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ABSTRACT 

Based on Biot’s three-dimensional consolidation theory of porous media, analytical solutions of the 

transient consolidation deformation due to a point sink in saturated isotropic porous elastic half-space 

are presented.  Using the Laplace and Hankel integral transform techniques, closed-form solutions of 

the horizontal and vertical displacements of the ground surface are obtained.  In the analysis, case of 

permeable half-space boundary is studied.  The consolidation as effected by the consolidation 

parameters are illustrated and discussed. 

 
INTRODUCTION 
Land subsidence due to groundwater withdrawal is a well known phenomena.1  As 
water pumps from an aquifer, the pore water pressure is reduced in the withdrawal 
region.  This leads to an increase in the effective stress between the soil particles and 
subsidence of ground surface. 
     Biot’s three-dimensional consolidation theory2,3 is generally regarded as the 
fundamental theory for modeling land subsidence.  Based on Biot’s theory, Booker 
and Carter4-7 presented solutions of subsidence due to pumping at a constant rate from 
a point sink embedded in a saturated elastic half-space.  In their solutions, the flow 
properties are considered as isotropic4 or cross-anisotropic5-7 whereas the elastic 
properties of the soil are treated as isotropic.  The half-space boundary is considered 
pervious.  It was found that the anisotropic permeability has significant effects on 
the land subsidence due to fluid extraction.  Nevertheless, transient closed-form 
solutions of the half-space due to fluid withdrawal were not obtained in the studies of 
Booker and Carter. 4-7 



     In this paper, the soil mass is modeled as an isotropic saturated elastic 
half-space with a pervious ground surface.  Using the Laplace and Hankel transform 
techniques, transient horizontal and vertical displacements of the ground surface due 
to a point sink are obtained.  Results are then illustrated and compared to provide 
better understanding of the time dependent consolidation settlement due to pumping. 
 
MATHEMATICAL MODELS 
Basic Equations 
Figure 1 presents a point sink buried in a saturated porous stratum at a depth h.  The 
soil mass is considered as a homogeneous isotropic porous medium with a vertical 
axis of symmetry.  The constitutive behavior of the elastic soil skeleton for linear 
axially symmetric deformation in the cylindrical coordinates ( )zr ,,θ  are expressed 
by 
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where rrτ , θθτ , etc., are the total stress components; p  is the excess pore water 
pressure of the soil mass; ru , zu  are the displacements in the radial and axial 
directions, respectively; ν  and G  are the Poisson’s ratio and shear modulus of the  
stratum, respectively.  The shear stress components θτ r  and zθτ  vanish by  

locating the vertical z-axis through the point sink. 
     The total stresses must satisfy the following equilibrium relations 
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in which ( )zribi ,=  denote the body forces.  By using equations (1a)-(1d), the 
equilibrium equations for axially symmetric problem without body forces ib  can be 
expressed in terms of displacements iu  and excess pore water pressure p as follows: 
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where the Laplacian operator 2∇  can be expressed as 
22222 1 zrrr ∂∂+∂∂+∂∂=∇  and zururu zrr ∂∂++∂∂=ε  is the volume 



strain of the porous medium. 
A third relation between ur, uz, and p can be obtained from the conservation of 

mass: 
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where n is the porosity of the porous medium; vw and vs are the velocities of pore 
water and solid matrix, respectively; β  is the compressibility of pore water; q  is 
the rate of water extracted from the porous medium per unit volume.  Assuming that 
the pore water is governed by Darcy’s law, we have 
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in which rk  and zk  denotes the permeability of the soil mass in the horizontal and 
vertical directions, respectively; wγ  is the unit weight of pore water. 

Let us consider a point sink of constant strength Q  located at point ( )h,0 .  
Substituting (5) into (4) yields 

( ) ( ) ( ) 0
2

1
=−+

∂
∂

+
∂
∂

−







∂
∂

+
∂
∂

− 2

2

2

2

tuhzr
r

Q
t
pn

z
pk

r
p

rr
pk

w

z

w

r δδ
π

β
γγ

,             (6) 

in which ( )xδ  and ( )tu  are Dirac delta and Heaviside unit step function, 
respectively.  Eqs. (3a), (3b) and (6) constitute the basic governing equations of the 
time-dependent axially symmetric poro-elastic responses of a saturated porous 
medium. 
 
Boundary Conditions 
Consider the half-space surface, z = 0, is a traction-free boundary for all time 0≥t .  
From Eqs. (1c) and (1d), the boundary conditions are expressed in terms of ru  and 

zu  by 
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An additional condition is provided by considering the half-space as pervious.  The 
mathematical statements of the flow condition at the boundary z = 0 is given by 

0=p                             for  z = 0.                       (7c) 
 
Initial Conditions 
Assuming that there have no changes in displacements and seepage of the stratum 
initially, the initial conditions at time 0=t  of the mathematical model can be treated 
as 

0=ru , 0=zu , 0=p .                                              (8) 



 
ANALYTIC SOLUTIONS 
Laplace and Hankel Transforms Solutions 
The governing partial differential equations (3a), (3b) and (6) can be reduced to 
ordinary differential equations by performing appropriate Laplace and Hankel 
transforms8 with respect to the time variable t and the radial coordinate r, we obtain 
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where ξ  and s  are Hankel and Laplace transform parameters; ( ) ( )ννη 211 −−= ; 
and the symbols ru~ , zu~ , p~  are defined as 
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in which ( )xJ n  represents the first kind of Bessel function of order n  and the 
Laplace transformations with respect to ru , zu  and p  are denoted by 
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The general solutions of equations (9a)-(9c) are obtained as 
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The parameters, ( )6,,2,1 L=iCi , are functions of the transformed variables ξ  and 
s  which must be determined from the transformed boundary conditions; the 
parameter wz nkc βγ= ; the upper and lower signs in equation (12b) are for the 
conditions of ( ) 0≥− hz  and ( ) 0<− hz , respectively. 
 
Transformed Boundary Conditions 
Taking Hankel and Laplace transforms for Eqs. (7a)-(7c) yields 
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where ru~ , zu~  and p~  follows the definitions of Eqs. (10a)-(10c). 
     The constants ( )6,,2,1 L=iCi  of the general solutions can be determined by 
the transformed half-space boundary conditions at 0=z  and the conditions at 

∞→z , where the effect of the point sink must vanish.  Finally, the desired 
quantities ru , zu  and p  can be obtained by applying appropriate inverse Hankel 
and Laplace transformations with the help of mathematical handbook9 and 
Mathematica through tedious inversions. 
 
Expressions for Ground Surface Displacements 
The horizontal and vertical displacements of the ground surface, 0=z , due to a 
point sink are interested in this paper.  The transformed ground surface 
displacements can be found, from Eqs. (12a)-(12b), and expressed as 
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For simplicity, only isotropic permeability with kkk zr ==  are discussed in this 
paper.  Using the Hankel inversions formula defined as following 
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in which the Laplace inversions are defined as 
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With the help of Eqs. (15a)-(15c) and (16a)-(16c), the transient horizontal and vertical 
displacements ( )trur ,0,  and ( )truz ,0,  of the ground surface due to a point sink are 
obtained as follows: 
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     The long-term ground surface horizontal and vertical displacements can be 
found as following by letting ∞→t : 
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NUMERICAL RESULTS 
Of particular interest is the settlement of the stratum at each stage of the consolidation 
process.  Defining the average consolidation ratio U as following: 

ncompressioofendatsettlement
timeatsettlement tU = .                                  (19) 

Then U can be found as bellow: 
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     Figure 2 shows the average consolidation ratio U at 0=r .  Note that U 
initially decreases rapidly but the rate of settlement then slows.  Since U approaches 
1 asymptotically, theoretically consolidation is never achieved. 
     The profiles of normalized vertical and horizontal displacements at the ground 
surface 0=z  are shown in Figures 3 and 4, respectively.  The ground surface has 
significant horizontal displacement.  For example, Fig. 4 shows that the maximum 
surface horizontal displacement is about 30% of the maximum ground settlement. 



CONCLUSIONS 
Closed-form solutions of the transient consolidation due to pumping from a pervious 
elastic half-space were obtained by using Laplace and Hankel transformations.  Not 
only study on the vertical settlement, but also the ground surface horizontal 
displacement was investigated. 

Based on the numerical results, we found that the maximum surface horizontal 
displacement is about 30% of the maximum surface settlement.  From the average 
consolidation ratio U at 0=r , we found that U initially decreases rapidly but the rate 
of settlement then slows.  It is concluded that horizontal displacement should be 
properly considered for better prediction of the transient settlement induced by 
groundwater withdrawal. 
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SYMBOLS 
rb , zb  Body forces 

c  Parameter, wz nkc βγ=  

G  Shear modulus of the isotropic porous medium 
h  Pumping depth 

zr ii ,  Unit vector parallel to the radial/vertical direction 
( )xJ n  First kind of the Bessel function of order n 

k  Permeability of the isotropic porous medium 

zr kk ,  Horizontal/vertical permeability 
n Porosity of the porous medium 
p Excess pore fluid pressure 
p~  Hankel and Laplace transforms of p, Eq. (10c) 
q  Rate of water extracted from the ground per unit volume 
Q Strength of the point sink 
( )zr ,,θ  Cylindrical coordinates system 
s Laplace transform parameter 
t Time variable 

( )tu  Heaviside unit step function 
( ) ( )tzrutzru zr ,,,,,  Radial/axial displacement of the porous medium 
( ) ( )szuszu zr ,;~,,;~ ξξ  Hankel and Laplace transforms of ur and uz, Eqs. (10a)-(10b) 

U Average consolidation ratio 
vw, vs Velocity of fluid/solid 
β  Compressibility of pore water 

wγ  Unit weight of pore water 
( )xδ  Dirac delta function 

ε
 Volume strain of the porous medium 

η
 Parameter, ( ) ( )ννη 211 −−=  

ν  Poisson’s ratio for the isotropic porous medium 
ξ  Hankel transform parameter 

ijτ  Total stress components of the porous medium 

 

 
Figure 1. Point sink induced land subsidence problem. 



 
Figure 2. Graphical interpretation of average consolidation ratio U at 0=r . 

 
 

 
Figure 3. Normalized vertical displacement profile at the ground surface 0=z . 

 
 

 
Figure 4. Normalized horizontal displacement profile at the ground surface 0=z . 


