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ABSTRACT

Based on Biot’s three-dimensional consolidation theory of porous media, analytical solutions of the
transient consolidation deformation due to a point sink in saturated isotropic porous elastic half-space
are presented. Using the Laplace and Hankel integral transform techniques, closed-form solutions of
the horizontal and vertical displacements of the ground surface are obtained. In the analysis, case of
permeable half-space boundary is studied. The consolidation as effected by the consolidation

parameters are illustrated and discussed.

INTRODUCTION

Land subsidence due to groundwater withdrawal is a well known phenomena.' As
water pumps from an aquifer, the pore water pressure is reduced in the withdrawal
region. This leads to an increase in the effective stress between the soil particles and
subsidence of ground surface.

Biot’s three-dimensional consolidation theory™ is generally regarded as the
fundamental theory for modeling land subsidence. Based on Biot’s theory, Booker
and Carter’” presented solutions of subsidence due to pumping at a constant rate from
a point sink embedded in a saturated elastic half-space. In their solutions, the flow
properties are considered as isotropic’ or cross-anisotropic’’ whereas the elastic
properties of the soil are treated as isotropic. The half-space boundary is considered
pervious. It was found that the anisotropic permeability has significant effects on
the land subsidence due to fluid extraction. Nevertheless, transient closed-form
solutions of the half-space due to fluid withdrawal were not obtained in the studies of
Booker and Carter. *”



In this paper, the soil mass is modeled as an isotropic saturated elastic
half-space with a pervious ground surface. Using the Laplace and Hankel transform
techniques, transient horizontal and vertical displacements of the ground surface due
to a point sink are obtained. Results are then illustrated and compared to provide

better understanding of the time dependent consolidation settlement due to pumping.

MATHEMATICAL MODELS
Basic Equations
Figure 1 presents a point sink buried in a saturated porous stratum at a depth #. The
soil mass is considered as a homogeneous isotropic porous medium with a vertical
axis of symmetry. The constitutive behavior of the elastic soil skeleton for linear
axially symmetric deformation in the cylindrical coordinates (r,H,z) are expressed
by
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where 7z, , 7,,, efc., are the total stress components; p is the excess pore water
pressure of the soil mass; u,, u_ are the displacements in the radial and axial
directions, respectively; v and G are the Poisson’s ratio and shear modulus of the
stratum, respectively. The shear stress components 7., and 7, vanish by
locating the vertical z-axis through the point sink.

The total stresses must satisfy the following equilibrium relations
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in which b, (z’ = r,z) denote the body forces. By using equations (la)-(1d), the

equilibrium equations for axially symmetric problem without body forces b, can be

expressed in terms of displacements u;, and excess pore water pressure p as follows:
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where the Laplacian operator % can  be expressed as
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strain of the porous medium.
A third relation between u,, u,, and p can be obtained from the conservation of

mass.
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where n is the porosity of the porous medium; v, and v, are the velocities of pore
water and solid matrix, respectively; £ is the compressibility of pore water; g is
the rate of water extracted from the porous medium per unit volume. Assuming that
the pore water is governed by Darcy’s law, we have
n(vw —v‘Y)=—f—;%ir —f—;g—iiz, (5)
in which &k, and k_ denotes the permeability of the soil mass in the horizontal and
vertical directions, respectively; y, is the unit weight of pore water.

Let us consider a point sink of constant strength Q located at point (O,h).

Substituting (5) into (4) yields
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in which &(x) and u(f) are Dirac delta and Heaviside unit step function,
respectively. Egs. (3a), (3b) and (6) constitute the basic governing equations of the

time-dependent axially symmetric poro-elastic responses of a saturated porous

medium.

Boundary Conditions
Consider the half-space surface, z = 0, is a traction-free boundary for all time 7>0.
From Egs. (1c) and (1d), the boundary conditions are expressed in terms of u, and

u, by
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An additional condition is provided by considering the half-space as pervious. The

mathematical statements of the flow condition at the boundary z = 0 is given by
p=0 for z = 0. (7¢)

Initial Conditions
Assuming that there have no changes in displacements and seepage of the stratum
initially, the initial conditions at time ¢ =0 of the mathematical model can be treated

as
u, =0, u =0, p=0. (8)



ANALYTIC SOLUTIONS

Laplace and Hankel Transforms Solutions

The governing partial differential equations (3a), (3b) and (6) can be reduced to

ordinary differential equations by performing appropriate Laplace and Hankel

transforms® with respect to the time variable ¢ and the radial coordinate 7, we obtain
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where & and s are Hankel and Laplace transform parameters; 7 = (1-v)/(1-2v);

and the symbols u,, u

zo
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in which J,(x) represents the first kind of Bessel function of order » and the

Laplace transformations with respectto u,, u_ and p are denoted by
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The general solutions of equations (9a)-(9¢) are obtained as
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The parameters, C, (i = 1,2,---,6), are functions of the transformed variables & and
s which must be determined from the transformed boundary conditions; the
parameter ¢ =k, /nfy, ; the upper and lower signs in equation (12b) are for the

conditions of (z—4)>0 and (z—#)<0, respectively.

Transformed Boundary Conditions
Taking Hankel and Laplace transforms for Egs. (7a)-(7c¢) yields
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where u,, u, and p follows the definitions of Eqgs. (10a)-(10c).

The constants C, (i = 1,2,.--,6) of the general solutions can be determined by
the transformed half-space boundary conditions at z=0 and the conditions at
z —> o, where the effect of the point sink must vanish. Finally, the desired
quantities u,, u_ and p can be obtained by applying appropriate inverse Hankel
and Laplace transformations with the help of mathematical handbook’ and

Mathematica through tedious inversions.

Expressions for Ground Surface Displacements
The horizontal and vertical displacements of the ground surface, z=0, due to a
point sink are interested in this paper.  The transformed ground surface

displacements can be found, from Egs. (12a)-(12b), and expressed as
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For simplicity, only isotropic permeability with k, =k =k are discussed in this

paper. Using the Hankel inversions formula defined as following
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With the help of Egs. (15a)-(15¢) and (16a)-(16c¢), the transient horizontal and vertical
displacements u,(r,0,#) and wu_(r,0,#) of the ground surface due to a point sink are

obtained as follows:
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The long-term ground surface horizontal and vertical displacements can be

found as following by letting ¢ — oo
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NUMERICAL RESULTS
Of particular interest is the settlement of the stratum at each stage of the consolidation
process. Defining the average consolidation ratio U as following:

settlement at time ¢

U= — (19)

settlement at end of compression

Then U can be found as bellow:
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Figure 2 shows the average consolidation ratio U at »=0. Note that U

initially decreases rapidly but the rate of settlement then slows. Since U approaches
1 asymptotically, theoretically consolidation is never achieved.

The profiles of normalized vertical and horizontal displacements at the ground
surface z=0 are shown in Figures 3 and 4, respectively. The ground surface has
significant horizontal displacement. For example, Fig. 4 shows that the maximum

surface horizontal displacement is about 30% of the maximum ground settlement.



CONCLUSIONS

Closed-form solutions of the transient consolidation due to pumping from a pervious
elastic half-space were obtained by using Laplace and Hankel transformations. Not
only study on the vertical settlement, but also the ground surface horizontal
displacement was investigated.

Based on the numerical results, we found that the maximum surface horizontal
displacement is about 30% of the maximum surface settlement. From the average
consolidation ratio U at » =0, we found that U initially decreases rapidly but the rate
of settlement then slows. It is concluded that horizontal displacement should be
properly considered for better prediction of the transient settlement induced by

groundwater withdrawal.
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SYMBOLS
br 4 bz

c
G
h

Body forces

Parameter, c=k_ /nfy,

Shear modulus of the isotropic porous medium
Pumping depth

Unit vector parallel to the radial/vertical direction
First kind of the Bessel function of order n
Permeability of the isotropic porous medium
Horizontal/vertical permeability

Porosity of the porous medium

Excess pore fluid pressure

Hankel and Laplace transforms of p, Eq. (10c)
Rate of water extracted from the ground per unit volume
Strength of the point sink

Cylindrical coordinates system

Laplace transform parameter
Time variable

Heaviside unit step function

Radial/axial displacement of the porous medium

Hankel and Laplace transforms of u, and u_, Egs. (10a)-(10b)

Average consolidation ratio

Velocity of fluid/solid

Compressibility of pore water

Unit weight of pore water

Dirac delta function

Volume strain of the porous medium
Parameter, 7 =(1-v)/(1-2v)

Poisson’s ratio for the isotropic porous medium

Hankel transform parameter

Total stress components of the porous medium

Point Sink of
Strength O

Figure 1. Point sink induced land subsidence problem.
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Figure 2. Graphical interpretation of average consolidation ratio Uat »=0.
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Figure 3. Normalized vertical displacement profile at the ground surface z=0.
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Figure 4. Normalized horizontal displacement profile at the ground surface z=0.



