, inside 
the disc, on the circle. The contribution of the soft construction also differs from the contribution of 
the robust construction in two aspects: 

- The reason why angle AMB is a right angle in the soft construction is made visible and the 
theorem of Thales gains in meaning. The circle is the border between two regions, one in 
which angle AMB is obtuse and one in which angle AMB is acute. Using a continuity 
principle, that students usually do spontaneously, it becomes clear that the measure of angle 
AMB must be 90° on the circle.  

More emphasis is put on the link between the condition “M is on the circle” and the consequence 
“angle AMB is right” because it is very easy to drag back and forth point M across the circle. 



 
 

3. Why a general adoption of robust constructions? 
It is interesting to note that the distinction between robust and soft constructions was formulated 
only after 15 years of existence of dynamic geometry in a paper written by Healy (2000). At the 
beginning of dynamic geometry, the emphasis both in research in mathematics education and in 
mathematics teaching was put mainly on robust constructions. The contribution of tasks in which 
students must build robust constructions in a dynamic geometry environment was rapidly 
recognized as promoting the learning of geometrical properties. It is only later that research 
investigating solving processes of students in problems revealed the existence of soft constructions 
done by students. The importance of robust constructions in teaching was rapidly accepted in 
particular because of the students’ difficulties of moving from a visual processing of diagrams to a 
theoretical perspective. 
 
Spatio-graphical versus theoretical 
The nature of diagrams in geometry has been analyzed by several researchers (Parzysz 1988, 
Sträßer 1991, Laborde 2004) who came to the common conclusion that diagrams in two-
dimensional geometry play an ambiguous role: on the one hand, they refer to theoretical 
geometrical properties, while on the other, they offer spatio-graphical properties that can give rise 
to a student’s perceptual activity. Students often conclude that it is possible to construct a 
geometrical diagram using only visual cues, or to deduce a property empirically by checking the 
diagram.  When students are asked by a teacher to construct a diagram, the teacher expects them to 
work at the level of geometry using theoretical knowledge, whereas students very often stay at a 
graphical level and try only to satisfy the visual constraints. Let us explain the distinction 
theoretical/ spatio-graphical. 
 

 
Fig.5 The diagram of a parallelogram 

 
The diagram in Fig.5 represents a parallelogram. It shows several spatio-graphical properties: two 
sides are horizontal; the other two are oblique in a given direction (bottom left to top right); the 
opposite sides are parallel; the horizontal sides have a given length.  Note that these properties are 
selected from a larger set of properties like color or the width of the sides.  Some of these spatio-
graphical properties can be interpreted in a geometrical way, while others would not be considered 
interesting from a geometrical point of view: for example, the position of the diagram on the sheet 
of paper is generally considered to be irrelevant in geometry, as is the slope of the side since it 
depends on the problem in which the parallelogram occurs.  So some spatio-graphical properties of 
the diagram are incidental to the geometrical problem, while others are necessary like the 
parallelism properties.  Further, spatio-graphical properties necessarily follow from others: there is 
a necessary link between the parallelism of opposite sides and the fact that the intersecting point of 
the diagonals is also their midpoint.  The teaching of geometry deals with these necessary links 
between spatio-graphical properties, but one can understand the nature of these links if and only if 
one also can understand that some other links are merely incidental. Necessity makes sense in 



opposition to contingence.  Geometry may appear useful if it allows one to predict, to produce or to 
explain spatio-graphical properties of diagrams because of these necessary links; but it first requires 
an awareness of the distinction between such properties and those that are theoretical. Such 
awareness is not constructed by students at the beginning of secondary school. Two kinds of tasks 
are often used in the teaching for helping students to construct this awareness: robust construction 
tasks and exploration of robust constructions. 
 
Contribution of robust constructions 
“Robust construction” tasks 
Dynamic geometry environments were used from the beginning of their existence to help students 
construct this awareness. Students are asked to construct variable diagrams satisfying to several 
conditions even when one of their elements is dragged. Eye ball constructions are invalidated by 
the drag mode since it becomes visible that some of the conditions are not satisfied. The drag mode 
is a critical factor in robust construction tasks that makes the difference with a paper and pencil 
environment. In such construction tasks in dynamic geometry, the drag mode provides a visual 
feedback from the fact that the construction does not meet all the required conditions. The strength 
of DGE2 lies in this possibility of showing at the spatio-graphical level the theoretical weakness of 
the construction. The invalidation in paper and pencil can be done only by the authority of the 
teacher who states that the construction is incorrect. The drag mode in DGE does not formulate a 
judgment but offers visual evidence to the eyes of the student. The learning potential is very 
different in both cases. In a DGE, students experience and draw the conclusion themselves that 
their construction is incorrect. In paper and pencil students may only accept the judgment of the 
teacher without trying to understand why it is incorrect. In terms of the theory of didactical 
situations (Brousseau 1997), in one case there is a “milieu” offering information and feedback to 
students’ solutions, in the other case, there is none. 
 
The potential of robust construction tasks in which students have to build robust constructions 
preserved in the drag mode was accepted universally, as shown by curricula and declarations in 
official texts about the teaching of mathematics. These latter often relate robust construction tasks 
to preparing students to proof. In a robust construction, an object characterized by a set of 
properties Qj must be obtained from the conjunction of other properties Pi. The construction process 
involves the implication: P1^P2^ … ^ Pi^… => Q1^Q2^…^Qj^…. 
The drag mode may invalidate the set of used properties Pi and shows that the construction, if it is 
correct, is not only valid for the single case of the diagram but for a set of cases. The drag mode 
shows the generality of the construction process. 
 
Exploration of robust constructions 
From the very beginning of DGEs, a widespread use of robust constructions in teaching, still 
prevailing (Ruthven et al. 2005), is to illustrate theorems. Robust constructions constructed by the 
teacher or to construct by students following guidelines are to be varied by the students  

- either in order to recognize the taught theorem 
- or to explore in order to discover a theorem. 

 
The variation and/or exploration of a variable diagram also shows to students beginning middle 
school that some spatio-graphical properties are incidental and not necessary. When moving a right 

                                                 
2 In what follows, DGE denotes dynamic geometry environments. 



triangle, one can observe that the sides of the right angle are not necessarily horizontal and vertical. 
The orthocenter of a triangle is not necessarily inside the triangle. Exploration of robust 
constructions contribute to a better familiarity with all possible diagrams representing the same 
mathematical property. Students may thus extend their visual images of a property or of an object 
and reject some spatio-graphical properties they used to attach to a kind of object. The drag mode is 
used as a tool for distinguishing between contingence and necessity. 
 
In the same vein, the drag mode allows to distinguish between properties that are always true and 
properties sometimes true, i.e. properties satisfied in a particular case. Soury Lavergne et al. (2004) 
gave the following figure in Cabri to 6th graders for exploration. ABC is any triangle, D a point of 
side BC, F the reflected point of D around the midpoint of BC, DE and FG the perpendicular lines 
to side BC. The students are given the construction ready made by the teacher but when students 
open the file, point A is in a particular position: ABC seems to be an isosceles triangle and as a 
result line EG is apparently parallel to line BC (Fig.6). Students have to formulate statements about 
properties of the figure by using the drag mode. 
 When moving D, the quadrilateral DEGF seems to stay a rectangle (Fig.7). But when moving C, B 
or A, only lines DE and FG remain parallel (Fig.8). After students have formulated these properties, 
the teacher asks the students to justify why lines DE and FG remain parallel even when any 
element of the figure is dragged whereas lines EG and DF do not. They are asked to use the text of 
the construction available in Cabri II plus or the Explore facility in Cabri Junior. 
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Fig.6 The figure in its initial position Fig.7 Moving D   Fig.8 Moving A, B or C 
 
This exploration task may be used to work on necessity versus contingence. As soon as some 
conditions are met, some other conditions are fulfilled by the figure for whatever position of the 
variable points. In contrast, a property true only for some positions of the variable points are not 
necessarily implied by the properties used to construct the figure. It may happen that they are true 
but not always.  
 
4. Soft constructions in students’ solving processes 
Soft constructions in construction tasks 
Soft constructions were observed by researchers observing students solving problems using Cabri-
geometry, either in robust construction tasks or discovery and justification tasks. Some typical 
examples of soft constructions observed by researchers in various tasks are given in what follows. 
Jones (1998, pp.79-82) describes carefully the process of elaboration of a construction by two pairs 
of recent mathematics graduates. They were given two intersecting straight lines d and d’ and a 
point P on one of this line. They had to construct a circle tangent to two intersecting straight lines d 
and d’ and having point P as its point of tangency to one of the lines.  Both pairs constructed a 
circle with a centre chosen somewhere between the lines and with point P as the radius point. Then 



they used the facility available in Cabri to drag the centre so that it appeared to be tangential to d’. 
The first construction was a soft construction but purely visual (Figs. 9 & 10). 
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Fig.9 The first drawn circle  Fig. 10 Adjusting visually the circle 

 
 
Despite the fact that the construction gave a satisfactory visual solution, they searched for a way of 
being absolutely sure. From the construction, they recognized visually that the line of the radius 
was perpendicular to the tangent line in P and this reminded them a relation between the radius and 
the tangent they already knew. Then they started a new construction again, drawing a perpendicular 
line through P to the given line and constrained the centre of the circle to lie on this perpendicular 
line (Fig.11). But again they had to adjust the circle to be tangent to line d’. This was a second soft 
construction involving the property of the tangent line to be perpendicular to the radius line 
(Fig.12). Then they drew a perpendicular to the lower line d’ at a point Q and moved Q (Fig.13) 
until the intersecting point of two perpendicular lines was equidistant from both lines d and d’ 
(Fig.14). The intersecting point was taken as the centre of the circle. This third construction was 
also a soft construction but involving another additional property: the equidistance of the centre to 
the points of the circumference. The construction was not robust since depending on the variable 
point Q.  
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Fig.11 A circle centered on the perpendicular line in P Fig.12 Adjusting the circle to be tangent to d’ 
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Fig.13 Drawing a perpendicular line to d’   Fig.14 Moving Q to adjust the circle  
 
This example shows very well how the sequence of successive soft constructions involving more 
and more geometrical properties is elaborated and how a soft construction enabled the students to 



recognize properties and to mobilize them in a further construction giving less room to visual 
adjusting. 
 
Soft constructions are not only part of the solving process but they scaffold the path to a definite 
robust construction. They play an important role in moving from a purely visual solution done by 
adjusting to a solution entirely based on theoretical solutions but achieved by dragging. These 
constructions are culturally not accepted since the time of the Greek geometry rejected 
constructions based on motion and restricted the allowed constructions to those done with straight 
edge and compass. Therefore the last unsolved question in the previous example was to find a 
single property ensuring the equidistance of a point to two straight lines. 
 
Soft constructions may not appear in the final solution given by the students and seem to belong to 
the private part of the students’ work. This may explain why soft constructions were mainly 
observed by researchers who could do fine observations of students’ work whereas they may not be 
seen by the teacher who has no means of observing in detail the work of a student. 
 
Soft constructions in proof oriented exploration tasks 
The role of dynamic geometry software on elaborating proof has been investigated by several 
researchers. A special issue of Educational Studies in Mathematics (Jones et al. 2000) is devoted to 
this topic. In particular, research has been done in studying dragging strategies and the general 
conclusion is that dragging plays a key role in forming a mathematical conjecture (Arzarello 2000, 
Hölzl 1996,  Leung & Lopez-Real 2000, Leung & Lopez-Real 2002, Healy 2000).  
 
Healy (2000) observed 14-15 year-old students faced with a task in which they had to “explore 
various methods of constructing a second triangle using different combinations of the properties 
(sides and angles) of an existing (and general) Cabri-triangle with the eventual aim of identifying 
which conditions were sufficient to ensure congruency.” Healy explains her expectations: 

“In this activity were we not expecting students to construct any formal proofs, but we did want them 
to experience how the construction of some properties necessarily (or not) results in other geometrical 
by-products.”  

Healy discovered through this observation that, rather than constructions preserved under dragging, 
students preferred to investigate constructions, “in which one of the chosen properties is purposely 
constructed by eye, allowing the locus of permissible figures to be built up in an empirical manner 
under the control of the student”. Healy introduced in this paper the distinction “soft/robust” and 
decided to call the latter constructions soft constructions and the former ones robust constructions. 
She illustrates the distinction between robust and soft approaches by means of the example of two 
pairs of students investigating whether the conditions two congruent sides and a congruent angle 
determined one triangle or not. Students using a soft construction, i.e. constructing two sides 
congruent to sides CA and CB by means of circles and moving carefully the point on the inner 
circle in order to obtain an angle congruent to angle CBA (Fig.15) immediately found a point for 
which the third side was not congruent and rejected the condition Side Side Angle.  



 

Fig.15 Fig. A soft construction providing a counter example to the condition Side Side Angle 
 
The pair using a robust construction (using circles and carry angle option that was provided) did not 
notice at first the counter example and were convinced that the condition Side Side Angle was 
enough to determine a congruent triangle. The second intersecting point of the side with the inner 
circle was discovered later after (Fig.16). 
 

 
Fig.16 A robust construction using only one intersection point 

 
Healy comments how the two kinds of construction are complementary: 

“In robust constructions, dependency is demonstrated by the fact that a relationship remains invariant 
through dragging. During the dragging test attention can move from general to specific as a “family” 
of Cabri-drawings with the same geometrical make up is produced. In soft constructions, this is not 
the case. Instead dragging is part of construction not verification and students observe how the 
dependent property becomes evident at the point in which another property is manually (and visually) 
satisfied. That is, the general can emerge from the specific during thorough searches for the set of loci 
in which the given conditions are fulfilled.” 

 
Investigations about the way dragging is used by students in solving problems carried out by Italian 
researchers (Arzarello et al. 1998, Arzarello 2000, Olivero 2002) converge with the analysis of 
Healy. These researchers conducted a very fine analysis of the use of dragging and established a 
categorization of different kinds of dragging (Olivero 2002, p.98). Among all kinds, three kinds of 
dragging seem to play an important role: 

- Wandering dragging is moving the points on the screen randomly in order to discover 
configurations,  

- Guided dragging is done with the intention to obtain a particular shape,  
- Lieu muet dragging is moving a point with the constraint of keeping a particular property 

satisfied at the initial state, the variable point follows a hidden path even without being 
aware of this. 

 



Olivero could observe that “wandering dragging” and especially “guided dragging” were mainly 
used by students whereas “lieu muet dragging” was only sometimes used and not by all students. 
An example of “lieu muet dragging” is provided by a girl Tiziana investigating at what conditions 
the quadrilateral HKLM built by the perpendicular bisectors of the sides of a quadrilateral ABCD is 
a point (Fig.17). By wandering dragging, Tiziana and Bartolomeo working together discovered that 
HKLM is a point when BCD is a rectangle (Fig.18). 
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Fig.17 The quadrilateral of the midpoints HKML Fig.18 HKML reduced to a point 

 
Bartolomeo wanted to drag the vertices of ABCD in order to obtain a specific quadrilateral HKLM, 
a parallelogram, a rhombus, a trapezium. Tiziana did not share this approach and tried to drag point 
B of the rectangle in order to keep HKLM as a point (Fig.19). She wanted then to draw a circle 
passing through the vertices of ABCD. As Bartolomeo pursued his idea, she could not do it. But 
later she could come back to her idea of a circle. She drew a circle and then an inscribed 
quadrilateral ABCD and could observe that HKML was a point (Fig.20). She moved from a soft 
construction to a robust one. 
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Fig.19 Dragging C to keep HKML as a point        Fig.20 ABCD cyclic quadrilateral  

 
The story of this pair illuminates very well the two ways of finding conditions on quadrilateral 
ABCD implying conditions on quadrilateral HKML. The way of Bartolomeo associated to guided 
dragging is oriented to find discrete cases of an implication such as “ABCD is a rectangle implies 
HKML is a point” and to find a common property among all quadrilaterals ABCD  providing a point. 
Tiziana wants to satisfy continuously the condition “HKML is a point” and doing this she tries to 
see whether ABCD remains a rectangle. She finds that not and even probably discovered that the 
path followed by point B had a circular shape. Therefore she could then check whether the 
implication “ABCD is a cyclic quadrilateral implies HKML is a point”. In Bartolomeo’s approach 
the process corresponds to an inductive process trying to generalize from several cases, whereas 
Tiziana’s process is closer to an abductive process. The “lieu muet dragging” offers a hint trough 
the shape of the hidden path. 
 



Leung (2003) considers what is experienced in dragging is a key to concept formation because it 
offers a confluence of simultaneities. His claim is based on a phenomenographic approach in which 
learning and awareness are interpreted under a theoretical framework of variation (Marton & Booth, 
1997). The central concepts of this theory are: discernment, variation and simultaneity. 
 

“ To discern an aspect is to differentiate among the various aspects and focus on the one most 
relevant to the situation. Without variation there is no discernment….Learning in terms of 
changes in or widening in our ways of seeing the world can be understood in terms of 
discernment, simultaneity and variation.” (Bowden and Marton, 1998, p.7) 

 
From this perspective both guided dragging and lieu muet dragging offers opportunities of variation, 
discernment and simultaneity. 
 
In all those examples coming from various research pieces, the use of dragging can be linked to 
processes of elaboration of a proof. However both Healy (ibidem p.114) and Olivero (ibidem p.118) 
could observe that when students had to write formal proofs, they stopped dragging and tried to 
formulate proofs using a static Cabri figure. Healy concludes that this gap between the exploration 
phase and the writing of the proof was may be due to the way formal proof was introduced without 
organizing a transition from empirical explorations to formal proof. Students were introduced to 
formal proof as a sequence of deductive steps starting from the givens. Olivero (ibidem pp.240-1) 
claims that “even if Cabri is not directly used when proving, the influence of the previous 
exploration is evident and that the use of Cabri is extremely relevant for the actual proving phase, 
in that it allows theoretical elements to emerge.” 
 
 
5. Implications for teaching 
The presented examples show how the two kinds of constructions may contribute to the 
understanding of a geometric property as an implication. The robust constructions allow checking 
whether conditions supposed to provide the expected consequence are satisfied. A minimal 
knowledge of the conditions or some ideas about them are required in such robust constructions. 
The soft constructions bring ideas on an implication itself or on the conditions to be met in order to 
obtain a consequence. The soft constructions offer thus a transition from an empirical approach to a 
theoretical approach. 
 
But the teaching is focusing on robust constructions and not on soft constructions that were 
observed in the spontaneous exploration phase of students’ work. We think that if teaching were to 
give room to both kinds of constructions and to moves from the one to the other one, it could 
improve the preparation to formal proof. 
 
In Grenoble, the introduction of soft constructions is being experimented for some years for 
preparing middle school students to proof and favouring the understanding o the functioning of a 
property. Coutat (2003) used soft constructions in Cabri Junior to mediate the distinction between 
hypothesis and consequence in a theorem. Let us give an example: 
 
Construct any quadrilateral ABCD (more general hypothesis), its diagonals and the midpoint of 
each diagonal. Drag any vertex A, B, C or D so that the midpoints are coinciding (variation of one 
element in order to obtain an additional condition) (Fig.21). The focus of the control is on the 



superimposition of the midpoints. The visible effect is the change of shape. The obtained shape is a 
parallelogram.  

   
Fig.21 – Dragging vertex D in a quadrilateral until making midpoints of the diagonals coinciding 
 
Changing the condition on an object by dragging it (here the diagonals) implies a visible change on 
other objects (here the parallelogram). The condition is what the student is directly changing. The 
visible effect is the result of the implication. The condition plays the role of the hypothesis. The 
effect plays the role of the conclusion. The link between condition and effect introduces a causal 
effect oriented from the hypothesis to the conclusion. 
 
Soft constructions seem to be particularly useful in 3D geometry as students’ intuition of space 
geometry is much weaker than in 2D geometry. They can provide ideas to students about 
relationships between elements of 3D objects and implications between these relationships. 
Let us give an example with Cabri 3D. 
The problem is given in two questions: 

1- Do the altitudes of a tetrahedron meet in a point? 
2- What are the conditions on the tetrahedron to have intersecting altitudes? 

 
Question 1: Usually students claim that altitudes do meet when they are asked to make a prediction. 
Students are given a diagram in Cabri 3D (Fig.22) where apparently two altitudes meet. By 
changing the point of view (rotating the view) they discover that the two altitudes do not meet 
(Fig.23).  
 

   
Fig. 22 Do altitudes of tetrahedron ABCD meet?  Fig.23 Changing the point of view 

 
Question 2: Students try to move A to get the altitudes meeting. By changing the point of view and 
being exactly above the plane BCD, that is viewed as a square (Fig.24), one can understand that 
point A must be moved exactly onto altitude CH. The move from a 3D view to a 2D view allows to 
discover that in the guided dragging of A to come onto CH, the altitude drawn from A and line CA 
coincide and are perpendicular to side BD (Fig.25). As CH is already perpendicular to BD, a 
possible condition for the meeting of two altitudes could be that sides BD and AC be perpendicular. 
In addition, one can guess that all points A, H, I and C are coplanar. 
 



  
Fig. 24  Being above plane BCD   Fig. 25 Moving A onto altitude CH 
 
A new soft construction is to experiment in order to secure the coplanarity of points A, H, I and C. 
Let draw the plane perpendicular to BD and passing through A. Moving C in a guided dragging 
until C is on the intersection line of this latter plane and plane BCD shows that as son as C is on this 
line, the four points are in the perpendicular plane. This explains why the altitudes AI and CH meet.  
 

 
Fig.26 The plane perpendicular to BD passing through A Fig.27 Dragging C onto this plane 
 
The missing implication to explain is why points A, H, I and C belong to this plane. By definition 
line CH is perpendicular to plane BDA. It is then perpendicular to line BD and so belongs to the 
perpendicular plane to BD passing through C. Line AI is perpendicular by definition to plane BCD. 
Thus it is perpendicular to line BD and for the same reason line AI belongs to the perpendicular 
plane to BD passing through A.  
 
The role of the soft constructions is extended in 3D geometry, as there are two kinds of dragging: 
the change of point of view and the dragging of an element. This new possibility should be 
exploited in order to improve the learning of 3D geometry. 
 



The complementary aspects of robust and soft constructions should be exploited by the teaching. In 
particular, we think that soft constructions should be officially introduced by the teacher and related 
by him/her to the theoretical knowledge to be taught. The choice of the tasks given to students is 
critical in order to promote the use soft constructions. If the task is too closed, it may not give rise 
to such soft constructions. Tasks asking about conditions to be met to obtain a given condition are 
often well adapted for this.  
 
References 
Arzarello, F., Micheletti, C., Olivero, F. & Robutti, O. (1998) Dragging in Cabri and Modalities 
of Transition from Conjectures to Proofs in Geometry. Proceedings of PME 22: Psychology 
of Mathematics Education 22nd International Conference, 2 (pp.32-39). Stellenbosch, South Africa 
Arzarello, F. (2000) Inside and Outside: Spaces, Times and Language in Proof Production. 
Proceedings of PME 24: Psychology of Mathematics Education 24th International 
Conference, 1 (pp.23-38). Hiroshima, Japan. 
Bowden, J. and Marton, F. (1998) The University of Learning. London: Kogan Page. 
Brousseau, G. (1997) Theory of Didactical Situations in Mathematics.  (N. Balacheff, M. Cooper, 
R. Sutherland, & V. Warfield, Trans. and Eds.).  Dordrecht:  Kluwer. 
Coutat, S; (2005) Connaître et reconnaître les théorèmes de la géométrie,  Petit x, vol. 67, 12-32 
Healy, L. (2000) Identifying and explaining geometrical relationship: interactions with robust and 
soft Cabri constructions In: Proceedings of the 24th Conference of the International Group for the 
Psychology of Mathematics Education, T. Nakahara and M. Koyama (Eds.) (Vol.1, pp. 103-117) 
Hiroshima: Hiroshima University  
Hölzl, R. (1996) How does ‘dragging’ affect the learning of geometry. International Journal of 
Computers for Mathematical Learning, 1, 169-187. 
Jones, K. (1998) Deductive and intuitive approaches to solving geometrical problems In: C.  
Mammana and V. Villani (Eds.) Perspectives on the Teaching of Geometry for the 21st century An 
ICMI study (pp.78-83) Kluwer Academid Publishers 
Jones K., Guttierez A. & Mariotti M.-A. (2000) Special Issue on proof and dynamic geometry, 
Educational Studies in Mathematics 44.1-2 
Laborde, C. (2004)  The hidden role of diagrams in students’ construction of meaning in geometry 
In J. Kilpatrick, C. Hoyles and O. Skovsmose (Eds.), Meaning in mathematics education, (pp.1–21). 
Dordrecht : Kluwer Academic Publishers. 
Leung, A. (2003) Dynamic geometry and the theory of variation In : Proceedings of the 27th 
Conference of the group Psychology of Mathematics Education, N. A. Pateman &  
B. J. Dougherty, J. T. Zilliox (Eds) (Vol3. pp.197-204) Hawai : CRDG, College of Education, 
University of Hawai‘i 
Leung, A. & Lopez-Real, F. (2000) An analysis of students’ explorations and constructions using 
Cabri geometry. In Clements, M.A., Tairab, H., & Yoong, W.K. (Eds.) Science, Mathematics 
and Technical Education in the 20th and 21st Centuries (pp. 144-154). Universiti Brunei 
Darussalam. 
Leung, A. & Lopez-Real, F. (2002) Theorem justification and acquisition in dynamic geometry: a 
case of proof by contradiction. International Journal of Computers for Mathematical 
Learning, 7, 145-165. 
Marton, F. and Booth, S. (1997) Learning and Awareness. New Jersey, Lawrence Erlbaum 
Associates, INC, Publishers. 



Mason, J. & Heal, B. (1995) Mathematical screen metaphors. In R. Sutherland & J. Mason (Eds.) 
Exploiting Mental Imagery with Computers in Mathematical Education (pp.209-308) Berlin: 
Springer Verlag. 
Monge, G. (1792) Séances des Ecoles Normales recueillies par des sténographes et revues par les 
professeurs. Première partie. Leçons  Tome 1-5 Paris : L. Reynier s. d. (an  III) 
Olivero, F. (2002) The proving process within a dynamic geometry environment, PhD thesis, 
Bristol, UK : University of Bristol, Graduate School of Education. 
Parzysz, B. (1988) Knowing vs Seeing, Problems of the plane representation of space geometry 
figures, Educational Studies in Mathematics, 19.1, 79-92 
Ruthven, K.; Hennessy ,S. & Deaney, R. (2005) Current practice in using dynamic geometry to 
teach about Angle properties In: Moving on with Dynamic Geometry (pp. 128-137) Derby UK: 
Association of Mathematics Teachers 
Soury Lavergne, S.; Mory, A..; Fini, C. (2004) Instrumentation of the drag mode in the introduction 
to deductive reasoning with Cabri-geometry, Cabri-world III, Roma Italy, 8-12 sept 2004. 
Sträßer, R. (1991)Dessin et Figure Géométrie et Dessin technique à l'aide de l'ordinateur (Juni 
1991) Ocasional paper n°128 Bielefeld : Universität Bielefeld, Institut für Didaktik der Mathematik 
 
 
 
 
 
 
 
 


